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Intratumoral bacteria interact with metabolites and genetic
alterations in hepatocellular carcinoma
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Dear Editor,
Hepatocellular carcinoma (HCC), which ranks globally as the

third leading cause of cancer-related deaths, is highly prevalent,
and most patients are diagnosed with advanced-stage cancer
when treatments are largely ineffective.1 Thus, there is an urgent
need for earlier diagnosis to improve HCC patient outcomes.
Although many types of tumors have intratumor bacteria, the

tumor microbiome is poorly characterized because of limitations in
the technology for detection. Recently, Nejman et al. found that
different tumor types have different microbiomes and that
bacterial metabolism is closely associated with clinical features.2

They identified cancer type-specific microbial signatures for the
microbiome from seven types of human tumors.2 Unique microbial
reads and signatures were found in tissue and blood within and
between most major cancer types for 33 types of cancer in The
Cancer Genome Atlas, suggesting that the cancer microbiome
might provide novel information for cancer diagnosis.3 While
better sequencing technology has identified the intratumoral
microbiome as an important component of the tumor microenvir-
onment,4,5 the microbes, their metabolites, and the underlying
gene regulatory network in HCC are poorly characterized.
To study the microbiome, we analyzed 47 pairs of HCC tissues and

normal control liver tissues from The First Affiliated Hospital, College
of Medicine, Zhejiang University (Supplementary Table. 1). Differences
in bacterial communities between samples for core and unique
operational taxonomic units (OTUs) were determined by Venn
diagram analysis using 16 S rDNA sequencing (Supplementary Fig.
1a). The microbial population structure differed between HCC and
control tissues at the phylum, family level, and genus levels
(Supplementary Fig. 1b–d). The α diversity of microbes in tumors
was analyzed using the Wilcoxon rank-sum test (Fig. 1a), and Bray-
Curtis-based principal component analysis (PCA) revealed that the
overall microbial composition of HCC tissues deviated markedly from
that of normal liver tissues (Fig. 1b). The top 20 microbial taxa with
significant differences in relative abundance between cancer and
paracancerous tissues are shown in Fig. 1c. We also identified
statistically significant differences for representative sequences of the
top 100 genera, obtained by multiple sequence alignment, as
determined by ANOSIM analysis (analysis of similarities) (Supplemen-
tary Fig. 1e, f). The predominant taxa were further characterized by
high dimensional class comparisons using linear discriminant analysis
(LDA) of effect size (LEfSe) with LDA value distribution histogram and
a cladogram shown in Supplementary Fig. 1g, h. Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis identified significant
differences in microbial functions for Oscillospira, Mucispirillum,
Helicobacter, Roseburia, Ruminococcus, and Anaerotruncus (Supple-
mentary Fig. 1i). Collectively, these results identified the major
differences in the microbiomes between HCC and normal liver tissues.
The signature microbial environments in HCC patients sug-

gested that variations in metabolites may be affected by the
tumor microbiota. Liquid chromatography-mass spectrometry (LC-

MS) identified various metabolites that were used to construct a
model based on a plot from PCA and partial least squares
discriminate analysis (PLS-DA) which analyzes the correlation
between metabolites and samples types. The PCA scores differed
markedly in metabolic features between samples (Fig. 1d).
Consistent with the results of PLS-DA, a permutation plot
confirmed the reliability of the model (Q2= 0.828, Supplementary
Fig. 2a). In addition, the area under the receiver operating
characteristic curve (ROC) curve (AUC) was > 0.9 for rosmarinic
acid, o-phosphoethanolamine, bioperin, and 2-aminobenzoic acid,
calculated by the Random Forest classification model (Supple-
mentary Fig. 2b–e). We identified 214 metabolites by untargeted
LC-MS (Supplementary Fig. 2f), and a heatmap of the top 24
differential metabolites (False Discovery Rate < 0.05, |log2(Fold
Change)| > 1) showed that acetaminophen, L-arginine, O-phos-
phoethanolamine, and Rosmarinic acid were highly enriched in
HCC tissues compared with the control, while Exemestane,
Parthenin, 6-ketoprostaglandin E1, N9-cis-retinoic acid,
4-pyridoxic acid, and Cortisol 21-acetate were less abundant in
tumor tissues (Fig. 1e). In addition, KEGG analysis identified several
metabolic pathways with significant differences such as ABC
transporters, Purine metabolism, and Vitamin digestion and
Absorption (Supplementary Fig. 2g). Thus, the metabolic patterns
were distinct for HCC tissues compared to normal liver tissues.
Because there is mounting evidence that the microbiome affects

host epigenetic regulation, we analyzed the effect of DNA
methylation on differential gene expression by determining the
transcriptome and the epigenome for five pairs of HCC tumor and
normal liver tissues. The differences in the expression of genes
between the two tissue types are shown by PCA (Fig. 1f), and the
distribution of transcript levels in different samples was determined
from the number of reads for all transcripts in each sample
(Supplementary Fig. 3a). RNA-seq showed that 737 transcripts were
markedly downregulated and 1004 were upregulated in HCC tissues
(Fig. 1g). The differentially expressed genes (DEGs) are shown as a
heatmap (Supplementary Fig. 3b) with their distribution on 22
chromosomes (Fig. 1h). Gene set enrichment analysis (GSEA) for
these genes revealed that highly expressed genes were mainly
enriched in the cell cycle, cell cycle process, nuclear chromosome,
protein-DNA complexes, and similar pathways (Fig. 1i). The KEGG
and Gene Ontology (GO) enrichment analysis for the DEGs is shown
in Supplementary Fig. 3c–f. To further understand the function of
the DEGs, we constructed a protein-protein interaction network
using the STRING database (https://cn.string-db.org/) (Supplemen-
tary Fig. 3g). We further determined the DNA methylation profiles
for five pairs of HCC tissues and normal liver tissues. The distribution
of methylation sites for all samples (β value ≤ 0.2 is an unmethylated
site, a β value ≥ 0.6 is a methylated site, and values between these
two indicate intermediate methylation) is provided in supplemen-
tary Fig. 4a. The methylation patterns of these DEGs were distinct
between the HCC and normal tissues (Fig. 1j). Through unsupervised
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Fig. 1 Tumor microbiomes were closely associated with changes in host metabolism and epigenetic and gene expression profiles. a Shannon
index of the microbiota of samples from tumor tissues and normal control liver tissues. The vertical axis represents the α diversity of the
microflora. Different colors represent different groups of samples. b PCA scatter plots of microbiota between tissue samples. c The top 20
microbial taxa with significant differences in relative abundance between HCC tissues and healthy tissues. d PCA scatter plots of metabolomes
between tissue samples (*p < 0.05; **p < 0.01). e Differential metabolites from cancer tissues and adjacent tissues were identified based on
heatmap analysis of Euclidean hierarchical clustering. The horizontal axis represents the different metabolites, the vertical axis represents the
samples of different groups, and the red and blue colors represent an increase and a decrease in metabolism, respectively. f PCA scatter plots
of transcriptomes between tissue samples. g Volcano plot of the DEGs in the HCC and paired samples. The abscissa represents the
log2FoldChange of gene expression between different groups. The ordinate represents the significance level of the expression difference.
h Differential gene genome circle diagram. The outermost circle is the chromosome band, the innermost circle is the histogram of the
log2FoldChange value of the DEGs, and the middle two circles are the log2(FPKM+ 1) distribution diagrams of the two groups of genes.
i GSEA of DEGs was significantly correlated with cell cycle, cell cycle process, nuclear chromosome, protein-DNA complex, transcription
regulatory region, and sequence-specific DNA binding pathway. j PCA scatter plots of genes DNA methylation between tissue samples.
k Volcano plot of the different methylation genes in the HCC and paired samples. The abscissa represents the log2FoldChange of gene
expression between different groups. The ordinate represents the significance level of the expression difference. Red dots represent
hypermethylation. Green dots represent hypomethylation. Gray dots represent that the difference in methylation was not statistically
significant. l Venn diagram of gene data showing opposite trends of DNA methylation in promoter regions and corresponding gene
expression levels.m Heatmap of DNA methylation-related differential genes. n Correlation between different bacterial classes and the 24 most
abundant metabolites in HCC tissues and healthy liver tissues. o Spearman correlation analysis between the microbiome and DNA
methylation-related differential genes. Abbreviation: PCA principal component analysis. HCC hepatocellular carcinoma; DEGs differentially
expressed genes; FPKM Fragments Per Kilobase per Million
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PCA, the holistic quality of the data for tumor sand controls was
determined (supplementary Fig. 4b). Using probes corresponding to
the hg19 reference genome position, we searched for differential
methylation sites at the same position in the genomes of multiple
samples. The volcano plot for differential methylation sites between
samples is shown in Fig. 1k and a differential methylation scatter
plot is shown in supplementary Fig. 4c. The methylation of different
regions of the genome results in different regulatory mechanisms
for gene expression. Therefore, we determined the distribution of
differentially methylated cytosines (DMC) in the genome (Supple-
mentary Fig. 4d) using cluster analysis for the first 500 significantly
different methylation sites (Supplementary Fig. 4e). The functional
enrichment results for differentially methylated genes are shown in
Supplementary Fig. 5a–d. Increased DNA methylation of CpG islands
within the promoter regions of genes suppressed transcriptional
initiation and thereby silenced these genes. Conversely, decreased
DNA methylation of promoter regions led to increased expression of
target genes. We identified 25 DNA methylation-related DEGs (Fig.
1l), including NOL4, ZNF385B, KCND3, GHR, ST3GAL6, AGXT2, CDHR2,
KANK4, SOX5, BCAT1, LOXL2, THY1, FAM64A, OSBPL3, DUOX1, PKMYT1,
PTF1A, HOXA10, PITX1, CNNM1, CTNNA2, GOLM1, ROBO1, SPP1, and
TESC (Fig. 1m).
Using Spearman correlation analysis we found that some

microbes, for example, Halomonas, were significantly positively
associated with some metabolites but negatively correlated with
L-Arginine, O-Phosphoethanolamine, Acetaminophen, and Ros-
marinic acid (Fig. 1n and Supplementary Fig. 6a). We analyzed the
microbiome and host transcriptome interactions by Spearman
correlation and found that 10 metabolome-related microbial taxa
were closely associated with 25 methylation-related DEGs (Fig. 1o
and Supplementary Fig. 6b). For example, Alcaligenes correlated
positively with SOX5, AGXT2, ST3GAL6, KANK4, and ST3GAL6, but
correlated negatively with PITX1, GOLM1, OSBPL3, and PKMYT1.
The microbiome, metabolome, host transcriptome, and DNA

methylation of HCC tissues and paired normal tissues revealed
several intratumoral microbial signatures. Furthermore, the correla-
tion between microbial species and metabolites, DNA methylation
and gene alterations, and microbial species and gene alterations may
provide a better understanding of the tumor microenvironment.
Microorganisms closely associated with the occurrence and progres-
sion of tumors may serve as novel biomarkers for the diagnosis and
prognosis of patients with HCC. However, further validation of the
presence of bacteria in HCC tumors and a demonstration of their
effect on the phenotypes of tumor cells are still needed.
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