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Abstract

Trained monkeys performed a two-choice perceptual decision-making task in which they reported 

the perceived orientation of a dynamic Glass pattern, before and after unilateral, reversible, 

inactivation of a brainstem area involved in preparing eye movements, the superior colliculus (SC). 

Surprisingly, we found that unilateral SC inactivation produced significant decision biases and 

changes in reaction times consistent with a causal role for the primate SC in perceptual decision-

making. Fitting signal detection theory and sequential sampling models to the data revealed that 

SC inactivation produced a decrease in the relative evidence for contralateral decisions, as if 

adding a constant offset to a time-varying evidence signal for the ipsilateral choice. The results 

provide causal evidence for an embodied cognition model of perceptual decision-making and 

provide compelling evidence that the SC of primates, a brainstem structure, plays a causal role in 

how evidence is computed for decisions, a process usually attributed to the forebrain.

INTRODUCTION

Our ability to translate what we see into perceptual reports and choices of action may arise 

from the gradual accumulation of perceptual evidence in sensorimotor regions of the 

forebrain1,2. In monkeys, forebrain regions implicated in cognitive processing leading to 

perceptual decisions include the lateral intraparietal3 (LIP) and dorsolateral prefrontal4 

(dlPFC) areas of cerebral cortex as well as the subcortical, striatum5–7. A key observation 

linking these forebrain areas to the computations for perceptual decisions is that the spiking 
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activity of neurons in these areas gradually ramps up over time, as decisions evolve. 

Moreover, electrical stimulation in area LIP8 and the striatum of monkeys9, alters decision-

making in ways predicted by popular mathematical models of decision-making.

Ramping activity of neurons is not unique to the forebrain. The brainstem superior colliculus 

(SC) also exhibits ramping activity when monkeys and rodents perform decision-making 

tasks10–13. The field, however, generally assumes that the ramping activity of SC neurons 

results from cerebral cortical inputs to the SC and therefore, is unrelated to decision-making 

per se. Therefore, it is possible that the ramping activity in the SC simply reflects the 

sensory and motor aspects of preparing the eye movement used to report the decision. Here, 

we tested the hypothesis that the SC of monkeys plays a causal role in perceptual decision-

making, independently of its role in visual and motor processes for eye movements. We 

performed reversible GABA-agonist (muscimol) inactivation of the SC unilaterally in two 

monkeys while they performed a perceptual decision task as well as a simple saccade 

selection task. Importantly, the selection task did not contain perceptual ambiguity, as did the 

decision task, so we could assess alterations in decisions or in sensory and motor processes 

produced by SC inactivation separately, by comparing performance in both tasks. We 

modeled the data using signal detection theory (SDT) methods and sequential sampling 

model variants (drift-diffusion; HDDM, DDM and urgency gating; UGM) and all yielded 

similar results. Based on our results, we conclude that reversible inactivation of the SC 

produces significant decision biases and changes in reaction times consistent with a causal 

role for the primate SC in perceptual decision-making, independently of visual or motor 

biases. Inhibiting the SC of monkeys unilaterally changes decision-making behavior of 

monkeys in a way that is consistent with a shift in the time-varying evidence accumulation 

away from decisions into the inactivated field. A biologically plausible computational model 

of the decision changes indicates that the SC regulates the gain of how evidence is computed 

for perceptual decision-making.

RESULTS

Trained monkeys (Macaca mulatta) performed a two choice perceptual decision-making task 

in which they viewed a dynamic Glass pattern stimulus14,15 and reported the perceived 

orientation of the stimulus by making saccades to a target located in either the left or right 

hemifield, before and after reversible, unilateral inactivation of the SC with muscimol (Fig. 

1). Monkeys reported their decisions in two sets of experiments: one with the cue to report 

the choice occurring with a delay after the appearance of the Glass pattern (Fig. 1a; Delay 

task) and a second with no delay, allowing monkeys to report their decisions immediately 

(Fig. 1b; RT task). The latter version, known as a reaction time (RT) task, allowed us to fit 

dynamic decision-making models to the behavioral data to determine what decision-making 

processes changed, if any, after unilateral muscimol inactivation of the SC.

Monkeys also performed a saccade selection task in which two possible choice targets 

appeared at the same two locations as in the decision task. One target was red and the other 

white, and the monkeys made saccades to the white target, which alternated between the left 

and right positions randomly on each trial (Fig. 1c). We imposed delays in the selection task 

similar to those used in the delayed version of the Glass pattern decision task so we could 
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compare muscimol effects on eye movement biases in a task with similar timing but without 

perceptual ambiguity. The selection task required the same attention to the peripheral 

location and the same motor preparation as in the decision task but did not contain 

perceptual ambiguity nor did it require the transformation of an orientation decision to a 

motor action located elsewhere. Performing the selection task before and after unilateral 

inactivation of the SC allowed us to assess the influence of unilateral muscimol in the SC on 

motor preparation and saccade bias.

Fig. 1d shows a heat map of neuronal discharge recorded from an SC neuron before a 

muscimol injection. Warmer colors show a typical SC neuronal response field (RF) 

measured while a monkey made visually-guided saccades to the locations shown by the 

white circles. We positioned the choice targets for the decision and selection tasks at the RF 

center (to inactivated field (toIF)) and in the opposite hemifield (awayIF). Previous work 

using a random dot motion direction decision task and a brightness discrimination task 

shows that SC neuronal activity correlates with the strength of sensory evidence for 

decisions10–12,16. Furthermore, recent work reveals that second order statistics of single trial 

spiking activity in the SC reflects a process of accumulation in the random dot motion 

direction discrimination task17. Here, we confirmed that SC neuronal activity also correlated 

with evidence strength in our novel Glass pattern task (Fig. 1e). In a third monkey, we 

recorded from a small sample of SC neurons (n=10) during performance of the RT version 

of the Glass pattern orientation decision task. Fig. 1e shows that SC neuronal activity scales 

with sensory evidence strength such that high neuronal activity correlates with strong 

sensory evidence and weaker neuronal activity correlates with weaker sensory evidence. 

Moreover, we observed large differences in neuronal activity for decisions made toward and 

away from the RF when monkeys based their decisions on strong evidence, compared to 

when monkeys based their decisions on weak evidence (cf., Fig. 1e red solid and dashed 

lines and blue solid and dashed lines). Confirming that SC neuronal activity recorded in the 

Glass pattern decision task correlates with the monkey’s decisions, we calculated the area 

under the receiver operating characteristic curve (AUC) for the 0% coherence trials using 

signal detection theory (SDT) methods18,19. Fig. 1f shows that all SC neurons had AUC 

values exceeding 0.60. Taken together, the electrophysiological results from the Glass 

pattern decision task are consistent with the literature that places the SC in the network of 

brain areas that participate in the computation of evidence for perceptual decisions1.

Confirming the efficacy of the inactivation experiments, unilateral injections of muscimol 

into the SC reliably reduced or silenced the spontaneous activity of SC neurons within 10–

15 minutes of the injection (Fig. 1g). Monkeys also performed visually-guided saccades to 

predefined targets before and after inactivation, allowing us to map changes in saccadic 

velocity and providing an independent, behavioral measure of the efficacy of the muscimol 

injection20–22 (Fig. 1h). Supplementary Table 1 shows details of the injections made in two 

monkeys and Extended Data Fig. 1 shows examples of velocity maps from the injection 

experiments with estimates of the extent of muscimol spread.
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SC inactivation biases perceptual decision-making

Unilateral muscimol injections (n=23) into the SC produced reliable ipsilateral (awayIF) 

decision biases in both monkeys for all 23 injections in both the delay and RT tasks (Fig. 

2a). Unilateral saline injections into the SC (n=6) produced little discernible effect on 

decision-making performance (Fig. 2b). Parameter estimation from logistic fits (Extended 

Data Fig. 2) to the performance data for muscimol injections revealed a statistically 

significant lateral, rightward shift in α, the decision bias parameter (Fig. 2c, pre α = −0.29, 

post α = 10.21, t(22) = 9.81, p = 1.725 × 10⁻⁹, 95% CI = [8.33, 13.74]). In some 

experiments, the perceptual sensitivity parameter β, decreased with muscimol, but on 

average, the decrease in β failed to reach significance with Bonferonni correction (Fig. 2d, 

pre β = 0.12, post β = 0.10, t(22) = −2.23, p = 0.037, 95% CI = [−0.02, 0]). Saline injections 

affected neither parameter (Fig. 2e,f; pre α = 0.13, post α = 0.07, w(5) = 7, p = 0.563; pre β 
= 0.12, post β = 0.11, t(5) = 1.71, p = 0.148, 95% CI = [−0.02, 0.06]). We also compared the 

change in α before and after muscimol to the change in α before and after saline, and found 

a significant difference (bootstrap hypothesis testing, post - pre mean α muscimol = 11.04, 

post - pre mean α saline = −0.73, t(27) = 5.21, p = 3.0 × 10⁻⁵). Likewise, we found 

significant differences for these comparisons of the β parameter (post - pre mean β 
muscimol = −0.01, post - pre mean β saline = 0.02, t(27) = −2.78, p = 0.01). Calculating 

signal detection theory (SDT) quantities, criterion (c) and sensitivity (d’) also revealed 

statistically significant changes in c and not d’ (Extended Data Fig. 3).

Of the 23 muscimol injections, nine were performed during the RT version of the task (seven 

in monkey S and two in monkey B). On average, mean RT increased for toIF decisions and 

did not change for awayIF decisions post-muscimol (Fig. 2g; mean RT pre toIF = 808.71 ms, 

mean RT post toIF = 971.77 ms, t(53) = 12.86, p = 6.24 × 10⁻¹⁸, 95% CI = [133.82, 192.30]; 

mean RT pre awayIF = 887.31 ms, mean RT post awayIF = 871.41 ms, t(53) = −1.11, p = 

0.27, 95% CI = [−48.98, 17.17]). However, mean RTs showed a negative correlation with 

coherence for toIF decisions before the injection and the slopes of the chronometric 

functions flattened after injections (Fig. 2g, Fig. 2i cyan circles, pre = −3.83 ms/coherence, 

post = −2.09 ms/coherence, t(8)= 3.00, p = 0.02, 95% CI = [0.19, 4.42]). We found no 

significant changes in slopes for awayIF decisions (Fig. 2g, Fig. 2i magenta circles, pre = 

1.55 ms/coherence, post = 1.84 ms/coherence, t(8) = 1.98, p = 0.08, 95% CI = [−0.44, 

2.70]). Significant changes occurred in the intercept parameter for toIF decisions, but not for 

awayIF decisions (Fig. 2j cyan circles, pre toIF = 873.085 ms, post toIF = 952.62 ms, t(8) = 

4.64, p = 0.002, 95% CI = [48.12, 188.25]; magenta circles, pre awayIF = 909.725 ms, post 

awayIF = 901.225 ms, t(8) = 0.30, p = 0.77, 95% CI = [−94.56, 117.39]). The significant 

changes in slope of the chronometric functions for toIF decisions indicate a unilateral, 

coherence-dependent change in mean RT. That the lower coherence trials show less of a 

change in RT than the higher coherence trials, indicates that the change in RT is not solely a 

result of motor impairment, but suggests instead, that SC inactivation alters decision-making 

processes. The four saline injections changed neither the slope nor the intercept of the 

chronometric functions (Fig. 2h; Fig. 2k cyan circles, pre slope toIF = −2.14 ms/coherence 

and post slope toIF = −1.99 ms/coherence, t(3) = 0.15, p = 0.89, 95% CI = [−2.17, 2.33]; 

magenta circles, pre slope awayIF = 2.11 ms/coherence and post slope awayIF = 1.94 ms/

coherence, w(3) = 6, p = 0.88; Fig. 2l cyan circles, pre intercept toIF = 796.70 ms and post 
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intercept toIF = 832.71 ms, t(3) = 1.38, p = 0.26, 95% CI = [−33.92, 67.66]; magenta circles, 

pre intercept awayIF = 765.92 ms and post intercept awayIF = 781.98 ms, t(3) = 1.35, p = 

0.27, 95% CI = [−25.65, 50.13]). See Extended Data Fig.4 and Supplementary Table 2 for 

recovery results.

Based on the results described above and shown in Fig. 2, we propose that the SC plays a 

causal role in perceptual decision-making beyond its known role in visual and motor 

processes. Below we describe the results of experiments designed to rule out interpretations 

based on motor and attentional processes. Then, we present the results from a modeling 

exercise designed to determine which aspects of decision-making unilateral inactivation of 

the monkey SC affects.

SC inactivation alters decision and not selection accuracy

Fig. 3a shows decision accuracy collapsed across coherences for toIF (cyan) and awayIF 

(magenta) sides for monkey S (triangles) and monkey B (circles) before and after unilateral 

SC inactivation experiments (n=23). For trials with evidence favoring toIF decisions, 

accuracy dropped from 83% to 64% for monkey B (t(10) = −5.60, p = 2.28 × 10⁻⁴, 95% CI = 

[−0.26, −0.11]) and 79% to 59% for monkey S (w(11) = 0, p = 0.002). For trials with 

evidence favoring awayIF decisions, accuracy increased from 79% to 90% for both monkey 

B (w(10) = 66, p = 0.003), and monkey S (t(11) = 7.967, p = 7.00 × 10⁻⁶, 95% CI = [0.07, 

0.14]). Unilateral SC inactivation, however, impairs visual and attentional processing and 

saccade generation20,21,23. Therefore, one possibility is that the biased decision-making 

stems from an impairment in visual or attentional processing of the choice target location or 

generating the movement and not decision-making processes per se. We think, however, that 

these interpretations are unlikely, as on average, unilateral muscimol injection did not affect 

the slope of the psychometric function, which is associated with perceptual sensitivity, and 

both monkeys reported toIF decisions in the high coherence conditions indicating that they 

could see the choice targets and make those saccades. The change in performance in the 

decision task suggests instead that SC inactivation impairs the balance of evidence for a 

decision rather than visual or attentional processing or the ability to report the decision. In 

the case of high coherence trials, the relative levels of activity between the each SC remains 

greater for toIF decisions after muscimol compared to the lower coherence trials19,22,24. 

Nevertheless, we tested the attention and motor impairment hypotheses directly.

To rule out an interpretation based on attentional or motor bias or impairment, monkeys 

performed a selection task in which they prepared and made saccades to the same two target 

locations as in the decision task with similar timing, but without perceptual ambiguity or the 

need for the transformation of an orientation direction decision to a saccade (Fig. 1c). 

Performance accuracy in the selection task did not change significantly after muscimol 

injection for either monkey for all 23 injections (Fig. 3b). Both monkey S and monkey B’s 

accuracy for toIF decisions changed from 99% to 98% after muscimol (monkey S, w(11) = 

28, p = 0.656; monkey B, w(10) = 5, p = 0.249). Unilateral saline injections also produced 

statistically indistinguishable changes in accuracy in the selection task for toIF decisions 

(Fig. 3c; monkey B, 97% to 95%, w(10) = 1, p = 0.655; monkey S, 99% to 98%, w(11) = 0, 

p = 0.317).
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Since the decision task is more difficult than the selection task, it is possible that monkeys 

opt to make the unaffected, awayIF saccade in the decision task more often than in the 

selection task. If true, we reasoned that we would see no bias in the decision task at the 

easiest toIF coherence trials, such as 36% and 50%, since the accuracy in these trials was 

near 100% pre-muscimol indicating that there would be no need to opt for an easier saccade. 

Yet, we still observed a pronounced change in accuracy post-muscimol even for the 36% 

coherence trials, a finding that is better explained by a change in aspects of decision-making, 

rather than a motor preference under uncertainty. Also, assuming the monkeys opted for 

easier awayIF saccades, we reasoned that toIF saccades in the decision task should be harder 

to make and would therefore be slower, than saccades in the selection task, given that slower 

saccades indicate reduced vigor25. Interestingly, in some cases, the velocity of toIF saccades 

in the decision task was higher than the velocity of saccades in the selection task after 

muscimol, despite matched metrics (cf., post cyan symbols in Fig. 3d and e). The mean peak 

toIF saccadic velocity post-muscimol was 563.54°/s for monkey S and 634.58°/s for monkey 

B in the decision task. In the selection task, the mean peak toIF saccadic velocity post-

muscimol was 529.00°/s for monkey S and 546.78°/s for monkey B. The decision task had 

significantly higher saccadic velocities than those in the selection task in six out of eight 

muscimol injections in monkey B, and four out of nine for monkey S (Supplementary Table 

3). Fig. 3f shows a subset of the data in which monkeys made visually-guided saccades in 

the task used to map changes in saccade velocities. Simple, visually-guided toIF saccades 

also tended to be slower than those measured in the decision task, although we did not 

perform statistics as the data from the simple saccade task were fewer. The higher saccadic 

velocities in the decision task compared to the selection task, the profound change in 

accuracy in the decision task, and the lack of change in accuracy in the selection task, 

together support the embodied cognition model of decision-making26,27. The results show 

that a sensorimotor region of the primate brainstem involved in generating action, plays a 

causal role in a cognitive function - decision-making - independent of its role in action 

generation. The results also show that decision biases in the Glass pattern task do not stem 

from simple motor or visual attentional biases.

SC inactivation alters the computation of evidence for decisions

We next wished to determine what aspects of perceptual decision-making, if any, unilateral 

inactivation of the SC affected. A popular model of perceptual decision-making proposes 

that sensory evidence for or against a particular decision accumulates over time until a 

bound crossing, at which time, a decision is made. An example of a sequential sampling 

model is the drift-diffusion model (DDM)28,29. In the DDM framework, model parameters 

instantiate particular aspects of decision-making processes as well as non-decision processes 

such as the time required for visual processing and the generation and execution of the 

action used to report the decision. Some of the model parameters in the DDM have 

analogous components in SDT. In the SDT framework (Fig. 4a), there are two distributions, 

one representing the signal and the second representing noise or, choice 1 and choice 2 and 

in our experiment, this would be toIF and awayIF. In the DDM framework, one can think of 

these two distributions as the internal, sensory representations for the two decisions that 

provide input to the accumulator(s). In the DDM framework, the difference of evidence for 

or against a decision is computed to determine the net evidence (also referred to as 

Jun et al. Page 6

Nat Neurosci. Author manuscript; available in PMC 2021 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



momentary evidence8,30). The evidence is then integrated over time until a bound is reached. 

In SDT, an internal response is compared to a criterion and evidence is stationary whereas in 

the DDM evidence is time-varying. The distance between the two distributions in SDT 

reflects perceptual sensitivity and is measured as d’ (Fig. 4a). Changes in d’ will appear as 

changes in the slope of the psychometric function. In the DDM, an analogous term is the 

proportionality factor between coherence and drift rate31 (k; Fig. 4b; Supplementary Note). 

Changes in the proportionality factor change perceptual sensitivity (assuming fixed noise) 

and appear as changes in the slope of the psychometric function. Note that symmetric 

changes in the bound can also change sensitivity.

The decision criterion in the SDT framework is defined as the willingness to decide on one 

or the other choice (toIF or awayIF) and is reflected by the parameter c - or the position of 

the criterion (Fig. 4c black and orange vertical lines). In the DDM framework, there is no 

single parameter that reflects the decision criterion. Rather, the combined action of the drift 

rate offset (Fig. 4d), defined as the mean drift rate across all coherences and decision 

directions (a.k.a. the distance from the drift criterion32 or the drift bias33), and the start point 

of evidence accumulation (Fig. 4e), are two ways to implement a decision criterion. Changes 

in the decision criterion in SDT, and the drift rate offset and the starting point of evidence 

accumulation in the DDM framework, all result in lateral shifts of the psychometric 

function. In our previous work using a detection task and sensorimotor priming34, we found 

that a simple difference in sensory evidence for the presence or absence of a stimulus (we 

referred to this difference as the decision variable), could not explain SC neuronal activity, 

changes in behavior or changes in behavior resulting from electrical stimulation of SC 

neurons. Rather, a model based on a normalized difference of evidence (effectively, a 

measure of the distance from the SDT criterion) best explained the data. In that experiment, 

however, we could not determine whether criterion position changes resulted from changes 

in the drift rate offset (which would affect the computation of time-varying evidence in the 

DDM framework), or from changes in the starting point of evidence accumulation. The 

experiments reported here together with the application of the DDM framework, allow us to 

determine the role of the SC in decision-making with greater precision. Fig. 4 shows the 

relationships between these variables in the two general model cases. Extended Data Fig. 5 

provides further explanation using model simulations.

To illustrate predicted changes in decisions and mean RTs that may occur with alterations in 

different aspects of decision-making, we first simulated multiple DDM variants with only 

specific parameters varying (Fig. 5, Extended Data Fig. 5, Supplementary Note). Based on 

visual comparisons of model predictions and observed data, we can rule out three 

possibilities to explain the effect of unilateral SC inactivation. First, the data from both 

monkeys are inconsistent with a decrease in the proportionality factor between coherence 

and the drift rate, as the slope of the psychometric function showed little to no change with 

SC inactivation (cf., simulation in Fig. 5a–d, simulation in Extended Data Fig. 5a–d and 

actual data Fig. 5q–x, shaded). Second, a symmetric increase in the toIF and awayIF 

boundaries is also unlikely to explain the effect of muscimol since the predicted slight 

changes in sensitivity and the lack of a shift in the psychometric function do not match the 

observed results (cf., simulation in Extended Data Fig. 5q–t and actual data in Fig. 5q–x, 

shaded). Third, we can rule out a model based only on non-decision time, as this predicts no 
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change in the psychometric function and joint changes in the mean RT, neither of which 

occurred in the post-muscimol data (cf., simulation in Extended Data Fig. 5u–x and actual 

data Fig. 5q–x, shaded). The simulations with a change in drift rate offset (Fig. 5m–p and 

Extended Data Fig. 5m–p), proportional start point change (Fig. 5e–h and Extended Data 

Fig. 5e–h), and an increase in the toIF boundary (Fig. 5i–l and Extended Data Fig. 5i–l), are 

the only parameter changes by themselves that can explain the shift in the psychometric 

functions that we observed in the data after muscimol (Fig. 5r,v, shaded). However, a 

proportional start point change alone cannot explain the observed increases in mean error 

toIF RTs and predicts a large decrease in mean correct RTs for awayIF decisions, which we 

did not observe (cf., simulations in Fig. 5g,h and Extended Data Fig. 5g,h and actual data in 

Fig. 5s,t,w,x, shaded). An increase in the toIF boundary may explain the changes observed in 

the mean correct RTs (cf., simulations in Fig. 5k,l, and Extended Data Fig. 5k,l and actual 

data in Fig. 5s,t,w,x, shaded), but fails to explain the magnitude of the lateral shift in the 

psychometric function observed in the post-muscimol data (cf., simulations in Fig. 5j, 

Extended Data Fig. 5j and actual data in Fig. 5r,v, shaded). Therefore, simulations show 

qualitatively that a change in the drift rate offset favoring awayIF decisions explains most of 

the observed post-muscimol data in both monkeys.

The above comparisons are qualitative. Therefore, to determine quantitatively whether and 

which decision-making process or processes are affected by unilateral SC inactivation, we 

next fitted hierarchical and non-hierarchical drift-diffusion model variants (HDDM and 

DDM) and urgency-gating model variants35,36 (UGM) to the performance and RT data 

(seven injections in monkey S and two injections in monkey B; Methods and Supplementary 

Note). Parameter estimation of pre- and post-muscimol data indicated that multiple 

parameters changed after muscimol (Extended Data Fig. 6). However, the only consistent 

parameter change in the two monkeys across experimental sessions that explained the 

lateral, rightward shift in psychometric functions was the drift rate offset favoring awayIF 

decisions (Fig. 5q,u arrows, Extended Data Fig. 6). The drift rate offset differed from zero 

after muscimol for both monkeys (HDDM, monkey S, Bayes factor (BF) = 3.19 × 10⁶; 
monkey B BF = 17.87) but not before muscimol (monkey S BF =0.08; monkey B BF = 

0.14). The posterior probability of a change in the drift rate offset favoring the awayIF, was 

99.7% in monkey S (posterior medians pre = −0.06, post = −0.64) and 99.0% in monkey B 

(posterior medians pre = 0.09, post = −0.85). Monkey S showed a high probability of a small 

start point change away from the IF (95.1% posterior probability of a proportional start point 

change away from the IF and posterior medians pre = 0.54, post = 0.49, the latter value 

being indistinguishable from 0.5; BF−1 = 11.51). Monkey B in contrast, showed a 70.6% 

posterior probability of a small proportional start point change toward the IF (posterior 

medians pre = 0.52, post = 0.55, BF−1 = 2.82). These opposite starting point changes in the 

two monkeys, although small, may reflect different strategic responses to the muscimol 

inactivation. The posterior probability of a non-decision time increase was 94.5% in monkey 

S (posterior medians pre = 408 ms, post = 433 ms) and 97.0% in monkey B (posterior 

medians pre = 543 ms, post = 597 ms). The posterior probability of a symmetric boundary 

increase was 78.9% in monkey S (posterior medians pre = 1.5, post = 1.6) and 95.2% in 

monkey B (posterior medians pre = 1.3, post = 1.5). We found little evidence for a change in 

the proportion of lapse trials, trials in which decisions are determined randomly, for either 
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monkey (a positive change in lapse proportion was 72.5% in monkey S with posterior 

medians pre = 0.32 and post = 0.38 and 54.0% in monkey B with posterior medians pre = 

0.45 and post = 0.46). The non-hierarchical DDM fits also showed the same patterns of 

parameter changes indicating that the results are robust to modeling methods (Extended Data 

Fig. 6k,l). Overall, the drift rate offset was the only parameter that changed significantly (> 

95% posterior probability) after SC inactivation in both monkeys. Likely (> 94.5%) non-

decision and somewhat likely (> 78.9%) symmetric boundary increases were observed in 

both monkeys, but neither parameter explains the lateral, rightward shift in psychometric 

functions we observed in the post-muscimol data. Although we observed start point and 

single boundary changes, both failed to explain the lateral shift in the psychometric 

functions and the changes in RT distributions.

The above analysis provides a quantitative assessment of which DDM parameters changed 

with unilateral muscimol injection in the SC. We found that the drift rate offset was the 

parameter that changed significantly across both monkeys and all experiments most 

consistently. We next tested directly which parameter change best explained the effect of SC 

inactivation on decision-making by fitting HDDM variants with the following parameters 

free to vary while keeping all others fixed to the observed data: drift rate offset (HDDM-Δ), 

proportional start point (HDDM-w), non-decision time (HDDM-τ), and proportional start 

point along with bound (HDDM-a,w, to test the fitting of either single or symmetric bound 

changes; Supplementary Note). An HDDM fitted with the drift rate offset allowed to change 

explained the shift in psychometric function almost as well as the HDDM fitted with all 

parameters free to vary (HDDM-Δ explained 97.6% of the variance of the psychometric 

function and the full HDDM explained 98.3% for monkey S; the HDDM-Δ explained 98.3% 

of the variance and the full HDDM explained 99.3% for monkey B) and fit the shifts in 

psychometric function better than all other model variants (Extended Data Fig. 7, 

Supplementary Table 4). Thus, the best explanation for the influence of muscimol in the SC 

unilaterally on decision-making is that inhibiting the SC acts as if adding an evidence 

independent offset to the drift rate (or momentary evidence), biasing decisions away from 

the IF.

We also fitted an urgency-gating model (UGM) to the data for both monkeys to assess 

whether our findings were robust to different decision-making model assumptions and to 

determine whether a change in an urgency signal might also explain the effect of SC 

inactivation (Supplementary Note). Our goal was not to assess whether a UGM fit the data 

better than a DDM, but rather, to determine whether muscimol affected similar parameters 

using a different sequential sampling model as reflected by the UGM. By fitting the UGM, 

we could test whether muscimol effects could be explained by a change in urgency, rather 

than the drift rate offset as indicated above. Note that the drift rate offset impacts the 

computation of evidence leading to a decision, whereas the urgency signal does not. Fig. 

5q,u and Extended Data Fig. 7 also show that the pre-muscimol RT distributions of monkey 

B had a more symmetric shape, relative to monkey S, which the UGM predicts. Although 

evidence for the best fitting model type was mixed across monkeys (Supplementary Table 

4), only a decrease in the drift rate offset and the urgency slope parameter decrease were 

consistent in both monkeys (Extended Data Fig. 6k–l). However, allowing the drift rates to 

vary from pre- to post-muscimol, and therefore allowing drift rate offset to change 
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(Supplementary Note), explained more of the in-sample variance in the psychometric 

function of both monkeys (UGM-δ explained 87.8% for monkey S and 83.1% for monkey 

B, Supplementary Table 4) than UGMs with urgency slope allowed to vary, a parameter that 

also influences response proportion and RT (UGM-m explained 20.0% for monkey S and 

26.2% for monkey B, Supplementary Table 4). Taken together, in both the DDM and the 

UGM, a change in the drift rate offset best explains the effect of unilateral SC inactivation 

on perceptual decision-making. This finding indicates that inactivation of the SC alters the 

computation of perceptual evidence, rather than altering an urgency signal that affects 

decisions after evidence is computed.

As described above, we used a traditional, one-dimensional DDM and variants as well as a 

UGM and variants, to determine which parameter change best explained the results of 

muscimol inactivation of the SC on perceptual decision-making. Our goal was not to 

perform model comparisons, but rather to determine which aspect of decision-making was 

most affected by muscimol inactivation of the SC. That both the DDM and the UGM 

converged on the same parameter - the drift rate offset - for both monkeys across all 

experiments, provides compelling evidence that the SC plays a causal role in the 

computation of evidence for perceptual decisions. The data indicate that the SC plays a 

causal role in the cognitive processing required for perceptual decisions; however, they do 

not provide us with biological mechanistic insight into how the SC may play a role. Some 

evidence suggests that the SC participates in the process of evidence accumulation and 

contains two accumulators, one in each SC37, similar to LIP38,39. Although where in the 

brain evidence accumulation occurs is unknown, it is likely to occur in multiple areas1. A 

biologically plausible mechanism by which inhibiting the SC can affect the computation of 

evidence for a decision, and the drift rate offset may be implemented, is by assuming two 

independent accumulators in which inactivation of the SC reduces the gain in one. To test 

the two independent accumulator with gain model, we fitted the full HDDM with the same 

parameters but with drift rates constrained to a linear comparison of two accumulators 

(Supplementary Note). In the two dimensional model, the gain of the toIF accumulator 

decreases with unilateral SC inactivation and the gain of the awayIF accumulator remains 

unchanged. The BF of G(toIF) not equal to one was estimated to be very large (>10307) with a 

posterior median of G(toIF) = 0.6217, consistent with a post-muscimol gain decrease on the 

toIF accumulator. We found no evidence for gain decreases in any other experimental 

conditions; recovery, pre-saline, post-saline, BF of G(toIF) not equal to one ranged between 

0.0114 to 0.2232 and the posterior medians of G(toIF) ranged from 0.9307 to 1.0832. These 

results point toward a biologically plausible mechanism by which unilateral inhibition of SC 

activity affects the computation of evidence for perceptual decisions. Inhibiting SC activity 

alters the gain of evidence accumulation in one of two competing accumulators. Note, 

however, that comparing the R² predictions for the in-sample and out-of-sample data for the 

2D model for both monkeys revealed that the 2D model fit the data well but not as well than 

the full 1D HDDM (Supplementary Table 4). Thus, whether the 1D or the 2D model better 

explains SC activity and its relationship to decision-making performance in two choice 

discrimination tasks remains an important open question.
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DISCUSSION

We provide compelling physiological, reversible inactivation and modeling evidence that 

unilateral inactivation of the primate SC alters perceptual decision-making, not by changing 

sensory or motor processing but rather, by shifting the balance of time-varying evidence 

accumulation away from the IF. Shifting the balance of time-varying evidence accumulation 

away from the IF produces a change in the decision criterion in the SDT framework and is 

consistent with results in rodents and our previous results in monkeys13,34. Specifically, in 

our previous work using SDT revealed a relationship between SC activity and the position of 

a decision-criterion. We could not, however, determine whether criterion position changes 

resulted from changes in the drift rate offset (which would affect the computation of time-

varying evidence in the DDM framework), or from changes in the starting point of evidence 

accumulation. The experiments reported here together with the application of the DDM 

framework, allowed us to determine that the SC acts on decision-making as though adding a 

constant to the time varying evidence accumulation.

Current conceptions of perceptual decision-making fall into two main categories; one in 

which sensory evidence is evaluated, categorized and then forwarded to motor areas to guide 

choices of action40, and a second, in which brain areas involved in getting ready to act are 

the same areas that accumulate evidence over time to form a decision; referred to as 

embodied cognition26,27,41,42. Our results support an embodied cognition model of 

perceptual decision-making. The SC is well-known for its role in saccade preparation and 

generation43,44, and we show here that toIF saccades remain relatively intact with SC 

inactivation20,22, in spite of significant alterations in decision-making about the orientation 

of a Glass pattern.

Our results suggest exciting new possibilities for how perceptual decisions are formed and 

converted to choices of action in the brain. In primates, including humans, and in rodents, 

perceptual decisions are thought to arise from evidence accumulation in forebrain areas such 

as area LIP (PPC) and dlPFC (FOF) and striatum. Our results indicate that the SC, a 

brainstem region downstream of these areas and presumably processes, plays a causal role in 

the computation of perceptual evidence for decisions. Recent evidence from experiments 

inactivating the forebrain accumulators, LIP (PPC) and dlPFC (FOF), calls into question the 

causal role of these areas in evidence accumulation40,45,46 and further suggests that FOF in 

rodents and FEF in monkeys participate in decision-making after evidence has been 

accumulated47–49. Our results show that the SC participates in decision-making by adding 

an evidence independent constant to the momentary evidence, surprisingly similar to what 

was observed with stimulation of cortical area MT in the dot motion task50. Our results also 

share some similarities with those reported for stimulation of cortical area LIP and 

striatum8,51. Although we cannot yet say with certainty that the SC is performing evidence 

accumulation in our orientation direction decision task, we can confidently say that the SC is 

controlling either the sensory input to the accumulator or the accumulator itself. Based on 

previous work in monkeys and our modeling work reported here, it is possible that each SC 

contains an independent accumulator37 and inactivation of one SC shifts the balance of 

evidence toward the other accumulation process and decision. Therefore, we propose that 

the SC is critical for the computations of perceptual evidence and transformation of a 
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decision to a choice of action. These computations may occur in the SC or the SC may also 

impact the computation of evidence for decisions occurring elsewhere in the brain, including 

the cerebral cortex and striatum6, perhaps through feedback circuits via thalamic nuclei from 

the SC44. This exciting possibility awaits further investigation.

METHODS

Surgery

We implanted three adult male rhesus monkeys (Macaca mulatta), weighing between 9–11 

Kg (monkey S 15yo and monkey B 11yo and monkey J 11yo) with eye loops for measuring 

eye position52, a post for stabilizing the head and a recording chamber53 for accessing the 

superior colliculus (SC). Devices were placed using MRI-guided surgical software 

(Brainsight, v.2.4.7, Rogue Research, Montreal, CA) and stereotaxic coordinates (0ML, 

−3AP, angled 38⁰ posteriorly). All surgical procedures were performed under general 

anesthesia using aseptic procedures and all surgical and experimental procedures were 

approved by the UCLA Chancellor’s animal research committee and complied with and 

generally exceeded standards set by the Public Health Service policy on the humane care 

and use of laboratory animals as well as the American Primate Veterinarian Guidelines.

Behavior and electrophysiology

We used a real-time experimental control and visual stimulus generation system, REX and 

VEX, developed and distributed by the Laboratory of Sensorimotor Research National Eye 

Institute (Bethesda, MD) to create the behavioral paradigms54. We used the magnetic 

induction technique55 (Riverbend instruments, Birmingham, AL) and the EyeLink 1000 eye 

tracker system (SR Research Ontario, CA) to measure voltage signals proportional to 

horizontal and vertical components of eye position (monocular mode; 2kHz). Eye position 

signals were low-pass filtered (8 pole Bessel −3dB, 180 Hz; Bak Electronics; Umatilla, FL) 

and digitized at 16-bit resolution and sampled and saved to disk at 30 kHz using Blackrock 

Microsystems NSP hardware system controlled by the Cerebus software suite (Blackrock 

Microsystems, Salt Lake, UT). We used an automated procedure to define the onset of 

saccadic eye movements using eye velocity (20°/s) and acceleration criteria (5000°/s²). The 

adequacy of the algorithm was verified and adjusted as necessary on a trial-by-trial basis by 

the experimenter. We omitted < 10% of trials from one monkey because of saccadic 

festination (i.e., small saccades toward the target).

Two trained monkeys (monkey B and monkey S) performed three behavioral tasks: 1) a 

visually-guided saccade task to map response fields (RF) before muscimol injections as well 

as obtain changes in saccade velocity after muscimol, 2) a selection task to measure saccadic 

motor preparation and bias before and after muscimol injection, and 3) a task for assessment 

of perceptual decision-making performance before and after muscimol. We varied the 

ordering of the tasks for some experiments before and after injection to ensure 

approximately similar muscimol efficacy for each task. A third monkey (monkey J) 

performed the decision task for recording of SC neuronal activity shown in Fig. 1e. We 

collected 500–1000 trials in the decision task, and 300 trials each in the selection and 

visually-guided saccade tasks before muscimol injection to ensure an adequate amount of 
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pre-injection data. We started collecting data at least 10 minutes post-injection for each 

experiment for consistency. Pre- and post-muscimol data were collected on the same day and 

recovery data were collected ~24 hours after muscimol injection. Recovery data appear in 

Extended Data Figs. 2 and 4 and the associated statistics in Supplementary Table 2.

Response field (RF) mapping

We used a visually-guided saccade task to map RFs of SC sites. A red fixation spot appeared 

(14.32 cd/m2 for monkey B and 22.37 cd/m2 for monkey S) and monkeys maintained 

fixation at this location for a random time of 500–1000 ms with an accuracy of 3.5° square 

determined by an electronic window. Next, a white spot (48.27 cd/m2 for monkey B and 

109.76 cd/m2 for monkey S) appeared in the periphery. Monkeys remained fixating centrally 

for a random time of 800–1200 ms until the fixation spot disappeared, cueing the monkeys 

to look at the spot in the periphery. If monkeys looked at the peripherally-located spot within 

a 4.5° square determined by an electronic window, they received a sip of water or preferred 

juice for reward. Incorrect saccades were not rewarded. The saccade target was positioned 

manually and pseudorandomly throughout the visual field (Fig. 1d).

While monkeys performed the visually-guided saccade task, we recorded single and multiple 

neurons in the intermediate layers of the SC using custom injectrodes that allowed for 

neuronal recording and injection of compounds simultaneously (Fig. 1g). Injectrodes were 

inserted through a guide tube positioned by a grid system53 and were moved in depth by an 

electronic microdrive system controlled by a graphical user interface on a PC running 

Windows (Nan Instruments, Israel). Action potential waveforms were bandpass filtered (250 

Hz to 5 kHz; 6 pole Butterworth) and amplified by a differential amplifier and then sampled, 

digitized and saved to disk at 30 kHz with 16 bit resolution using the Blackrock NSP 

hardware system controlled by the Cerebus software suite for offline sorting as necessary 

(Blackrock Microsystems, Salt Lake, UT). When possible, neurons were isolated online 

using time and amplitude windowing criteria and the times of action potentials were saved to 

disk similarly. Response fields (RF) of SC neurons (either single neurons, if well-isolated, or 

multiple neurons, if not) were mapped during the experiment using customized MATLAB 

scripts (MathWorks Natick, MA) that plotted the average discharge rate from 50 ms before 

to 50 ms after the saccade onset for each target position (Fig. 1d). We considered the center 

of the RF to be the location at which a saccade was associated with maximal discharge 

(audibly, visually and quantitatively). Only locations with RF eccentricities greater than 

11.5⁰ were included to ensure as little overlap of the RF with the center of the visual field as 

possible.

A variant of this task allowed us to measure peak saccadic velocity before and after 

muscimol injections. This task had randomized delay times taken from a truncated 

exponential distribution (fixation time mean 400 ms, range 320–560 ms; delay-time mean 

800 ms, range 640–1120 ms) and fixed target positions (Fig. 1h).

Selection task

The second task was a visually-guided, delayed-saccade task in which two isoluminant 

targets (14.65 cd/m2 for monkey B or 21.38 cd/m2 for monkey S) appeared in the periphery. 
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One target was located at the center of the RF and the other was located in the opposite 

hemifield (Fig. 1c). One target was red and the other was white. The position of the red and 

white targets switched randomly on each trial. After the fixation point (48.62 cd/m2 for 

monkey B or 106.86 cd/m2 for monkey S) appeared, monkeys remained fixating on this spot 

for a mean delay time of 400 ms (320–560 ms, truncated exponential) until the targets 

appeared. A second mean delay of 800 ms (640–1120 ms, truncated exponential) occurred 

and then the fixation spot disappeared, cueing the monkey to look at the white target. If the 

monkey looked at the white target with an accuracy of 5.5° determined by an electronic 

window, it received a sip of preferred juice or water for reward. For 12 of the 23 muscimol 

experiments and two of six saline experiments we used fixation delays of 100 ms and a 

mean delay-period of 350 ms (200–500 ms, truncated exponential). For the latter data, we 

analyzed only those trials with a 400 ms or greater delay-period. This task required the same 

attentional allocation to the target location as well as the same motor preparation as the 

decision task, however, it did not vary in perceptual ambiguity, nor did it require the 

transformation of the Glass pattern orientation to the saccade location as did the decision 

task, allowing us to assess impairments in visual selection, motor preparation and biases in 

saccades to the left or right hemifields before and after the muscimol injection.

Glass pattern decision-making task

To assess perceptual decision-making performance before and after muscimol injections, 

monkeys performed a one interval, two-choice, perceptual decision-making task in which 

they reported the orientation of a dynamic Glass pattern (decision task)14,15. Monkeys 

reported their decisions by making saccades to a target located in the left or right hemifield 

corresponding to the orientation of the perceived Glass pattern. The orientation of the Glass 

Pattern was fixed to 45⁰ for rightward decisions and 135⁰ for leftward decisions, regardless 

of the RF location, dissociating the specific stimulus orientation from the choice location. 

We parameterized the difficulty of the decision by varying the coherence of the Glass pattern 

among two sets of coherences: 0%, 5%, 10%, 17%, 24%, 36%, 50% performed by monkey 

S for 3 muscimol experiments on the delay decision task, and 0%, 3%, 5%, 10%, 17%, 24%, 

36% performed by both monkeys for all other experiments, including both muscimol and 

saline and delay and RT task versions. Monkeys received water or preferred juice reward for 

correct trials and on the 0% coherence trials, they received reward on half of the trials 

randomly. Once monkeys were well-trained and after performing the first three muscimol 

experiments on a fixed ratio (FR) 1 reward schedule (rewarded on every correct trial), 

monkeys performed the task on a variable ratio (VR) schedule such that on average, but with 

some variation, every third or fifth correct trial received reward to encourage consistent 

performance (VR3 or VR5)56.

Trained monkeys performed the decision task in a delayed version and a reaction time (RT) 

version. In the delayed version, a fixation spot appeared (2.93 cd/m2 for monkey B and 9.62 

cd/m2 for monkey S) at the center of the display. After a mean 300 ms delay (240–420 ms, 

truncated exponential), two isoluminant choice targets appeared (3.06 cd/m2 for monkey B 

or 6.36 cd/m2 for monkey S). After another mean delay of 700 ms, (560–1400 ms, truncated 

exponential), the Glass pattern cue appeared at the location of the fixation point and 

remained illuminated for 950 ms (760–1900 ms, truncated exponential). After the Glass 
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pattern cue disappeared, there was a delay-period with mean of 800 ms (640–1120ms, 

truncated exponential). The removal of the fixation point cued the monkeys to report their 

decision by looking at one of the two choice targets. Monkeys remained fixating at the 

correct choice target for a mean of 350 ms (280–490 ms, truncated exponential), before 

receiving fluid reward. Monkeys performed a variant of the delayed task with a shorter delay 

period (50–100 ms) for 12 muscimol experiments and two saline experiments (Fig. 1a).

The RT version of the decision task was identical to the delay version except that, in the RT 

task, the Glass pattern appearance and the removal of the fixation spot occurred 

simultaneously and the monkeys reported their decisions at any time (Fig. 1b). To 

discourage fast guessing, we implemented a fixed time to reward (900 ms monkey B, 1000 

ms monkey S) and a RT-dependent inter-trial interval57. The results of muscimol injections 

on choice behavior were similar in both the delay and RT versions of the task, so the data are 

collapsed unless otherwise indicated. Modeling of RTs and choice behavior is based on data 

only from the RT task for each monkey separately.

Statistics and Reproducibility

We analyzed all the data using customized scripts developed in MATLAB 2016b 

(MathWorks Natick, MA), Python 3 (3.7.6), R (v.3.4.0), and IBM SPSS Statistics 25. To 

assess for significant differences between the α, β, RT mean collapsed across coherences 

and injections, RT slope, and RT intercept parameters of pre- and post-injection, and pre-

injection and recovery, we performed the following tests: paired two-tailed t-tests (if both 

session data sets were normally distributed) using Lilliefors or Shapiro-Wilk test); Wilcoxon 

Signed rank test if any of the data from the sessions was non-normally distributed. We 

applied Bonferroni corrections (two comparisons, α = 0.05/2 = 0.025) where appropriate. 

The pre- vs post-injection comparisons appear in the main text and the pre-injection vs 

recovery comparisons appear in Supplementary Table 2. The same tests were performed for 

the analysis of accuracy data from the decision and the selection tasks for toIF and awayIF 

with the Bonferroni corrections for four pairwise comparisons tests (Supplementary Table 

3), significance cut-off value α is 0.05/4 = 0.0125. We performed a bootstrapped test using 

the t-statistic with 100,000 simulations to compare pre- and post-injection differences of α 
and β parameters between muscimol and saline injections58. To analyze the post-muscimol 

peak saccadic velocity for toIF saccades between the decision task and the selection task, we 

performed unpaired t-tests (for normal data, two-tailed) or Wilcoxon Rank Sum (if non-

normally distributed) with Bonferroni correction of α = 0.05/9 = 0.0056 for the tests for 

monkey S, since nine t-tests were performed on data from each injection, and α = 0.05/8 = 

0.0063 for the tests for monkey B, since eight t-tests were performed on data from each 

injection, with a total of 17 muscimol injections between the two monkeys (Supplementary 

Table 3). Six injections were excluded due to technical issues with the eye tracker that 

impacted measurement of eye speed but not assessment of choice or RT.

Modeling and simulations

We fitted signal detection theory (SDT), drift-diffusion (DDM) and urgency-gating models 

(UGM) to the behavioral data to understand how decision-making was impacted by 

unilateral inactivation of the SC28,35,59. SDT is a static model of decision-making and makes 
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predictions only about choice performance, whereas the DDM and UGM are dynamic 

models that make predictions about both choice performance and RTs. Parameters of 

decision-making models are thought to be instantiated by aspects of neuronal activity and 

many have been verified in human behavioral experiments60,61. We performed simulations, 

model fitting and model comparisons using customized scripts developed in MATLAB 

2016b (MathWorks Natick, MA), Python 3 (3.7.6), JAGS62 (4.3.0), and R (v.3.4.0). We also 

used the published libraries Palamedes63, pyjags (https://github.com/michaelnowotny/

pyjags; 1.2.2), the Wiener module for JAGS64, and ChaRTr65. For equations, simulations, 

parameter estimation, and model comparison results, see Supplementary Note, Extended 

Data Fig. 5–7, and Supplementary Table 4.

Parameter estimates in SDT

We fitted a two parameter logistic function using the Palamedes toolbox to the choice 

performance data for each monkey for all experiments using the equation:

p IF = 1/ 1 + exp −β k − α (1)

where p(IF) denotes the proportion of choices to the inactivated field (IF) for each coherence 

condition (k). α and β are free parameters determined using maximum likelihood methods 

and provide measures of decision bias and sensitivity of the psychometric function 

respectively63,66,67. Fig. 2 and Extended Data Fig. 4 show the two parameter model fits and 

results. Extended Data Fig. 2 shows comparisons between the two, three and four parameter 

model fits. Because there were no differences in the quality of the fits for the three models, 

we opted to use the simpler fewer parameter model for the analysis. For three of the 

muscimol injections, we used 50%, 36%, 24%, 17%, 10%, 5%, and 0% coherence 

conditions for the fits. For the other 20 muscimol sessions and 6 saline injection sessions, we 

used 36%, 24%, 17%, 10%, 5%, 3%, and 0% coherence conditions. We also calculated d’ 
and c, using SDT equations as described in59 and Supplementary Note (S1–2), and these 

results appear in Extended Data Fig. 3.

We calculated the choice probabilities for each of the ten SC neurons for 0% coherence trials 

(Fig. 1f) by computing the area under the receiver operating characteristic (ROC) curve with 

SDT methods18,19. Briefly, we created ROC curves by calculating the probability that the 

spike count for an epoch 100 ms to 20 ms before saccade onset, for away and to RF 

decisions, exceed a criterion in each measurement epoch on a trial-by-trial basis. The 

criterion was incremented from the minimum to the maximum spike count in the epoch in 

step sizes of (maximum - minimum spike count) / number of counts for toRF and awayRF. 

Next, we calculated the area under the ROC curve (AUC) for each neuron for 0% coherence 

trials. We performed a two-tailed bootstrap test to determine if the AUC values differed from 

0.5.

Parameter estimates in drift-diffusion models (DDMs)

We fitted a hierarchical DDM (HDDM) and a non-hierarchical DDM (DDM) that describe 

RT and choice distributions. Non-decision time (τ) is the sum of visual and motor 

processing. The decision boundary (a) determines the amount of evidence needed to make a 

decision. The starting point of evidence accumulation (w) was fit as a proportion of the 
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boundary parameter and describes the initial bias in evidence accumulation before a trial 

begins, where w = 0.5 indicates the start point is the middle between the upper (toIF) and 

lower (awayIF) bound, w > 0.5 indicates the start point is closer to the upper (toIF) bound, 

the w < 0.5 indicates the start point is closer to the lower (awayIF) bound. The drift rate (δ) 

is the average evidence accumulation rate during a trial and is driven by the strength of the 

evidence extracted from the Glass pattern stimulus. The drift rate offset31, also known as 

distance from the drift criterion32 or the drift bias33, is a parameter we defined as the mean 

of all the drift rates across both toIF and awayIF directions and all coherences. This 

parameter was explicitly fit in the HDDM, but in the non-hierarchical DDM, the drift rate 

offset was calculated from the drift rate parameter estimates and the change in drift rate 

offsets was determined by comparing pre- and post- muscimol drift rate offsets. The lapse 

rate (λ), was fitted and defined as the percentage of trials in which choices were determined 

randomly. The lapse rate was only fit in the HDDM.

We used both hierarchical Bayesian methods (HDDM with k = 13 coherence conditions) and 

quantile maximum products estimation (QMPE; DDM with k = 11) to estimate parameters. 

Both estimation methods yielded similar parameters (Extended Data Fig. 6). Hierarchical 

Bayesian methods were applied to fit the HDDM to the data from the RT task from both 

monkeys: seven muscimol and four saline injections from monkey S and two muscimol 

injections from monkey B. We used JAGS to draw samples from posterior distributions 

using Markov Chain Monte Carlo (MCMC) samplers62. Hierarchical mean parameters per 

monkey and experimental condition (pre-, post-, and recovery for muscimol and saline) were 

assumed to better fit the data from each experimental session (Supplementary Note 

equations S9–15 and Supplementary Table 4), with different prior distributions of these 

hierarchical mean parameters having no impact on the parameter results (Supplementary 

Note and Supplementary Table 5). We also fitted HDDM with only the drift rate offset, 

proportional start point, non-decision time, or proportional start point with the bound, 

varying across conditions (Supplementary Note equations S16–44, Supplementary Fig.1). 

Parameter estimates for full hierarchical models appear in Extended Data Fig. 6a–j.

To calculate the probability of change in drift rate offset and other parameters, we estimated 

the posterior distributions using kernel density estimation and then summed the density from 

the lowest negative sample to zero. We also calculated Bayes Factors (BF) using the Savage-

Dickey density ratio. BF describes the relative evidence of the drift rate offset (Δ) not equal 
to zero. The BF for the drift rate offset was the ratio of the prior density at Δ = 0 over the 

posterior density at Δ = 0. We also calculated a BF−1 for whether the proportional start point 

was the same as 50% of the relative evidence units required to make a decision (the 

boundary was also a free parameter). The BF−1 for hierarchical initial bias was calculated as 

the ratio of the posterior density at w = 0.5 over the prior density at w = 0.5. In the model 

HDDM-G (Supplementary Note) the BF for a gain change on one accumulator resulting 

from inactivation of one SC, not equal to one was calculated as the ratio of the prior density 

at G(toIF) = 1 over the posterior density at G(toIF) = 1. A BF over three is considered positive 

evidence for an effect (i.e., the effect is three times more likely under the alternative 

hypothesis than the null hypothesis) or no effect (i.e., no effect is three times more likely 

under the null hypothesis than the alternative) whereas, over 20 is strong evidence. Note that 

BFs were dependent upon the prior distributions we chose, whereas prior distributions had 
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little effect on the posterior distributions themselves and thus the probability calculations 

(Supplementary Note and Supplementary Table 5). For this reason, although the posterior 

distributions and probability calculations will not change significantly for reasonable prior 

distribution choices, we caution against over-interpreting BFs, which will change when 

alternative priors are chosen.

Parameter estimates in urgency-gating model (UGM)

UGMs are another class of decision-making model in which the sensory evidence is low-

pass filtered to prioritize more recent evidence and then multiplied by a linearly growing 

urgency signal35,36. We used QMPE (k = 11) to estimate UGM parameters from the data 

from the RT task from both monkeys; seven muscimol injections from monkey S and two 

muscimol injections from monkey B (Supplementary Note). See Supplementary Fig. 2 for 

parameter recovery results. We fitted the UGM to pre- and post-muscimol data separately 

and pooled across all injections to discover which parameters changed. We found little 

difference between the parameter estimates for pooled versus individual fits (Supplementary 

Fig. 3). As in the HDDM and non-hierarchical DDM, we defined the drift rate offset as the 

mean drift rate across both toIF and awayIF directions and all coherences. As in the non-

hierarchical DDM, we did not explicitly estimate the drift rate offset parameter from model 

fits, but instead calculated it from the fitted estimates of the drift rate for each coherence and 

direction. We also fitted UGMs with an urgency slope parameter or drift rate parameters free 

to vary in post-muscimol data while keeping other parameters fixed to their parameter 

estimates from the pre-muscimol data (Supplementary Note). The UGMs with the individual 

drift rates per coherence and direction free to vary allowed us to assess whether changes in 

the drift rate offset best explained the effects of muscimol. Parameter estimates for all 

models appear in Extended Data Fig. 6.

Model comparisons

We generated posterior predictive samples for hierarchical drift-diffusion models (HDDMs) 

and predicted choice and RT distributions from non-hierarchical DDM and UGM parameter 

estimates using QMPE with in-sample and out-of-sample datasets generated from an 80% / 

20% random data split in each experimental session. We used predicted choice and RT 

distributions, as well as Akaike and Bayesian Information Criteria (AIC/BIC) where 

applicable, to find models that best described the effect of unilateral inactivation of the SC. 

Percentage variance of RT and choice statistics explained by prediction are given as derived 

from R2
pred (Supplementary Note). In-sample and out-of-sample prediction results appear in 

Supplementary Table 4.
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Extended Data

Extended Data Fig. 1. Estimates of muscimol spread in the SC
(Associated with Fig. 1 main text) a–j The reduction in peak velocity from pre- to post-

muscimol for 10 muscimol injections (four from monkey B, six from monkey S), one to two 

hours post injection. The percent change in peak velocity after muscimol injection (post-

muscimol saccade velocity minus pre-muscimol saccade velocity divided by pre-muscimol 

saccade velocity multiplied by 100), is plotted for the target positions indicated by the white 

circles and linearly interpolated on the visual field in Cartesian coordinates. Cooler colors 

indicate slower saccadic velocities post-muscimol. a–e shows five injections with more 

concentrated effects of muscimol (color bar scaled from −60% to 60%), whereas f–j shows 

five injections with smaller but more diffuse effects of muscimol (color bar scaled from 

−30% to 30%), showing the range in the efficacy of our muscimol injections based on 

changes in saccade velocity at least one hour post injection. Red Xs show the site of 

injection based on the RF determined electrophysiologically (Supplementary Table 1). The 

peak velocity maps highlighted by the colored boxes in a–j had a uniform and homogenous 

sampling of positions in the visual field that allowed us to calculate the estimated spread 

across the SC map as shown in k–n (Quaia, C., Aizawa, H., Optican, L.M. & Wurtz, R.H. 

Reversible inactivation of monkey superior colliculus: II. Maps of saccadic deficits. Journal 
of Neurophysiology 79, 2097–2110 (1998).). k–n show the same percent change in peak 

velocity after muscimol injections plotted on the SC map (top) and the visual field in polar 

coordinates (bottom) for the injections in the corresponding colored boxes in a–j. o shows 

the locations of muscimol injections and spread estimates plotted onto the SC map. Red 

circles show injection locations for monkey B and red triangles show injections from 

monkey S. Each injection’s estimated muscimol spread is represented by two concentric 

circles. The darker shaded circles show 0.5 mm radius and the lighter shaded circles shows 
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1.5 mm radius from the center of the injection site based on estimates from (Allen, T.A., et 
al. Imaging the spread of reversible brain inactivations using fluorescent muscimol. Journal 
of Neuroscience Methods 171, 30–38 (2008).). There were three injections in which 

muscimol may have spread into the pretectal region and thus also the foveal region of the 

rostral SC, as evidenced by the occurrence of ocular nystagmus about an hour after the 

injection. In these cases, we aborted the experiment and omitted the data from analyses upon 

appearance of nystagmus. One example appears in b and k (maps highlighted by purple 

boxes). The Glass pattern decision and selection task data before the occurrence of 

nystagmus are included in the analysis in the main text. The effect on the psychometric 

function from this example was the largest that we observed (Fig. 2a, rightmost transparent 

orange psychometric function).

Extended Data Fig. 2. AIC and BIC scores for the two, three and four parameter logistic 
function fits
(Associated with Fig. 2 of the main text) a AIC scores for each pre- and post-injection and 

recovery sessions for all muscimol and saline injections (n=87 sessions) for two, three, and 

four parameter logistic fits to the performance data. The circles show the AIC score of the 

logistic fit to each individual session from the n=87 total sessions (pre-, post- and recovery * 

29 injections), and the black, horizontal bars show the mean AIC score. The dotted lines 

connect the same data sessions that were fit across the two, three, and four parameter fits to 

see if there were any changes in AIC score between the fits with different number of 

parameters. The two parameter logistic model has two parameters: α (decision bias) and β 
(sensitivity) following the equation p(IF) = 1/(1+exp(−β(k-α))) (Eq 1 in Methods), which 

was used to fit the psychometric functions in Fig. 2 and Extended Data Fig. 4. The three 

parameter logistic model includes: α, β, and ʎ (lapse rate or the difference between perfect 

performance and the top and bottom asymptotes) following the equation p(IF) = ʎ + (1–2ʎ)/
(1+exp(−β(k-α))). The four parameter logistic model includes: α, β and ʎ (lapse rate or the 

difference in perfect performance and asymptotic performance for toIF decisions) and γ 
(lapse rate or the difference in perfect performance and asymptotic performance for awayIF 

decisions) following the equation p(IF) = γ + (1-γ-λ)/(1+exp(−β(k-α))). When looking at 

the AIC scores for the two, three, and four parameter fits (lower AIC scores indicate a better 
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fit given model complexity), we see that the data are explained equally well or better with 

the models without lapse rates, with mean scores of 638.80 for the two parameter fit, 640.51 

for the three parameter fit, and 641.47 for the four parameter fit. Therefore, we selected the 

simpler, two parameter model to fit the performance data. b Same as in a for the BIC scores, 

with mean of 639.93 for the two parameter fit, 642.20 for the three parameter fit, and 643.73 

for the four parameter fit. The lack of difference in the quality of the fits with or without the 

lapse rate parameters is consistent with the parameter estimation results of lapse rates in the 

hierarchical DDM (Extended Data Fig. 6i,j).

Extended Data Fig. 3. Decision criterion but not sensitivity, is impacted by unilateral SC 
inactivation during one-interval, two-choice perceptual decision-making
(Associated with Fig. 2 main text) a Sensitivity, as measured by d’ is plotted against 

coherence for all experiments from both monkeys pre-muscimol (black circles and lines), 

post-muscimol (orange circles and lines) and 24 hour recovery (green circles and lines). 

Dashed lines show data from monkey B and solid lines show data from monkey S. Note that 

for monkey S, there is an additional 50% coherence condition (Methods). Qualitatively, 

monkey B showed a higher sensitivity for the same Glass pattern coherences than monkey S. 

b d’ collapsed over coherence and plotted for pre-muscimol (grey circles), post-muscimol 

(orange circles) and recovery (green circles) for all experiments from both monkeys. Dashed 

lines show data from monkey B (n=11 injections) and solid lines show data from monkey S 

(n=12 injections). The horizontal lines indicate the mean d’ across sessions. On average 

there were no significant changes in d’ with muscimol in either monkey (monkey S, t(11) = 

−1.54, p = 0.152, 95% CI = [−0.23, 0.07]; monkey B, t(10) = −1.51, p = 0.161, 95% CI = 

[−0.21, 0.07]). c–d Same as in a and b for the saline injections. Because we only had two 

saline injections in monkey B, we collapsed the data across monkeys (n=6 injections) for 

statistical analysis, but the data are shown separated by monkey. We found no significant 

differences in d’ with saline (t(5) = 1.20, p = 0.283, 95% CI = [−0.1, 0.19]). Note that there 

are no d’ or criterion (c) values for monkey B for the 24% and 36% coherences due to a lack 

of errors for the awayIF post-muscimol 24% and 36% coherence trials. e Criterion (c) 
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plotted against coherence for pre-muscimol (black), post-muscimol (orange), and recovery 

(green) for all experiments from both monkeys. Dashed lines are from monkey B and solid 

lines are from monkey S. This plot is shown for symmetry with the d’ plot although criterion 

changes across coherences are not particularly meaningful as monkeys are not expected to 

change their criterion across coherences as the coherences were randomized from trial to 

trial and there was no way for the monkeys to know which coherence was impending. f 
Criterion collapsed over coherence plotted for pre-muscimol, post-muscimol and recovery 

for all experiments (n=12 injections for monkey S, n=11 injections for monkey B). For both 

monkeys, c changed significantly with muscimol (monkey S, t(11) = −9.34, p = 1.46 × 10 ⁻⁶, 
95% CI = [−0.7, −0.38], monkey B, t(10) = −7.48, p = 2.10 × 10 ⁻⁵, 95% CI = [−0.75, 

−0.33]). g–h Same as in e-f for the saline experiments from both monkeys (n=6 injections). 

We found no significant differences in c with saline injections (w(5) = 18, p = 0.156). 

Consistent with the psychometric function results shown in Fig. 2, unilateral inactivation of 

SC with muscimol produced changes in decision bias and not perceptual sensitivity.

Extended Data Fig. 4. Decision-making behavior 24 hours after muscimol
(Associated with Fig. 2 of the main text) a Proportion of choices to the inactivated field 

(toIF) is plotted as a function of Glass pattern coherence. Black circles show pre-muscimol 

performance data and green circles show 24-hour recovery performance data. The black and 

green lines show the two parameter logistic fits to the performance data. n=23 injections. b 
Same as in a for the pre-saline (black circles and lines) and the 24-hour recovery from saline 

(green circles and lines). n=6 injections. c α parameters from the logistic fits for the 

recovery data (rec-muscimol) plotted against α parameters from the fits for the pre-

muscimol data. On average, the α parameter shifted leftward during the recovery period 

compared to the pre-muscimol control (w(22) = 230, p = 0.005). Note that this was opposite 

to the direction of the shift that occurred post-muscimol as seen in the main Fig. 2a, as if the 

monkeys over-compensated for the effect of muscimol during recovery. d β parameters from 
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the logistic fits for the recovery data plotted against the β parameters from the fits from the 

pre-muscimol data. On average, there were no significant differences in the β parameter 

(t(22) = −1.31, p = 0.20, 95% CI = [−0.02, 6.0 × 10⁻³]). e–f Same as in c and d for the saline 

experiments. g Reaction time (RT) plotted against coherence for the pre-muscimol data 

(black circles) and recovery data (green circles) from the RT version of the decision task 

(n=9 injections). The lines show linear fits to the RT data. The RT was shorter for the 

recovery data compared to the pre-muscimol data for all coherences. Similar to the results of 

the α parameter comparisons, the RT finding suggests a compensatory response to the 

muscimol injections 24 hours earlier. h Same as in g for the saline experiments. i The slope 

parameter from the linear fits to the RT data for the recovery data plotted against the pre-

muscimol data. Cyan circles show the parameter of the linear fits of the RT data for toIF 

decisions (positive coherences) and magenta circles show the RT data for awayIF decisions 

(negative coherences). There were no significant differences on average (RT slope awayIF, 

t(8) = 1.37, p = 0.21, 95% CI = [−0.87, 2.59]; RT slope toIF, t(8) = −0.87, p = 0.41, 95% CI 

= [−3.10, 1.61]). j same as in i for the intercept parameter. There were significant changes in 

the intercept on average for the toIF side (RT intercept, t(8) = 3.61, p = 0.007, 95% CI = 

[32.55, 240.50]) but not the awayIF side (RT intercept, t(8) =2.63, p = 0.03 n.s. Bonferroni 

correction, 95% CI = [−4.89, 216.53]). k–l Same as in i and j for the saline experiments. 

There were no significant differences in slope or intercept for these experiments (RT slope 

awayIF, t(3) = −0.02, p = 0.98, 95% CI = [−6.26, 6.19]; RT slope toIF, t(3) = 0.62, p = 0.58, 

95% CI = [−0.88, 1.19]; RT intercept awayIF, t(3) = 0.37, p = 0.74, 95% CI = [−71.20, 

85.05]; RT intercept toIF, w(3) = 9, p = 0.25). Note that four saline experiments were 

performed in the RT task and the other two were performed using the delayed version of the 

task so only four observations appear in this plot. Note that the darker shaded symbols show 

the median values and the 95% confidence intervals are from the means.
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Extended Data Fig. 5. DDM model simulations for changes in model parameters
(Associated with Fig. 4 and 5 of the main text). Panels a-p are the same as those shown in 

Fig. 5 of the main text. a RT distribution from the 0% coherence condition (density 

approximated through kernel smoothing) predicted by a DDM simulation with only decrease 

in proportionality factor between coherence and drift rate post-muscimol (orange). Pre-

muscimol shown in black. Below the RT distributions, the relative evidence for toIF 

decisions is plotted over time since the Glass pattern onset and the short arrows show drift 

rates for toIF decisions (positive) and awayIF decisions (negative) pre- and post-muscimol, 

for the 0%, 10%, and 36% coherence conditions. The longer arrows show the mean drift rate 

across both toIF and awayIF directions and all coherences, termed drift rate offset28 b The 

psychometric function, plotted as a proportion of toIF choices over coherences, predicted by 

the DDM variant simulation with a decrease in proportionality factor between coherence and 

drift rate which changes the slope (without a shift) of the psychometric function. A change 
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in the slope of the psychometric function was not observed in the data (Fig. 5r, v, shaded), 

making the decrease in proportionality factor between coherence and drift rate an unlikely 

explanation for the observed data. c Mean RT predictions for correct trials for each 

coherence condition for the DDM simulation with a decrease in proportionality factor 

between coherence and drift rate, for pre- (black) and post-muscimol (orange). d Same as in 

c but for error trials. e–h Same as in a-d but for the DDM variant simulation with only a 

change in proportional start-point of the evidence accumulation path away from the IF (often 

interpreted as an initial bias away from the IF). A decrease in proportional start point away 

from the IF predicts a shift in the psychometric function as observed in the real data (Fig. 

5r,v, shaded), making a change in the proportional start point a possibility in explaining the 

decision bias we observed in the post-muscimol data. However, a start point change away 

from the IF also predicts a decrease in error toIF RTs which we did not observe in the data 

(Fig. 5t,x, shaded). i–l Same as in a-d but for the DDM variant with an increase in the upper 

boundary but no absolute start point change (start point proportionally decreased away from 

the IF). This parameter change also predicts a lateral shift in the psychometric function away 

from IF decisions as we observed in the data (Fig. 5r,v, shaded). However, this parameter 

change cannot explain the magnitude of the psychometric function shift we observed (Fig. 

5r,v, shaded) with similar changes in simulated and observed mean RTs (Fig. 5s,t,w,x, 

shaded). m–p Same as in a-d but for the DDM variant with a change in drift rate offset 

favoring awayIF decisions. The psychometric function predictions of the model simulation 

with a change in the drift rate offset predict a lateral shift in the psychometric function that is 

observed in the data (Fig. 5r,v, shaded). The increases in correct mean RT for toIF decisions 

are predicted and shown for both monkeys (Fig. 5s,w, shaded). Overall, a change in drift rate 

offset is most likely to explain the data we obtained after muscimol inactivation of the SC. 

q–t Same as in a-d but for the DDM model variant that describes RT distributions and 

performance with only an increase in the symmetric boundaries. This parameter change 

predicts only slight steepening of the slope of the psychometric function and no changes in 

the shift of the psychometric function as observed in the data (Fig. 5r,v, shaded), making the 

symmetric boundary change an unlikely possibility for explaining the effects of SC 

inactivation. u–x Same as in a-d but for the DDM variant that describes RT distributions and 

performance with only an increase in non-decision time. Non-decision time changes do not 

explain any changes in performance and thus cannot explain a shift in the psychometric 

function observed in the data from both monkeys (Fig. 5r,v, shaded), making a change in 

non-decision time unlikely to explain the effects of SC inactivation on decision-making.
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Extended Data Fig. 6. Parameter estimates for HDDM, DDM, and UGM
(Associated with Fig. 5 of the main text). a–j Estimates from the full HDDM of hierarchical 

parameters (μ) for each monkey (solid lines in the muscimol experimental condition; dotted 

lines for monkey S in the saline experimental condition, we did not collect data from the RT 

task for monkey B in the saline condition). 95% credible intervals with 2.5th and 97.5th 

quantile boundaries of hierarchical parameters provided by shading for the muscimol 

condition and smaller dot-dashed lines for the saline condition. Also shown are individual 

session parameter estimates for monkey S’s muscimol data (upward-pointing triangles), 

monkey B’s muscimol data (circles), and monkey S’s saline data (downward-pointing 

triangles). Estimates were obtained from the median posterior distributions of each 

parameter. a Estimates of the HDDM session-level drift rate offset (Δ) and hierarchical drift 

rate offset (μΔ) for monkey S (pre BF = 0.08, post BF = 3.19 × 10⁶, 99.7% probability of 

decrease pre to post). b Same as in a but for monkey B (pre Bayes factor BF = 0.14, post BF 
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= 17.87, 99.0% probability of decrease pre to post). c Estimates of the HDDM session-level 

start point (w) and hierarchical start point (μw) for monkey S (post BF−1 = 11.51, 95.1% 

probability of a proportional start point bias away from the IF from pre to post). d Same as 

in c but for monkey B (post BF−1 = 2.82, 70.6% probability of a proportional start point bias 

towards the IF from pre to post). e Estimates of the session-level non-decision time (τ) and 

hierarchical non-decision time (μτ) for monkey S (94.5% probability of an increase from pre 

to post). f Same as in e for monkey B (97.0% probability of increase pre to post). g 
Estimates of the session-level symmetric boundary (a) and hierarchical symmetric boundary 

(μa) for monkey S (78.9% probability of an increase from pre to post). h Same as in g but for 

monkey B (95.2% probability of increase pre to post). i Estimates of the session-level lapse 

proportion (λ) and hierarchical lapse proportion (μλ) for monkey S (72.5% probability of 

increase from pre to post). j Same as in i but for monkey B (54.0% probability of increase 

pre to post). k–l The parameter estimates obtained from fitting the DDM and the UGM to 

the pre- and post-muscimol data for monkey S (panel k) and monkey B (panel l). The first 

row describes the model that was fit (DDM or UGM) and which data session (pre or post) 

was used to fit the model. The next 11 rows represent the drift rate parameter estimates (δK) 

in evidence units/sec for the DDM or evidence units/ms for the UGM, for the k = 11 

conditions (−24%, −17%, −10%, −3%, −5%, 0%, 5%, 3%, 10%, 17%, 24% coherences). 

The next row shows the drift rate offset (Δ). This parameter was not explicitly fit in the non-

hierarchical DDM and UGM, but rather calculated as the mean of the all the drift rates 

across all coherences for toIF and awayIF directions that were estimated from fits. The drift 

rate offset decreased from pre- to post-muscimol for both DDM and UGM and for both 

monkeys (difference in monkey S, 0.53 evidence units/sec decrease for DDM, 2.19 evidence 

units/ms decrease for UGM; monkey B, 0.83 evidence units/sec decrease for DDM, 3.30 

evidence units/ms decrease for UGM). The next row shows the proportional start point 

parameter w, defined as the proportion of the distance between the upper and lower bound. 

For monkey S, the start point parameter had slightly decreased from pre- to post-muscimol 

in both the DDM (0.06 decrease) and UGM (0.02 decrease), indicating the start point moved 

closer to the awayIF decision bound, and for monkey B, the start point parameter slightly 

increased in the DDM (0.04 increase) and UGM (0.02 increase), indicating the start point 

moved closer to the toIF decision bound. The next row shows the bound height parameter a, 

defined as the distance between the upper and lower bounds. For both monkeys, but more 

prominent in monkey B, the bound parameter had slightly increased from pre to post in the 

DDM (monkey S, pre to post increase of 0.03 decision units; monkey B, pre- to post-

muscimol increase of 0.07 decision units), whereas the bound was fixed in the UGM 

(Supplementary Note). The row after shows the non-decision time τ, in seconds, where we 

see a slight increase in the DDM (0.03 sec increase) and UGM (0.001 sec increase) for 

monkey S and a greater increase in the DDM for monkey B (0.11 sec increase), but not for 

the UGM (0.03 sec decrease). The last row shows the urgency slope estimates for the UGM, 

m, decreasing slightly with muscimol for monkey S (0.07 urgency units/ms), and decreasing 

more for monkey B (0.23 urgency units/ms).
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Extended Data Fig. 7. Model predictions versus data for RT distributions and psychometric 
functions
(Associated with Fig. 5 of the main text). Column a shows the predicted RT distributions 

(0% coherence, density approximated through kernel smoothing) from the DDM, HDDM 

and UGM model variants (dashed lines) together with the actual data (solid lines), pre-

muscimol (black) and post-muscimol (orange), for monkey S. We observed a rightward 

skew of the RT distribution, consistent with a fixed bound model of decision-making and 

captured by the DDM rather than the UGM as was also indicated by the R2
pred, AIC, and 

BIC goodness of fit values (Supplementary Table 4). Column b shows the same as in a but 

for psychometric functions (performance data, four parameter logistic model using equation 

shown in Extended Data Fig. 2). Column c shows the same as in a for monkey B’s data and 

model fits. The RT distributions from monkey B were more normally distributed compared 

to the skewed RT distributions of monkey S, suggesting that the UGM rather than the DDM 

would explain monkey B’s data, consistent with the goodness of fit values (Supplementary 
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Table 4). Column d shows the same as in c but for psychometric function (performance 

data). Each row indicates the results of each model’s prediction compared to data for both 

monkey S and monkey B. The models from top to bottom are the full HDDM, HDDM with 

a free-to-vary drift rate offset (HDDM-Δ), HDDM with a free-to-vary proportional start 

point (HDDM-w), HDDM with free-to-vary non-decision time (HDDM-τ), HDDM with 

both a proportional start point and bound free to vary (HDDM-a,w), the non-hierarchical 

DDM, the full UGM, the UGM with free-to-vary drift rates (UGM-δ), and UGM with a 

free-to-vary urgency slope (UGM-m). Note that only the post-muscimol data are shown for 

the UGM with a single free parameter since we only fit the post data with those models 

where we let only one parameter free to vary while the rest of the parameters were fixed to 

pre-muscimol parameter estimates (Supplementary Note). Also for the DDM and UGM fits, 

note that there are only 11 conditions (−24 to 24 % coherence) for the psychometric 

functions because only 11 conditions were fitted (Supplementary Note). For the HDDM, out 

of all the variants (first five rows), the full HDDM predictions visually match the data for 

both performance and RT. The prediction of the HDDM-Δ captures the decision bias from 

the data almost equally well for both monkeys. The prediction for the HDDM-w and 

HDDM-a,w also predicts a decision bias, but is insufficient to explain the magnitude of the 

shift in decision bias that we observed in the data. The HDDM-τ fails to capture any 

decision bias (RT and performance predictions for pre and post are overlapping). The 

predictions of the simple DDM also capture the 0% RT distribution well, more so for 

monkey S than for monkey B, and also capture the choice data well. The opposite is true for 

the full UGM predictions, where the RT predictions capture monkey B’s data more than 

monkey S (see goodness of fit values in Supplementary Table 4), but also captures 

performance data well for both monkeys. The UGM-δ captures the shift in decision bias 

from the post-muscimol data from both monkeys, consistent with the findings from the 

HDDM, whereas the UGM-m fails to capture the decision bias in the post data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Decision and selection tasks before and after unilateral SC inactivation.
a The sequence of grey boxes depicting the visual display and the temporal sequence of the 

events appears as running line displays below the spatial display (Delay task). b Same as in a 

for the reaction time version of the task (RT Task). c Schematic display of the saccade 

selection task. The timings of the tasks appear above the schematic illustrations. d The pre-

muscimol discharge rate of an SC neuronal recording measured 50 ms before and 50 ms 

after the onset of a saccade, is plotted as a heat map using linear interpolation between the 

target positions (white circles). Warmer colors indicate higher discharge rates (sp/s). The 

position 0 horizontal and 0 vertical in degrees marks the position of the centrally-located 

fixation spot. e Averaged spike density function (σ = 10 ms) for ten SC neurons aligned to 

Glass pattern stimulus onset, conditioned on coherence (color) and choice (solid or dashed 

lines) excluding activity 20 ms before saccade onset. f Number of neurons plotted against 

the area under the receiver operating characteristic curve (AUC) for the ten neurons in the 
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0% coherence condition calculated from the epoch of 100 ms to 20 ms before saccade onset 

(Methods). AUC values with p < 0.05 (shaded grey) significantly differ from 0.5 (two-tailed 

bootstrap test). g Schematic of the experimental arrangement showing a lateral view of the 

rhesus monkey brain and an injectrode targeting the SC. The traces to the right show the raw 

voltage traces against time in min before and after muscimol injections in two monkeys 

(monkey S; top and monkey B; bottom). The 10 min injection time is marked by the vertical 

dashed lines. h Post-muscimol saccadic velocity minus pre-muscimol saccadic velocity 

divided by pre-muscimol saccadic velocity multiplied by 100, is plotted for the target 

positions indicated by the white circles. Cooler colors indicate slower saccadic velocities 

post-muscimol. The plots shown in d and h show one injection in monkey S. See Extended 

Data Fig. 1 for more examples. The location of the response field (RF) as in d, determined 

the positions of the choice targets in the decision and selection tasks.
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Fig. 2. Unilateral Inactivation of the SC biases perceptual decision making
a Decisions to the inactivated field (toIF) plotted against Glass pattern coherence, where 

positive coherences are toIF evidence and negative coherences are awayIF evidence, for 23 

experiments performed in two monkeys before (black circles and lines) and after (orange 

circles and lines) unilateral injection of muscimol into the SC; n=11 injections in monkey B 

and n=12 injections in monkey S for both delay and RT tasks. The horizontal dashed lines 

show 50% chance performance. Vertical dashed lines show 0% coherence. Each lighter 

shade line shows the two parameter logistic fit to the data for individual experiments and the 

darker shade lines show the two parameter logistic fit pooled across 23 experiments (see 

Extended Data Fig. 2 for comparisons of two, three and four parameter logistic fits). 

Extended Data Fig. 4 shows the results of the 24-hour recovery for muscimol and saline and 

Supplementary Table 2 shows the associated statistics. b Same as in a for the Glass pattern 

task performance before (black) and after (orange) saline injections, n=2 injections in 

monkey B and n=4 injections in monkey S. Note that there are no 50% coherence for saline 

experiments (Methods). c–f Post-muscimol and post-saline parameters of the logistic fits are 

plotted against the same parameters measured pre-muscimol and pre-saline from the fits 

shown in a and b. The darker symbols show the medians whereas the lighter symbols show 

the parameters from individual experiments. Note that the text reports the confidence 

intervals relative to the means. * indicates significance with a critical α value of 0.025 

Bonferroni corrected. g For the same experiments and data shown in a that were performed 

with the RT version of the decision task (n=9 injections), mean RT is plotted against 

coherence pre-muscimol (black circles and lines) and post-muscimol (orange circles and 

lines) for all correct trials. The lines show linear fits to the data points (Supplementary 

Note). h The same as in g for the saline injections (n=4 injections). i The slopes of the post-

muscimol linear fits to the RT data are plotted against the pre-muscimol slopes for toIF 

decisions (cyan circles) and awayIF decisions (magenta circles). The inset shows which 

changes in slope correspond to the changes seen in the chronometric function. The black 
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dotted line shows unity. The dark circles show medians. j Same as in i for the intercept 

parameter. k–l The same as in i-j for the saline experiments.
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Fig. 3. Decision but not selection accuracy is altered after SC inactivation.
a Proportion correct (accuracy) in the delay and RT versions of the decision task is plotted 

for toIF trials (cyan) and awayIF trials (magenta) for 23 muscimol experiments in two 

monkeys, collapsed over coherence, before and after inactivation. Dark filled symbols show 

the mean accuracy from all experiments and less saturated colors show the accuracies of 

individual experiments. b Accuracy in the saccade selection task for the same experiments 

and monkeys. c Same as in b for the six saline injections in the two monkeys. d Mean peak 

saccadic velocity for the decision task before and after muscimol for toIF and awayIF 

decisions for 17 injections in two monkeys. Six datasets were excluded due to technical 

issues with the eye tracker that impacted measurement of eye speed but not assessment of 

choice or RT. e Same as in d for the saccade selection task. f Same as in d and e for the 

visually-guided saccade task used to measure saccadic velocity. There are fewer points in 

this plot because there were fewer saccades in this task that had the same vector target and 

saccade as in the decision and selection tasks. Note we also did not perform statistics with 

these data because of the fewer points. The data are useful for visual comparison. All 

statistics for accuracy and saccadic velocity appear in Supplementary Table 3.
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Fig. 4. Comparison of aspects of signal detection theory (SDT) and the drift-diffusion model 
(DDM).
a. Changes in sensitivity (d’) results when the mean distance between the two distributions 

decreases (cf., black and orange distributions). b. In the DDM framework, this is analogous 

to a change in the proportionality factor between coherence and drift rate (assuming fixed 

noise; cf., black and orange arrows). Blue arrows show the change in proportionality factor 

with no change in mean indicated by the dark orange and black arrows. Note that symmetric 

changes in the bound in the DDM framework can also affect d’ (not shown). c. Changes in 

decision criterion (c) in SDT result in changes in the probability of making one or another 

decision (cf., black and orange vertical line). In the DDM framework, decision biases are 

implemented by either a change in the d. drift rate offset, or e. a change in the starting point 

of evidence accumulation or both. Blue arrows show changes in drift rate offset in d or 

starting point in e. See Extended Data Fig. 5 for a further comparison using DDM 

simulations. Although we assumed that drift rates would change across coherence based on 

a simple linear function of coherence conditions for the simulations, note that our fitting of 

HDDMs, DDMs, and UGMs, are agnostic to the relationship of drift rates to coherence 

conditions and were found by directly fitting the data for each coherence condition.
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Fig. 5. Unilateral SC inactivation alters the drift rate offset.
a RT distributions (black = pre- and orange = post-muscimol, top = toIF RTs, and bottom = 

awayIF RTs) from the 0% coherence condition (density approximated through kernel 

smoothing) predicted by a DDM simulation with only a decrease in proportionality factor 

between coherence and drift rate. The relative evidence for toIF decisions is plotted over 

time from Glass pattern onset and the short arrows show drift rates for toIF decisions 

(positive) and awayIF decisions (negative) pre- and post-muscimol, for the 0%, 10%, and 

36% coherence conditions. The longer arrow shows the drift rate offset. b The psychometric 

function, plotted as a proportion of toIF decisions over coherences, predicted by the model 

simulation with a decrease in proportionality factor between coherence and drift rate. c 
Mean RT predictions for correct trials for each coherence condition for the DDM variant 

with a decrease in proportionality factor between coherence and drift rate. d Same as in c but 

for error trials. e–h Same as in a-d but for the DDM variant with only a change in 
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proportional starting point of the evidence accumulation away from the IF. i–l Same as in a-d 

but for the DDM variant with an increase in the upper boundary but no absolute start point 

change. m–p Same as in a-d but for the DDM with only a decrease in the drift rate offset 

parameter, implemented by shifting all the drift rates by the same amount away from the IF. 

q RT distributions from the 0% coherence condition of the actual data from monkey S, along 

with the fitted HDDM parameters of the drift rates and the drift rate offset below. r 
Psychometric function of the RT task sessions (n=7 sessions) in monkey S. The circles show 

the data and the lines show the HDDM fits to the data. The change in the drift rate offset is 

evident as a rightward lateral shift in the psychometric function post-muscimol (orange). s 
The mean RT for correct trials (circles) for all RT task data from monkey S are plotted 

against coherence along with their HDDM fits (lines). t Same as in s but for mean RT for 

error trials (squares) and their HDDM fits (lines). u–x Same as in q-t for monkey B showing 

all RT task data (n=2 sessions) and the HDDM fits. Note that the first four rows show 

simulations and the last two rows with gray shading show the data from the two monkeys. 

See Extended Data Fig. 5 for additional simulations and explanation.
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