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The subjective cognitive decline (SCD) may last for decades prior to the onset of
dementia and has been proposed as a risk population for development to amnestic
mild cognitive impairment (aMCI) and Alzheimer disease (AD). Disruptions of functional
connectivity and causal connectivity (CC) in the salience network (SN) are generally
perceived as prominent hallmarks of the preclinical AD. Nevertheless, the alterations
in anterior SN (aSN), and posterior SN (pSN) remain unclear. Here, we hypothesized
that both the functional connectivity (FC) and CC of the SN subnetworks, comprising
aSN and pSN, were distinct disruptive in the SCD and aMCI. We utilized resting-state
functional magnetic resonance imaging to investigate the altered FC and CC of the
SN subnetworks in 28 healthy controls, 23 SCD subjects, and 29 aMCI subjects. In
terms of altered patterns of FC in SN subnetworks, aSN connected to the whole brain
was significantly increased in the left orbital superior frontal gyrus, left insula lobule,
right caudate lobule, and left rolandic operculum gyrus (ROG), whereas decreased
FC was found in the left cerebellum superior lobule and left middle temporal gyrus
when compared with the HC group. Notably, no prominent statistical differences were
obtained in pSN. For altered patterns of CC in SN subnetworks, compared to the HC
group, the aberrant connections in aMCI group were separately involved in the right
cerebellum inferior lobule (CIL), right supplementary motor area (SMA), and left ROG,
whereas the SCD group exhibited more regions of aberrant connection, comprising the
right superior parietal lobule, right CIL, left inferior parietal lobule, left post-central gyrus
(PG), and right angular gyrus. Especially, SCD group showed increased CC in the right
CIL and left PG, whereas the aMCI group showed decreased CC in the left pre-cuneus,
corpus callosum, and right SMA when compared to the SCD group. Collectively, our
results suggest that analyzing the altered FC and CC observed in SN subnetworks,
served as impressible neuroimaging biomarkers, may supply novel insights for designing
preclinical interventions in the preclinical stages of AD.
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INTRODUCTION

Alzheimer disease (AD) is a chronic neurodegenerative disorder
presented in elderly individuals with conspicuous decline in
cognitive deterioration and lapse of memory (Huang et al.,
2019; Wessels et al., 2019; Zhang et al., 2019). As one of the
phases between normal aging and dementia, amnestic mild
cognitive impairment (aMCI) subjects have a 10–15% possibility
of developing into AD per year (Petersen et al., 2002; Yang et al.,
2017). Subjective cognitive decline (SCD) is the stage referring
to the elderly subjects that can last for decades earlier than
the onset of dementia when persons subjectively complain of
memory impairment without corresponding objective clinical
manifestations, while person’s scores are in the normal scope
through standardized neuropsychological tests (Huang et al.,
2018a; Funaki et al., 2019; Yu et al., 2019). Furthermore,
converging evidence suggests that SCD poses risk for developing
into MCI and AD, although it may likewise be of early preclinical
stages of other neurodegeneration diseases (Berger-Sieczkowski
et al., 2019; Caillaud et al., 2019). Thus, it stands to reason that
SCD can be utilized in conjunction with aMCI to explore the
mechanism of the early phases of AD and to detect it timely.

Numerous authors have applied resting-state functional
magnetic resonance imaging (rs-fMRI) as one of the principal
means to clarify the cognitive mechanism of AD (Yang et al.,
2017; Marchitelli et al., 2018; Passamonti et al., 2019). Besides, the
brain network researches relying on rs-fMRI serve the purpose
of revealing the mechanism of neural activity in the brain,
which have also important application value and significance
in exploring the pathogenesis of AD (Donofry et al., 2019;
Lee J. et al., 2019). Among them, plentiful works have been
examined by scholars involving in the relationships between
salience network (SN) and other networks in the brain
(Fredericks et al., 2019; Lee S. E. et al., 2019). More specifically,
the SN, which is typically involved in detecting stimulus salience,
is a large-scale brain network within the human brain (Cai et al.,
2019). Anatomically, it can be spilt into anterior SN (aSN) and
posterior SN (pSN) and is primarily anchored in frontoinsular
cortices and dorsal anterior cingulate cortex (dACC) (Menon
and Uddin, 2010). Recent large-scale works of literature point at
the altered patterns of FC and causal connectivity (CC) between
SN and other networks. A published study has confirmed that
individuals with AD exhibit decreased FC within and between
the default mode networks (DMNs) and SN in comparison with
healthy controls (HCs) (Liu et al., 2019). Additionally, patients
with MCI showed increased FC in the right insula lobule (IL)
and claustrum within the SN when compared to the HC group.
Similarly, for the aMCI subjects, the FC of the SN-centered
model [includes SN, DMN, executive control network (ECN)] is
impaired compared to the patients with AD, and these alterations
in SN-centered model may result in a decline in cognitive
disorder (Aguirre et al., 2019). The basic idea of Granger causality
analysis (GCA) is based on multiple linear regression to explore
whether there is a causal relationship between the two time
series; it helps to accurately forecast the current value of another
series and is widely utilized to brain science research field
(McBride et al., 2015; Xue J. et al., 2019). A recent study using

GCA to analyze CC patterns of aMCI has revealed that CC
alterations observed in the SN, ECN, and DMN networks may
be regarded as impressible neuroimaging biomarkers for the
preclinical intervention and detection of aMCI (Zhang et al.,
2019). Former investigation has also revealed that pathological
alterations existed in the CC of dACC within SN of AD (Petersen
et al., 1985). So far, the majority of SN studies have almost
focused on the SN network or between SN and other networks,
yet very few researches have previously examined whether CC
and FC based on SN subnetworks can be used as neuroimaging
biomarkers for identifying aMCI and SCD and to explore how the
altered regions of FC and CC relate to cognitive function.

Herein, the objective of our work is to analyze the disruptions
observed in FC and CC of SN subnetworks for SCD and aMCI.
We hypothesized that there be distinct alterations of the FC and
CC in SN subnetworks, and they might be regarded as sensitive
neuroimaging markers.

MATERIALS AND METHODS

Participant
Data recruited in this article were acquired from the second phase
of the Alzheimer’s Disease Neuroimaging Initiative (ADNI-
2) database1. ADNI-2’s primary goal is to focus on finding
biomarkers of cognitive impairment and measures of outcome.
ADNI-2 was announced and implemented in 2011 and began
with a $67 million foundation. Furthermore, it lasted about
5 years. To investigate the gap between the HC and MCI, patients
with SCD were included in ADNI-2 for the first time; detailed
descriptions of ADNI-2 can be found in www.adni-info.org.
Subjects with HC (n = 28), SCD (n = 23), and aMCI (n = 29)
were recruited in the present work. Additionally, five individuals
were excluded because of excessive head motion (we controlled
cumulative translation or rotation > 1.5 mm or 1.5◦, n = 3) and
quality control in normalization (n = 2). Ultimately, a total of
75 subjects were recruited, comprising 27 HC, 20 SCD, and 28
aMCI subjects.

MRI Data Acquisition
All participants recruited in our work underwent rs-fMRI of 3.0-
T Philips Medical Systems (Amsterdam, Netherlands) scanner.
The echo-planar imaging sequence contained 140 volumes, and
the subjects were separately required to lay subjects on their
back, with eyes closed, avoid mentally active brain, and maintain
head position during data acquisition. The specific parameters
of the scan were as follows: each subject contains 140 time
points, flip angle (FA) = 80◦, matrix = 64 × 64 × 48, voxel
size = 3.31 × 3.31 × 3.31 mm3, repetition time (TR) = 3,000 ms,
echo time (TE) = 30 ms, slice thickness = 3.3 mm. T1-weighted
image volumes were obtained by using magnetization-prepared
rapid gradient-echo sequence (Chen et al., 2016), and the
parameters were as follows: matrix = 256 × 256 × 170, slice
thickness = 1.2 mm, acquisition plane = sagittal, TE = 3.16 ms,
TR = 6.81 ms, voxel size = 1 × 1 × 1.2 mm3, FA = 9◦. All

1http://adni.loni.usc.edu/
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the data involved in this article are universally available to the
scientific community.

Data Pre-processing
For rs-fMRI data, Resting-State fMRI Data Analysis Toolkit
plus (RESTplus)2 was applied for data pre-processing, which is
based on MATLAB2012a3 and Statistical Parametric Mapping
(SPM12)4. Pre-processing for rs-fMRI data involved the
following steps: the first five volumes in 140 volumes for
each subject were removed for possible instability of rs-fMRI
signal, and the remaining 135 points in time were corrected for
controlling time differences between slices and head motion
effects of volumes. Cumulative translation of more than 1.5 mm
or angular motion of more than 1.5◦ was excluded. Next,
normalization was adopted to register the original space to the
Montreal Neurological Institute (MNI) space by T1 images to
mitigate the differences in brain structure between different
individuals. Then, the normalized brain volumes were smoothed
using Gaussian kernel of 6 × 6 × 6 full width at half maximum
in order to reduce individual variations. Following this, nuisance
variables, such as six head motion parameters, global mean
signal, white matter signal, and cerebrospinal fluid signal, were
severally removed to reduce the effect on the dependent variable
(Fox et al., 2009; Huang et al., 2018b). Finally, to control noise
interferences such as heartbeat and breathing, the subjects’ brains
generated in the previous step were filtered at 0.01–0.08 Hz.

Statistical Analysis
The distinctions between the HC, SCD, and aMCI groups
of demographic and neurocognitive data were estimated by
employing analysis of variance (ANOVA) and the χ2-test within
the Statistical Package for the Social Sciences (SPSS) software
version 22.0 (IBM, Armonk, NY, United States), and then
p< 0.05 was set to indicate significant difference in our work.

Comparison and analysis for differences between HC, SCD,
and aMCI groups, one-way ANOVA, implemented in the Data
Processing and Analysis for Brain Imaging (DPABI)5 software,
was performed through voxel-by-voxel way within the brain
mask after regression of age and gender covariates. As suggested
in former research, the false-positive rate can be effectively
controlled for multiple comparisons using the non-parametric
permutation test at the cluster level (Winkler et al., 2016). Here
we adopt 1,000 permutation times, and a cluster size > 30
voxels (810 mm3) was set as the significant cluster. Besides,
the significance level was set at 0.05 in the permutation test
process. The two-sample t-test was employed to calculate
differences between two groups within the mask generated by
ANOVA. Previous study has identified that the non-parametric
permutation test with Threshold-Free Cluster Enhancement
(TFCE) can strike a good and strict balance between family-
wise error rate and reliability (Chen et al., 2018). Consequently,
permutation tests with TFCE, implemented in PLAM within

2http://restfmri.net/forum/RESTplusV1.2
3http://www.mathworks.com/products/matlab/
4https://www.fil.ion.ucl.ac.uk/spm/
5http://rfmri.org/dpabi

DPABI, were utilized to perform multiple comparisons in this
work, and then a cluster size> 10 voxels (270 mm3) was adopted
as the significant cluster, and the significance level was set at 0.05
(Xue C. et al., 2019).

Independent Component Analysis
Independent component analysis (ICA) is a data-driven and
robust analysis technique for separating statistically independent
signal sources, which is desirable in exploring neuroimaging
data (Beckmann, 2012). Based on former researches, we aimed
to use GIFT toolbox (v4.0b)6 and the infomax algorithm to
obtain SN subnetwork components of all subjects (Duc et al.,
2019; Liu et al., 2019). To obtain more accurate aSN and pSN
components, we first split the data into 20, 25, 30, 35, 40, 45,
and 50 components. It is noted that the aSN and pSN templates
were acquired by pre-decessors’ research (Shirer et al., 2012).
A previous study has shown that the component with the highest
spatial correlation value is most similar to the template (Cai et al.,
2017), and then mean spatial maps of each component were
severally utilized to run spatial correlations with SN subnetworks
templates (Aguirre et al., 2019). Furthermore, a former study
has reported that visual recognition of components through
observation and comparison of three researchers was the same as
or better than machine recognition approaches (Cherubini et al.,
2009). Taken together, we obtained 40 independent components
through the collaboration of three researchers and ICA for
subsequent analysis, and the components most corresponding to
aSN and pSN were 34 and 14, respectively. Since the intensity
values in the ICA spatial map have been converted to z-values,
we directly performed one-sample t-test (p = 0.05, TFCE-FWE
corrected, cluster size > 10 voxels) of all subjects to ascertain the
aSN and pSN components, respectively.

Functional Connectivity Analysis
Two types of masks, comprising aSN and pSN masks, were
obtained according to the ICA analysis. Then, mask-based FC
analysis was carried out to examine the alteration patterns
between SN subnetworks and the whole brain. Following this,
Fisher r-to-z transformation was applied in generated FC brains
to further improve normal distribution and facilitate subsequent
statistical analysis.

Causal Connectivity Analysis
In the present work, GCA, implemented in Resting-State fMRI
Data Analysis Toolkit (REST)7 and as one of the effective methods
for inferring causal relationships, was applied to measure the CC
between the two time series based on the previous researches
(Wang et al., 2015). We first extracted time series of each subject
from the SN subnetwork masks mentioned above and voxel in
the brain, respectively, and the CC result can be then obtained
using GCA. A brief introduction of GCA based on coefficient
is provided below. For two given rs-fMRI series x(t) and y(t),
supposing that it is more accurate to predict x(t) using the past
time points of x(t) and y(t) than to predict x using x, then there

6http://icatb.sourceforge.net
7http://www.restfmri.net/forum/REST_V1.8
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exists a causal relationship between x and y, where y is called
the cause and x is the effect. This is also analogous to other
case analysis. The mathematical formula is constructed in the
following form:

x(t) = ax,0 +

p∑
i=1

axx,ix(t − i)+
p∑

i=1

ayx,iy(t − i)+

p∑
i=1

bx,izj(t − i)+ ξx(t)

y(t) = ay,0 +

p∑
i=1

axy,ix(t − i)+
p∑

i=1

ayy,iy(t − i)+

p∑
i=1

by,izj(t − i)+ ξy(t) (1)

where p is the model order to measure the lag of time series, and
it was set to 1 in our work; ξ represents forecast error regression
coefficient. axx and ayy are the autoregressive coefficient, whereas
axy and ayx are regression coefficients that we used in our work; z
denotes noise signal, and the covariate effect coefficient is denoted
by b. In consequence, the problem mentioned above aimed to
explore the CC alterations between the selected SN subnetworks
and the whole brain across three groups.

RESULTS

Demographic and Neurocognitive
Characteristics
The demographic and neurocognitive data of all subjects
are summarized in Table 1. One-way ANOVA presented the
significant differences on age (F = 8.248, p = 0.016), Mini-Mental
State Examination (MMSE) score (F = 9.129, p< 0.01), and CDR
score (F = 68.98, p< 0.01). Nonetheless, it showed no significant
difference on gender (F = 2.026, p = 0.139). Whereas lower MMSE
scores indicate a greater degree of cognitive impairment, higher
CDR scores show greater dementia. For the MMSE scores, the
order from high to low was as follows: HC group (29.14 ± 1.49),
SCD group (28.94 ± 0.83), and aMCI group (26.87 ± 2.72).
Compared to the HC group (0.03 ± 0.11), the CDR scores
increased in the SCD group and the aMCI group successively.

TABLE 1 | Demographics and clinical measures of HC, SCD, and aMCI groups.

Group HC
(n = 27)

SCD
(n = 20)

aMCI
(n = 28)

p

Gender, female/male 20/7 10/10 10/18 0.139a

Age (years) 72.63± 4.50 72.38± 5.31 69.71± 7.26 0.016b

MMSE scores 29.14± 1.49 28.94± 0.83 26.87± 2.72 <0.01b

CDR scores 0.03± 0.11 0.12± 0.22 0.52± 0.10 <0.01b

Numbers are given as means ± standard deviation (SD) unless otherwise stated.
MMSE, Mini-Mental State Examination; CDR, Clinical Dementia Rating. aThe
p-values were obtained by χ2-test. bThe p-value was obtained by one-way
ANOVA.

Identified Regions of SN Subnetworks
Using ICA
The SN subnetworks, including aSN and pSN networks, were
extracted by ICA of all subjects. Spatial correlations of ICA
indicated that the 34th component (r = 0.34) was the component
most closely related to the aSN network; similarly, the 14th
component (r = 0.36) was the component corresponding to the
pSN. Subsequently, we obtained five clusters within the aSN
and six clusters within the pSN of all subjects using one-sample
t-test separately, consisting of two clusters of right IL, left IL,
right supplementary motor area (SMA), left middle frontal gyrus
(MFG), right MFG, left superior temporal gyrus (STG), right
supramarginal gyrus (SG), left SG, right middle cingulum, and
left pre-cuneus (PreCU), respectively (p < 0.05, TFCE-FWE
corrected, cluster size> 10 voxels) (Table 2).

Altered FC Patterns of SN Subnetworks
in the SCD and aMCI Groups
In the aSN, one-way ANOVA revealed four distinct clusters
within the brain of three groups, including the left cerebellum
superior lobule (CSL), left inferior temporal gyrus (ITG),
right orbital inferior frontal gyrus, right lingual gyrus. Besides,
compared to HC group within the mask after ANOVA, the aSN
connected to the whole brain were separately increased in left
orbital superior frontal gyrus, left IL, right caudate lobule (CL),
left rolandic operculum gyrus (ROG), whereas decreased FC was
found in the left CSL and left middle temporal gyrus (MTG) using
two-sample t-test. Compared to the SCD group, the aMCI group
exhibited decreased FC in the left MTG. Notably, compared to
the HC group, decreased and increased FCs were both found in
the SCD group, whereas no significant differences were found
in the aMCI group (TFCE-FWE corrected, cluster size ≥ 10
voxels, p < 0.05). Moreover, the influences of age and gender
were controlled in all of the results. At last for the pSN, we found
no obvious differences at the 0.05 level using two-sample t-test
(Table 3).

Altered CC Patterns of SN Subnetworks
in SCD and aMCI Groups
At first, we assumed that the selected aSN network was the cause,
and the whole brain was the effect to explore the altered CC
patterns between the aSN and the whole brain. The ANOVA
demonstrated that the prominent differences have focused on the
regions of right cerebellum inferior lobule (CIL), left CSL and
right superior parietal lobule (SPL), respectively. In comparison
with the HC group, the SCD group showed increased CC in the
right SPL, whereas aMCI group exhibited decreased CC in the
right CIL region. It is worth noting that we found no prominently
significant differences within the brain between the aMCI and
SCD groups in aSN (TFCE-FWE corrected, cluster size ≥ 10
voxels, p< 0.05) (Table 4).

We next presumed that the whole brain was the cause, and
the selected aSN network was the effect. The cluster of left
CSL was given by the ANOVA. We found that compared to
the HC group the SCD group exhibited decreased CC in the
region of the right CIL, yet increased CC in the aMCI group.
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TABLE 2 | Five significant clusters of the aSN and six significant clusters of pSN
using one-sample t-test, respectively.

Subnetwork Region Peak/MNI t-Score Cluster size

x Y z

aSN R IL 39 12 0 6.1223 69

L IL −51 12 −3 7.4987 45

R SMA 3 9 57 20.2433 809

R MFG 30 39 30 6.6647 73

L MFG −30 45 30 4.8756 65

pSN R IL 39 −9 −9 8.4505 40

L STG −36 −12 −9 5.9294 25

R SG 60 −36 27 20.1412 266

L SG −60 −30 27 20.4620 339

R MC 12 −33 45 8.107 20

L PreCU −6 −54 57 11.2489 29

The x, y, and z coordinates are the primary peak locations in the MNI space.
p < 0.05, TFCE-FWE corrected, cluster size > 10 voxels. L, left; R, right; IL,
insula lobule; SMA, supplementary motor area; MFG, middle frontal gyrus; STG,
superior temporal gyrus; SG, supramarginal gyrus; MC, middle cingulum; PreCU,
pre-cuneus.

TABLE 3 | The significant differences in FC in aSN network.

Region Peak/MNI t-Score Cluster size

x y z

ANOVA

L cerebellum superior lobule −45 −72 −30 7.063 462

L inferior temporal gyrus −57 −54 33 10.8394 3060

R orbital inferior frontal gyrus 30 18 −24 11.4223 908

R lingual gyrus −3 −63 6 7.7562 265

SCD > HC

L orbital superior frontal gyrus −24 42 −15 4.2171 29

L insula lobule −33 12 6 3.7921 127

R caudate lobule 12 18 −9 3.9469 22

L rolandic operculum gyrus −42 −6 12 3.8651 42

HC > SCD

L cerebellum superior lobule −51 −66 −39 3.6833 25

L middle temporal gyrus −57 −9 −24 3.893 114

aMCI > SCD

L middle temporal gyrus 30 18 −24 4.6672 42

The x, y, and z coordinates are the primary peak locations in the MNI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

Further, compared to the SCD group, the aMCI group exhibited
no prominent differences within the brain in aSN (TFCE-FWE
corrected, cluster size ≥ 10 voxels, p< 0.05) (Table 5).

Then, we supposed that the selected pSN was the cause,
and the whole brain was the effect. The ANOVA exhibited
prominently significant differences in the right ITG, right inferior
parietal lobule (IPL), right angular gyrus (AG), and right SMA,
respectively. In comparison with the HC group, the SCD group
exhibited decreased CC in the left IPL, left post-central gyrus
(PG), and right AG, whereas the aMCI group exhibited decreased
CC in right SMA. Compared to the SCD group, the aMCI

TABLE 4 | The significant differences in CC in aSN network when the selected
aSN network is the cause and the whole brain is the effect.

Region Peak/MNI t-Score Cluster size

x y z

ANOVA

R cerebellum inferior lobule −6 −54 −51 8.2648 296

L cerebellum superior lobule −15 −60 −18 7.4053 243

R superior parietal lobule 30 −72 57 12.7877 251

SCD > HC

R superior parietal lobule 48 −51 54 4.8878 198

HC > aMCI

R cerebellum inferior lobule −6 −57 −51 4.063 165

The x, y, and z coordinates are the primary peak locations in the MNI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

TABLE 5 | The significant differences in CC in aSN network when the whole brain
is the cause and the selected aSN network is the effect.

Region Peak/MNI t-Score Cluster size

x y z

ANOVA

L cerebellum superior lobule 42 −36 −33 10.1827 680

HC > SCD

R cerebellum inferior lobule 15 −30 33 −3.9058 519

aMCI > SCD

R cerebellum inferior lobule 27 −54 −33 3.6655 32

The x, y, and z coordinates are the primary peak locations in the MNI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

group exhibited decreased CC in the left PreCU, corpus callosum
(CCA), and right SMA. Interestingly, the SCD and aMCI groups
all showed decreased CC in aSN when compared to the HC group
(TFCE-FWE corrected, cluster size≥ 10, p< 0.05) (Figure 1 and
Table 6).

And finally, we assumed that the whole brain was the cause,
and the selected pSN was the effect. The ANOVA showed a
statistically significant difference in the left STG. By comparison
with the HC group, we found the regions of decreased CC
in SG in the SCD group, whereas the aMCI group showed
decreased CC and increased CC in the left IPL and left ROG,
respectively. It is interesting that decreased CC was found in
IPL, yet increased CC in ROG. Compared to the SCD group, the
aMCI group exhibited a significant difference of increased CC
in left post-central gyrus (LPG). It is noticeable that all of the
results have been controlled for the influences of age and gender
(Table 7).

DISCUSSION

We mainly aimed to explore the alteration patterns of FC and
CC of the aSN and pSN networks to the whole brain in the
aMCI and SCD groups and to investigate how this altered the
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ANOVA analysis

The cause: the aSN network
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FIGURE 1 | A flowchart depicting the CC process.

regions of FC and CC to cognitive function. The novel aspect of
our research is that we demonstrated the FC and CC alterations
of SN subnetworks in the SCD and aMCI groups, accompanied
by significant brain region analysis. Our results support the
hypothesis that was put forward before to a great extent, and the
research in this work also provides a new way to understand the
stages of aMCI and SCD.

Over the years, the analysis in altered FC and CC of SN
and other networks has been a research hotspot, but rarely
investigations in SN subnetworks connected with the whole
brain. Consistent with previous studies, the hub regions of
aSN and pSN networks in this article using ICA, such as IL
and cingulum, have been frequently reported to be the major
hub regions of SN (Seeley et al., 2007; Menon and Uddin,
2010; Gao et al., 2020a,b, Wang et al., 2020). Then, for FC
analysis, we found an interesting phenomenon that only aSN
network showed the altered FC using a two-sample t-test across
groups, proving that aSN might have more disruptive FC when
compared to pSN. Notably for aSN, the patients with SCD
have more brain regions with remarkable abnormalities than
the aMCI group. Compared with the HC group, the patients
with SCD have prominently altered CC in both left IL and
right CL, which is consistent with previous studies that IL
and CL are activated simultaneously (Postuma and Dagher,
2006). Besides, combining the prior research that CL plays a
critical role in the brain’s learning and memory system and
IL is closely related to somatosensory and motor functions
(Murray et al., 1984; Bick et al., 2019). Taken together, the
altered CC in left IL and right CL where patients with SCD
showed prominent differences within the brain might lead
to abnormal cognitive functions such as auditory processing,
somatosensory, motor, and memory. Specifically, the region

where the SCD group patients showed decreased FC in the
left MTG in SCD compared to the HC group was similar to
that in the aMCI group compared to the SCD group, yet only
the former FC was reduced, and the latter FC was increased.
According to a previously reported study, the MTG brain region
is primarily involved in verbal or semantic cognition and is
also associated with oral short-term memory (Vandenberghe
et al., 1996). Moreover, the MTG brain region of the AD group
showed increased FC, and it has been proved that function
involved in semantic knowledge extraction is preserved and
may be owed to the compensation mechanism to address
memory and cognitive impairment (Peters et al., 2009; Cha et al.,
2013). Hence, the alteration in the FC of left MTG found in
this study may be explained by a compensation mechanism
that exists in the human brain, and left MTG’s compensation
mechanism of SCD may be stronger than aMCI. Interestingly,
patients with SCD primarily appeared to have a decreased FC
in left CSL when compared to the HC group, whereas no
significant difference was found in patients with aMCI. The
cerebellum is involved in motor and balance as well as advanced
cognitive functions according to previous research (Gottwald
et al., 2003), suggesting that the cerebellar-related cognitive
functions of SCD might be subject to a potential effect inferred
by the altered FC of aSN to the whole brain. A previous study
has indicated that the SN is mainly responsible for cognition-
related aspects and is the key interface for the cognitive system
(La Corte et al., 2016). Meanwhile, according to the previous
relevant studies, there exists obvious cognitive impairment in
patients with aMCI when compared to SCD (Yan et al., 2018).
Consequently, our results reveal that there might be a different
impairment in FC of aSN in cognitive function across the aMCI
and SCD.
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TABLE 6 | The significant differences in CC in pSN network when the selected
pSN is the cause and the whole brain is the effect.

Region Peak/MNI t-Score Cluster size

x y z

ANOVA

R inferior temporal gyrus 48 −9 −39 8.0983 212

R inferior parietal lobule −24 −57 36 9.5386 858

R angular 39 −63 36 9.4243 308

R supplementary motor area 9 −24 60 10.0099 282

HC > SCD

L inferior parietal lobule −24 −57 36 4.0374 30

L post-central gyrus −39 −34 36 3.7147 13

R angular gyrus 39 −63 36 4.0322 42

HC > aMCI

R supplementary motor area 0 −27 63 4.0201 85

SCD > aMCI

L pre-cuneus −18 −45 9 3.8167 21

Corpus Callosum −15 −39 24 3.3527 49

R supplementary motor area 3 −21 63 3.7881 10

The x, y, and z coordinates are the primary peak locations in the MNI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

TABLE 7 | The significant differences in CC in pSN network when the whole brain
is cause and the selected pSN is the effect.

Region Peak/MNI t-Score Cluster size

x y Z

ANOVA

L superior temporal gyrus −45 −39 24 12.0664 606

HC > SCD

Supramarginal gyrus −36 −39 30 3.8585 17

HC > aMCI

L inferior parietal lobule −39 −48 39 3.4764 20

aMCI > HC

L rolandic operculum gyrus −45 −39 24 4.8525 137

aMCI > SCD

L post-central gyrus −45 −18 27 3.8486 12

The x, y, and z coordinates are the primary peak locations in the MNI space. Cluster
size > 200 voxels in one-way ANOVA, p < 0.05; cluster size > 10 voxels in two-
sample t-test, p < 0.05, TFCE-FWE corrected. L, left; R, right.

A recent study has indicated that within-SN CC between the
dACC and the striatum is abnormal in aMCI when compared to
the HC group (Yu et al., 2019), yet there are only a few studies on
the altered CC patterns between the SN subnetworks (aSN and
pSN networks) and the whole brain. Then, a previous study has
proven that directed connectivity, implemented in GCA within
DPABI, can reveal the compensatory or pathological mechanisms
of AD to some extent (Menon, 2011). Thus, in this follow-
up, we analyzed the alterations of directed CC between the SN
subnetworks and the whole brain. Compared to the HC group, in
patients with aMCI, it was shown that aberrant connections are
separately involved in the right CIL, right SMA, and left ROG,

whereas patients with SCD exhibited more aberrant connection
regions, comprising the right SPL, right CIL, left IPL, left PG,
and right AG. Except for the right CIL region, the regions of
significant difference between aSN and pSN were all different,
proving that there might exist different communications for
information between the SN subnetworks and other brain
regions. Compared to the HC group, patients with SCD showed
increased CC in the right CIL and left PG, whereas patients
with aMCI showed decreased CC in the left PreCU, CCA, and
right SMA. The PreCU is associated with many high levels of
cognitive functions, such as episodic memory and the processing
of self-related information (Herbet et al., 2019). The CCA is
mainly connected with motor language center, bilateral visual
hearing center, and so on, which is the communication channel
of bilateral cerebral hemisphere cognitive function (Prendergast
et al., 2018). In addition, PG is located in the parietal lobe of
the cerebral cortex, between the central sulcus and the central
posterior sulcus, corresponding to the somatosensory center
(Yoshino et al., 2017). Thus, the aberrant CC in this article
indicates that both the SCD group and aMCI group have different
degrees of cognitive impairment, which is consistent with the
findings of a previous study (Yan et al., 2018), and the altered
CC may be affected by the brain’s compensation mechanism. Our
research suggests, whether the aSN is the cause or effect, both
exhibited statistical differences in the right CIL region, and no
prominent difference for pSN was found. Also, no matter the
pSN is the cause or effect, both showed statistical differences
in the left PG region, and no difference for aSN was seen.
Therefore, according to the aforementioned cerebellum involved
in motor and balance, as well as advanced cognitive functions,
and the PG involved in the somatosensory center, it can be
deduced that CIL and left PG are sensitive and might be used as
neuroimaging biomarkers to distinguish the cognitive function
impairment of aSN and pSN. Interestingly, we also find that the
altered CC of pSN is found prominently outnumbering that of
aSN, signifying that pSN may have far more serious functional
impairment and more compensation requirements and can be
used as neuroimaging biomarkers for diagnosis of the early
preclinical AD.

In conclusion, our findings show that both the FC and CC of
the SN subnetworks (aSN and pSN) are distinctively disruptive in
the early preclinical stages of AD consisting of SCD and aMCI.
Moreover, the prominent difference in the distribution of aSN
and pSN varies considerably, which may be used as neuroimaging
biomarkers for diagnosis of the early preclinical AD.

CONCLUSION

This study mainly reveals that the SCD and aMCI groups exhibit
distinct alternations in aSN and pSN networks compared to the
HC group. It turns out that the altered FC and CC in SCD
and aMCI groups may reflect the changes in cognitive function,
and there may be a compensation mechanism. Further, the
sensitive neuroimaging biomarkers found in the FC and CC of
SN subnetworks may provide new insight for the early detection
of AD.
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