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Abstract
Selective breeding of sheep for arginine (R) at prion gene (PRNP) codon 171 confers resistance to
classical scrapie. However, other effects of 171R selection are uncertain. Ovine progressive
pneumonia/Maedi-Visna virus (OPPV) may infect up to 66% of a flock thus any affect of 171R
selection on OPPV susceptibility or disease progression could have major impact on the sheep
industry. Hypotheses that the PRNP 171R allele is 1) associated with the presence of OPPV provirus
and 2) associated with higher provirus levels were tested in an Idaho ewe flock. OPPV provirus was
found in 226 of 358 ewes by quantitative PCR. The frequency of ewes with detectable provirus did
not differ significantly among the 171QQ, 171QR, and 171RR genotypes (p > 0.05). Also, OPPV
provirus levels in infected ewes were not significantly different among codon 171 genotypes (p >
0.05). These results show that, in the flock examined, the presence of OPPV provirus and provirus
levels are not related to the PRNP 171R allele. Therefore, a genetic approach to scrapie control is
not expected to increase or decrease the number of OPPV infected sheep or the progression of
disease. This study provides further support to the adoption of PRNP 171R selection as a scrapie
control measure.

Introduction
Scrapie is the prototypical prion disease and one of several
described in animals and humans. Accumulation of dis-
ease associated prion protein (PrPSc), an abnormally
folded form of normal host prion protein (PrPC), is cen-
tral to disease and expression of the host prion gene
(PRNP) is necessary in pathogenesis [1]. PRNP open read-
ing frame (ORF) variants associate with disease incuba-
tion time [2] and relative disease susceptibility in sheep

[3-7], goats [8-10], elk [11-13], deer [12,14] and humans
[15-18].

Polymorphisms in sheep at PRNP codons 136 (Alanine/
Valine), 154 (Arginine/Histidine), and 171 (Glutamine/
Arginine) are involved in scrapie susceptibility (for review
see [19]). Codon 171 is an important element of suscep-
tibility in the United States (US) sheep population [6,7].
Sheep homozygous for glutamine at codon 171 (171QQ)
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are highly susceptible to Scrapie, whereas sheep hetero-
zygous (171QR) or homozygous (171RR) for arginine are
highly resistant to classical strains of US Scrapie.

The PRNP 171Q allele predominates in US sheep whereas
the 171R allele and 171RR genotype are less common (the
latter two occur at a frequency of about 37% and 16%,
respectively [20]). Selective breeding for the 171R minor
allele to produce animals with the 171QR or 171RR geno-
types is sometimes used as a Scrapie control measure,
however the functional consequences of 171R selection
on other traits is uncertain. Genetic selection may have
unexpected positive or negative effects as individual genes
may have multiple biological roles (pleiotropy) or may be
linked to other genes that impact overall biological func-
tions. Uncertainty regarding PRNP selection effects
(beyond Scrapie resistance) has led to investigation of
multiple ovine traits related to reproduction, milk, meat,
fiber and genetic diversity. However, PRNP selection
effects on disease susceptibility (besides Scrapie) has only
been studied for Salmonella resistance [21].

Ovine progressive pneumonia/Maedi-Visna virus (OPPV)
is a monocyte/macrophage tropic lentivirus (a subclass of
retrovirus) endemic in many US sheep flocks and causes
pneumonia, mastitis, arthritis and encephalitis. One in
five sheep are infected based on detection of anti-OPPV
serum antibodies and seroprevalence can be as high as
66% in open rangeland environments [22,23]. As many as
76% of OPPV seropositive sheep may develop OPPV
related diseases [24]. OPPV quantitative PCR (qPCR) is an
alternative method to detect lentivirus and provides both
diagnostic and prognostic information [25-27]. The qPCR
assay measures the presence and amount of virus that has
been reverse-transcribed and integrated into the host
genome (provirus). The technique is a useful indicator of
disease progression in the study of OPPV because OPPV
provirus levels correlate with the severity of pulmonary
lesions [28,29].

Scrapie is diagnosed in about one of every 500 culled
sheep [20] thus OPPV has much greater prevalence.
Uncertainty regarding whether PRNP selection would
effect OPPV provirus levels can create producer reluctance
to the implementation of 171R selection when OPPV is a
more severe flock-health problem. A prion-retrovirus
pathogenic relationship of undetermined mechanisms
has been observed between PrPSc and Murine Leukemia
Virus (MuLV) [30], PrPSc and Caprine Arthritis Encephali-
tis Virus (CAEV) [J Stanton, personal communication],
PrPSc and mastitis presumptively caused by OPPV [31],
and influence of PrPc expression on HIV infection [32]. In
this study, the following two hypotheses were tested in an
Idaho ewe flock: 1) the PRNP codon 171R allele is associ-
ated with the presence of OPPV provirus and 2) the PRNP

171R allele is associated with higher OPPV provirus levels.
This study will help guide producer decisions and it pro-
vides information for future prion-retrovirus co-infection
studies and advances knowledge of whether PRNP selec-
tion affects other infectious diseases.

Methods
Animals
Three hundred fifty eight ewes were sampled from a flock
in southeastern Idaho in which OPPV is endemic and
there are no reported cases of scrapie. Animals were cared
for under guidelines of the United States Sheep Experi-
mental Station Institutional Care and Use Committee.
Breeding was performed without prior selection of prion
genotype. The sample set was composed of 117 Colum-
bia, 116 Polypay, and 125 Rambouillet sheep. Ages were
three, four, five and six years with 39, 30, 31, and 17
Columbia; 27, 31, 33, and 25 Polypay; and 32, 32, 36,
and 25 Rambouillet, respectively.

Nucleic acid extraction
Peripheral blood leukocytes (PBL) were isolated from
whole blood as described [23]. Genomic DNA was
extracted from PBL using a commercial kit (Gentra, Min-
neapolis, Minnesota).

PRNP Genotyping
DNA amplification and sequencing of the ovine PRNP
ORF was performed similarly to previous experiments
using forward primer 5'-GGCATTTGATGCTGACACC-3'
and reverse primer 5'-TACAGGGCTGCAGGTAGAC-3'
[33]. Reverse primer 5'-GGTGGTGACTGTGTGTTGCTGA-
3' was used for standard dideoxynucleotide sequencing.
All sequencing was performed at the Laboratory for Bio-
technology and Bioanalysis (Washington State University,
Pullman, WA). PRNP genotypes were analyzed using
commercial software (Vector NTI, Invitrogen; Carlsbad,
CA or Lasergene Seqman Pro v7.1, DNAstar, Inc, Madi-
son, WI) and codon variants reported by single letter code
(e.g. glutamine Q, arginine R, valine V, histidine, H, leu-
cine L, phenylalanine F).

OPPV quantitative PCR
PPV provirus level was determined using a previously
described quantitative real-time PCR (qPCR) assay [23].
The OPPV qPCR used primers TMENVCONf 5'-TCA TAG
TGC TTG CTATCA TGG CTA-3' and TMENVCONr 5'-CCG
TCC TTG TGT AGG ATT GCT-3' (Invitrogen Corporation,
Carlsbad, CA) and a Taqman 5'-5'-hexachlorofluorescein-
AGC AAC ACC GAG ACC AGC TCC TGC-3' Black Hole
Quencher-1 probe (Integrated DNA Technologies, Cor-
alville, IA) targeting the highly conserved transmembrane
region within the envelope gene of the North American
OPPV strains [34].
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Statistical analyses
Two types of genotypic comparison were made using pro-
virus data and PRNP genotype, with a minimum PRNP
allele frequency of 10% required for analysis. Association
between PRNP genotype and presence or absence of
OPPV provirus was tested using logistic regression models
from the logistic procedure of SAS v9.1 (SAS Institute,
Cary, NC). Association between PRNP genotype and the
level of logarithm (base 10)-transformed provirus in
OPPV positive animals was tested using the glm proce-
dure in SAS v9.1. In each case the association model
included breed as a categorical predictor, age as a linear
covariate, the interaction between breed and age, and the
PRNP genotype of interest. Adjusted odds ratios and 95%
confidence interval were calculated for the pair-wise com-
parison of the frequency of OPPV positive ewes in each
PRNP genotype. Adjusted mean log-transformed provirus
levels were reported with 95% confidence intervals. Step-
down Bonferroni p-value correction [35] was applied sep-
arately to each set of analyses.

Results
Distribution of PRNP genotypes
The PRNP genotypes were determined as the first step in
testing association with the presence of OPPV provirus
and OPPV provirus levels. PRNP ORF coding variants
were identified at codons 101(Q/R), 136(A/V), 141(L/F),
143 (H/R), 154 (R/H), and 171 (Q/R) (Table 1). Of the

358 sheep sampled, 100 (28%) were 171QQ, 179 (50%)
were 171QR and 79 (22%) were 171RR, providing a rep-
resentation of all three genotypes (Fig. 1, left). Examina-
tion of the 171R allele relative to the overall PRNP ORF
showed that in all animals with the 171RR genotype there
were no other PRNP codon variants present. Codon
changes at other positions only occurred in animals that
had at least one wild type 171Q allele. Of the 358 sheep,
279 (78%) were 143HH, 71 (20%) were 143HR and 8
(2%) were 143RR (Fig. 1, right). Since codons 143 and
171 had amino acid substitutions with a minor allele fre-
quency of at least 10% they were further analyzed, except
for the rare 143RR genotype. Codons 101, 136, 141, and
154 had a minor allele frequency of less than 10% and
therefore these four codons were excluded from further
association analysis.

Frequency of OPP provirus among PRNP genotype
The presence or absence of OPPV provirus was compared
among the PRNP 171 and PRNP 143 genotypes, using a
statistical model accounting for age and breed, to deter-
mine if minor alleles within those genotypes affected the
number of sheep that had detectable OPPV provirus. In
the flock, 226 of 358 (63.1%) sheep had detectable OPPV
provirus. Over half of the ewes were positive for OPPV
provirus within each PRNP 171 or 143 genotype (Table
2). The frequency of OPPV positive animals was not sig-
nificantly different between the 171QQ, QR, and RR gen-
otypes as indicated by nominal and corrected p-values
greater than 0.05 (Table 3) and equivalent odds ratios
(Fig. 2). The 95% confidence intervals also indicate the
range of potential effect sizes consistent with these data
(Fig. 2). Also, the frequency of OPPV positive animals did
not differ significantly between the 143HH and HR geno-
types.

OPPV provirus levels among PRNP genotypes
The levels of OPPV provirus were compared among the
PRNP 171 and PRNP 143 genotypes to determine whether
particular genotypes were associated with higher or lower
provirus levels once a ewe became infected. Adjusted
mean log-transformed provirus levels with 95% confi-
dence interval were equivalent among codon 171 and
among codon 143 genotypes (Fig. 3). Adjusted mean log-
transformed provirus levels were not significantly differ-
ent among the 171QQ, QR, and RR genotypes or among
the 143HH and HR genotypes in which nominal and cor-
rected p-values were greater than 0.05 (Table 4).

Discussion
The present study was performed to determine if a PRNP
171R selection program impacts the presence or magni-
tude of OPPV infection. Allelic variation in PRNP could
affect OPPV status if PRNP variants produce changes in
PrPc function or expression level relevant to OPPV, if

Table 1: Distribution of PRNP ORF codon variants among 
individual breeds and in cumulative sample set

PRNP genotype Columbia Polypay Rambouillet Total

101QQ 96 115 112 323
101QR 21 1 12 34
101RR 0 0 1 1

136AA 97 116 123 336
136AV 20 0 2 22
136VV 0 0 0 0

141LL 94 110 112 316
141LF 23 5 13 41
141FF 0 1 0 1

143 HH 63 110 106 279
143 HR 46 6 19 71
143 RR 8 0 0 8

154RR 106 114 98 318
154RH 11 2 26 39
154HH 0 0 1 1

171 QQ 55 13 32 100
171 QR 56 51 72 179
171 RR 6 52 21 79
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PRNP is a pleiotropic gene, or if there are other molecules
involved in prion pathogenesis that also affect OPPV
pathogenesis. Alternatively, there may be nearby chromo-
somal regions affecting OPPV pathogenesis that are in
linkage disequilibrium with certain PRNP alleles includ-
ing, but not limited to, variants of PRNP promoter regions
or PRNP homologues. However, the lack of association
between PRNP genotype and OPPV status in this study
indicates that the presence of a specific PRNP genotype
does not influence the presence or magnitude of OPPV
infection in this flock.

The study demonstrated that the frequency of sheep with
detectable OPPV provirus was not related to the PRNP
171R (or 143R) allele in an Idaho ewe flock. This suggests
that it is no more likely that a 171RR or 171QR sheep
within a flock would become infected when compared to
a 171QQ sheep. Likewise, the data suggest there is no dif-
ference in frequency of infection between the 143HH and
143HR sheep. Only ewes were sampled in this study so it

is possible that introduction of rams could have a differ-
ent affect, however it is unlikely considering that the fre-
quency of OPPV in rams is equivalent, or perhaps lower
than OPPV frequency in ewes [36,22].

Also, provirus levels in OPPV positive animals were not
related to the PRNP 171R and 143R alleles. Thus, PRNP
selection should not affect progression of disease once
animals become infected with OPPV. A shift of flock
genetics to a greater frequency of 171QR or 171RR sheep
is unlikely to accelerate shedding or transmission of
OPPV. In these sheep there also was no difference in pro-
virus levels between animals of the 143 HH and 143HR
genotypes, thus there are no documented cases where
PRNP genotypes impact OPPV infection.

Recent studies have shown that factors such as breed and
age are important for OPPV, therefore all analyses in this
study accounted for breed, age and differences in how
each breed handled OPPV with age. For example, Ram-

Number of sheep distributed among PRNP genotypesFigure 1
Number of sheep distributed among PRNP genotypes. Left = codon 171, Right = codon 143, y-axis = number of ani-
mals.

Table 2: Number of ewes with (positive) or without (negative) 
detectable OPPV provirus among PRNP genotypes used for 
statistical comparison

OPPV Provirus Status % OPPV
PRNP genotype negative positive positive

171 QQ 36 64 64.0
171 QR 61 118 65.9
171 RR 35 44 55.7
143 HH 103 176 63.1
143 HR 26 45 63.4

Table 3: Significance level for effect of PRNP genotype upon 
frequency of animals with detectable OPPV provirus

OPPV positive vs negative p-value
Genotype comparison nominal corrected

171 QQ vs. QR 0.23 0.90
171 QR vs. RR 0.23 0.90
171 QQ vs. RR 0.60 1.00
143 HH vs. RH 0.78 1.00

P-values are before (nominal, left) and after (corrected, right) step-
down Bonferroni multiple test correction
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bouillet ewes are less likely to be positive for OPPV provi-
rus than Columbia ewes and Rambouillet ewes can also
better control OPPV provirus levels than either Columbia
or Polypay ewes [23,37]. Further, these breed differences
can change over time as some breeds show increasing pro-
virus levels with age while others do not [37]. However,
all the analyses in this study accounted for age and breed
in the association models so that these factors would not
influence tests for association with PRNP genotype.

Interactions between retrovirus' and normal or abnormal
prion protein have been previously observed. The current
findings do not exclude the possibility that increases in
ovine PrPc or CD230 expression could alter OPPV replica-
tion as observed in a human cell line where over-expres-
sion of human PrPc thwarted HIV-1 replication [32].
OPPV replicates in mammary macrophages and microglia
and transmits via ewe milk [38-40] and PrPSc is found in
macrophages of lymphoid follicles and microglia and
transmits via ewe milk [41-44,31] thereby suggesting
functional overlap between host proteins involved in

both prion and lentivirus pathogenesis. Additional links
between prion and retrovirus' are indicated by data show-
ing that caprine arthritis-encephalitis virus (CAEV) aids
PrPd accumulation in immortalized microglia in vitro [J
Stanton, personal communication] and that scrapie infec-
tion increases MuLV expression and reciprocally MuLV
accelerates scrapie pathogenesis [30].

This study is one of many examining PRNP selection
effects. The PRNP 171RR genotype has no apparent effect
on reproductive performance [45,46], ovulation rates and
litter sizes [47], and only the Suffolk breed has lower lamb
weaning weights [48]. Milk production and quality is not
effected in Churra [49], East Friesian milk sheep [46] or
Sardinian sheep and there are no significant changes in
udder morphology [50]. Carcass and wool quality are not
impaired [46,21] and 171R may positively affect average
daily gain [51]. 171R has no effect on Salmonella resistance
[21]. Finally, pedigree examination in Laxta Black Faced-
type Navarra sheep showed no overall negative effect [52].

The present study taken together with previous investiga-
tions indicate that the correlated responses to PRNP 171R
selection should be minimal. In total, ten different studies
examining reproduction, meat, milk, fiber and infectious
disease traits in a dozen different breeds found no overt
negative effect from the PRNP 171R allele or 171RR geno-
type. Additional studies may supplement present and pre-
vious results by examining other breeds, genotypes,
retrovirus strains, diseases, environmental or manage-
ment conditions, or production traits. This investigation
of a flock with endemic OPPV shows that the frequency of
OPPV infection and level of OPPV provirus loads are not

Odds ratio and 95% confidence interval for effect of PRNP genotype upon frequency of OPPV positive animalsFigure 2
Odds ratio and 95% confidence interval for effect of PRNP genotype upon frequency of OPPV positive animals.
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Table 4: Significance level of OPPV proviral load levels between 
PRNP genotypes

OPPV load p-value
Genotype comparison nominal Corrected

171 QQ vs. QR 0.07 0.27
171 QR vs. RR 0.34 1.00
171 QQ vs. RR 0.60 1.00
143 HH vs. RH 0.27 1.00

p-values are before (nominal, left) and after (corrected, right) step-
down Bonferroni multiple test correction
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affected by the PRNP 171R allele (occurring either in the
171QR heterozygous or 171RR homozygous genotypes)
and supports PRNP 171R selection as a component of
Scrapie control programs.
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