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A B S T R A C T

Atrial fibrillation (AF) is the most common tachyarrhythmia and seriously affects human health. Key targets of 
AF bioinformatics analysis can help to better understand the pathogenesis of AF and develop therapeutic targets. 
The left atrial appendage tissue of 20 patients with AF and 10 patients with sinus rhythm were collected for 
sequencing, and the expression data of the atrial tissue were obtained. Based on this, 2578 differentially 
expressed genes were obtained through differential analysis. Different express genes (DEGs) were functionally 
enriched on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), mainly focusing on 
neuroactive ligand-receptor interactions, neuronal cell body pathways, regulation of neurogenesis, and neuronal 
death, regulation of neuronal death, etc. Secondly, 14 significant module genes were obtained by analyzing the 
weighted gene co-expression network of DEGs. Next, LASSO and SVM analyzes were performed on the differ-
ential genes, and the results were in good agreement with the calibration curve of the nomogram model for 
predicting AF constructed by the weighted gene co-expression network key genes. The significant module genes 
obtained by the area under the ROC curve (AUC) analysis were analyzed. Through crossover, two key disease 
characteristic genes related to AF, HOXA2 and RND2, were screened out. RND2 was selected for further research, 
and qPCR verified the expression of RND2 in sinus rhythm patients and AF patients. Patients with sinus rhythm 
were significantly higher than those in AF patients. Our research indicates that RND2 is significantly associated 
with the onset of AF and can serve as a potential target for studying its pathogenesis.

1. Introduction

Atrial fibrillation(AF) is the most widespread cardiac arrhythmia 
that results in significant reduction in cardiac output、left atrial 
thrombosis and cerebral infarction. Palpitations and chest tightness are 
the most common symptoms of AF[1].AF is believed to occur through 
two events that is the formation of an arrhythmogenic atrial substrate 
and an arrhythmogenic trigger. Atrial remodeling is the primary 
proarrhythmic substrate[2]. AF may be triggered through multiple 
factors that perturb normal electrical conduction such as hypokalemia, 
hypomagnesemia, hypovolemia, and alterations in parasympathetic and 
sympathetic activity[2–4]. While previous research has identified 
several factors that contribute to the development and progression of 
AF. However, the role of genetic factors of AF remains largely 

unexplored.
Rnd2, encoding a member of the Rho GTPase family, localizes to 

chromosome 17(q21)[5]. Unlike classical GTPases, Rnd2 have altered 
sequences at residues critical for GTP hydrolysis and are permanently in 
the GTP-bound form with no detectable GTPase activity[6]. Rnd2 is 
present in the cytoplasm and endosomes and directly binds to vacuolar 
protein sorting 1-A (Vps4A), the central protein regulating early endo-
some trafficking[7,8] and abundantly expressed in testis and in the brain
[9]. Rnd2 regulates neuronal actin dynamics during cortical neuronal 
migration[10]. Thus, cortical malformations caused by Rnd2 over-
expression in brains may be related to the development of epilepsy and 
focal cortical dysplasia (FCD)[11,12]. Furthermore, in the vasculature, 
the sex hormone steroids, which induce vascular smooth muscle 
contraction, increase Rnd2 expression in muscles[13]. Finally, Rnd2 is a 
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centromeric neighbor of the breast and ovarian cancer susceptibility 
gene BRCA1[14]. Although Rnd2 has extremely important physiological 
and pathological roles, its function in atrial fibrillation still needs to be 
further explored.

In recent years, with the popularization of bioinformatics, key genes 
for disease occurrence can be quickly and accurately screened. There-
fore, bioinformatics analysis may help to better understand the molec-
ular mechanisms of atrial fibrillation, paving the way for the discovery 
of biomarkers and new treatment options. In this context, our study 
aimed to conduct a comprehensive analysis of RNA sequences in patients 
with atrial fibrillation. Our study attempts to integrate differential 
analysis, weighted correlation network analysis(WGCNA)、least abso-
lute shrinkage and selection operator (LASSO) and support vector ma-
chines(SVM) analysis to produce a more accurate analysis of AF 
causative genes[15]. Our findings may provide reference for the diag-
nosis and treatment of atrial fibrillation. Ultimately, we hope our 
research will help develop more effective treatments for atrial 
fibrillation.

2. Materials and methods

2.1. Data acquisition

Fig. 1 shows the data analysis procedures of our study. In this study, 
we obtained left atrial appendage tissue from 26 patients with atrial 
fibrillation as the experimental group and left atrial tissue from 15 pa-
tients with sinus rhythm as the control group. Table 1 shows clinical and 
demographic characteristics of the study groups. Among them, 10 
samples were taken from the control group and 20 samples were taken 
from experimental group for mRNA transcriptome sequencing. The 
RNA-seq data of the experimental group and the control group were 
obtained, and subsequent data analysis was performed based on this. 
The remaining samples were used for experimental verification.

2.2. Differential gene expression analysis

Normalize the downloaded matrix data obtained from R. The R 
language “Limma” package was used to screen the differentially 
expressed genes (DEGs) of the normalized spectrum. Genes with |Log2 

fold-change (log2FC) |≥1 and P value < 0.05 were defined as differ-
entially expressed genes. Then draw the volcano map and heat map 
respectively according to the R voice “ggplot2” package and “pheatmap” 
package[16].

2.3. Identification of co-expression modules by WGCNA

To explore the interactions between genes, we used the systems 
biology method WGCNA to construct a gene correlation network. The 
specific steps are as follows[17]: (1) Import data sets containing more 
than 25 % of mutated genes in the samples into WGCNA; (2) Eliminate 
outlier samples to ensure the reliability of the network construction 
results; (3) Use the “pick-Soft-Threshold” function to calculate adjacent 
degree, and obtain a soft threshold (β) based on the co-expression sim-
ilarity; (4) Convert the adjacency relationship into a topological overlap 
matrix (TOM), and calculate the corresponding dissimilarity (1-TOM); 
(5) Through hierarchical clustering and linking The cut tree function 
detects modules. To divide genes with similar expression profiles into 
gene modules, average linkage hierarchical clustering is performed on 
the gene tree diagram, and the “tom-based” difference measurement 
method is used; (6) For modules related to clinical attributes, calculate 
module membership (MM, correlation between specific genes and 
module characteristic genes (ME)) and gene significance (GS, correla-
tion between specific genes and clinical variables); (7) Visualize the 
signature gene network. Conduct further analysis of the genetic infor-
mation in the module.

2.4. Functional enrichment analysis of DEGs

To explore the functions and pathways of overlapping DEGs, gene 
ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
were used to functionally enrich the intersection genes. In the enrich-
ment results, both P < 0.05 and adjusted P < 0.05 terms are expressed.

2.5. Screening and validation of hub genes

This study uses three algorithms to screen key genes of AF, namely 
support vector machines (SVM), LASSO, and WGCNA. To reduce the risk 
of overfitting, both the LASSO logistic regression model and the SVM 
model were validated using 5-fold cross-validation. For LASSO, the Fig. 1. Flowchart of the study.

Table 1 
Baseline demographic and clinical characteristics of patients with AF and 
controls.

Characteristics Controls(n = 15) AF Patients(n = 26) P-value

Age(years), mean (p25, 
p75)

39.64(28.75, 50.50) 57.65(48.75, 
68.00)

＜0.001

Sex   0.273
Male, n (%) 10(66.7 %) 12(46.2 %) 
Female, n (%) 5(33.3 %) 14(53.8 %) 
BMI (kg/m2), mean(p25, 

p75)
24.33(22.225, 
27.807)

23.604(21.900, 
26.000)

0.759

Systolic BP (mm Hg), 
mean ± SD

137.79 ± 50.140 114.62 ± 13.799 0.112

Diastolic BP (mm Hg) 85.57 ± 31.090 75.88 ± 14.049 0.285
Diabetes, n (%) 0(0 %) 2(7.7 %) 0.287
cerebral apoplexy, n (%) 6(40 %) 4(15.4 %) 0.056
Creatinine (mmol/L), 

mean(p25, p75)
88.379 
(45.600,122.450)

80.308 
(52.000,92.750)

0.777

Total cholesterol (mmol/ 
L)

 4.1179 ± 0.73405 

LDLC (mmol/L) mean 
(p25, p75)

 1.0607(0.8275, 
1.3300)



HDLC (mmol/L) mean 
(p25, p75)

 2.1086(1.6350, 
2.6100)



Triglyceride (mmol/L) 
mean(p25, p75)

 1.6400(0.9200, 
1.8650)



SD: standard deviation; AF: Atrial fibrillation; LDLC: Low density lipoprotein 
cholesterol; HDLC: High density lipoprotein cholesterol.
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hyperparameter lambda (λ) was optimized by minimizing the cross- 
validated mean squared error (MSE). For SVM, the radial basis func-
tion (RBF) kernel was used, and hyperparameters (C and γ) were tuned 
using a grid search approach combined with 5-fold cross-validation. This 
iterative validation ensures that the performance metrics are robust and 
not overly influenced by the dataset’s small size. Then, a Venn diagram 
is used to obtain the intersection of the three selected genes to obtain the 
hub genes for further analysis. Finally, this study used” ggpubr “package 
to calculate the receiver operating characteristic curve (ROC) and area 
under the curve to evaluate the diagnostic value of key genes for atrial 
fibrillation.

2.6. q-PCR

The transcriptome sequencing samples used in the discovery phase 
and the qPCR validation samples used in the validation phase were 
sourced from different donors, ensuring independence between the two 
datasets. The qPCR validation was conducted on an entirely separate 
cohort, addressing potential concerns regarding overfitting. Total RNA 
was extracted and reverse transcribed into cDNA using a reverse tran-
scription kit (Vazyme, Nanjing, China). According to the instructions of 
the qPCR kit (Yeason, Shanghai, China), the reaction system (20uL) was 
prepared and qPCR was performed using LightCycler® 96 SW 1.1. 2^ 
(− ΔΔCT) was used to calculate the relative expression of mRNA.

2.7. Statistical analysis

Data were analyzed by GraphPad software and expressed as mean ±
SD. P values < 0.05 were considered as statistically significant. Statis-
tical differences between two groups were compared using a t-test.

3. Results

3.1. Identify DEGs

By using transcriptome sequencing, we generated gene expression 
data for patients with atrial fibrillation and those with sinus rhythm, 

which has been uploaded to the GEO database under the accession 
number GSE282504.After raw data preprocessing, using |log2FC|≥1 
and P value < 0.05 as the standard, 2578 DEGs were obtained from the 
RNA-seq data of 10 control groups and 20 atrial fibrillation samples, of 
which 1875 genes were down-regulated, and 703 genes were Upregu-
lated. The distribution of these DEGs is shown in the volcano plot 
(Fig. 2A).

3.2. GO and KEGG enrichment analysis of DEGs

Next, we performed GO and KEGG pathway functional enrichment 
on differentially expressed genes. The results showed that significantly 
enriched pathways included neuroactive ligand-receptor interaction, 
regulation of neuron differentiation, neuronal cell body, regulation of 
neurogenesis and neuron death (Fig. 2B).

3.3. WGCNA and module identification

All genes were sorted from large to small in variance, and genes with 
the top 25 % of variance were selected for analysis. After removing 
outliers, we obtain a sample clustering tree. The soft threshold is set to 
14 to construct a scale-free network(Fig. 3A and B). Subsequently, we 
establish the adjacency matrix and construct the TOM(Fig. 3C). Func-
tionally similar modules were identified based on average hierarchical 
clustering and link cutting trees. Black modules and purple modules 
have the highest correlation with AF(Fig. 3D).

3.4. Screening of hub genes

This study used LASSO logistic regression algorithm, WGCNA anal-
ysis and SVM algorithm to screen key marker genes. The results showed 
that a total of 31 genes were identified by LASSO(Fig. 4B), a total of 8 
genes were identified by the SVM algorithm (Fig. 4C), and a total of 31 
genes were identified by WGCNA. Next, the Venn diagram shows that 
under the three algorithms, RND2 and HOXA2 is an overlapping gene 
(Fig. 4D). Both of them are down-regulated genes.

Fig. 2. Identification of differentially expressed genes (DEGs) and enrichment analysis of DEGs. (A)Nodes in red represent 703 upregulated genes, nodes in blue 
represent 1875 downregulated genes, and gray dots represent no significantly changed genes. (B)The Bubble chart show enriched items of DEGs. The x-axis labels 
represent gene ratios and y-axis labels represent Gene ontology (GO) and Kyoto encyclopedis of genes and genomes(KEGG) pathway. Different colors of circles 
represent different adjust P-values. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.5. Validation of RND2 in AF

To evaluate the potential predictive value of RND2 and HOXA2 in 
key gene signatures in AF, ROC curves were generated. The AUC of 
RND2 is 1, and the AUC of HOXA2 is 0.995.

(Fig. 5A). Because RND2 has a higher diagnostic value for AF than 
HOXA2, further verification of the expression level of RND2 in tissues 
will be conducted.

3.6. Expression of RND2 in AF patients

For further verification, we used qPCR to measure RND2 expression 
in 6 cases of atrial fibrillation and 5 cases of sinus rhythm. The results 
showed that the expression of RND2 in patients with sinus rhythm was 
higher than that in those with AF (P < 0.001) (Fig. 5B).

4. Conclusion

In summary, we have shown for the first time using bioinformatics 
and qPCR that RND2 is significantly associated with atrial fibrillation. 
This provides a possible target for further elucidating the pathogenesis 
of atrial fibrillation in the future, allowing people to have a deeper un-
derstanding of atrial fibrillation.

5. Discussion

In this study, we integrated RNA-seq data from 20 AF patients and 10 
persons in sinus rhythm to identify Hub genes associated with the onset 
of AF. After merging and normalizing the data sets, 2578 DEGs were 
obtained. Through GO enrichment analysis and KEGG enrichment 
analysis, DEGs were significantly related to neuroactive ligand-receptor 
interactions and neuronal cell body pathways, respectively. Then, the 
module with the highest correlation with AF is obtained through 

Fig. 3. Construction of weighted gene co-expression network analysis (WGCNA) modules in AF. (A,B) Analysis of network topology for various soft thresholding 
powers. (C) Visulustering alizing the gene network using a heatmap plot. (D) Clustering dendrogram of differentially expressed genes related to AF.
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Fig. 4. Screening of critical signatures via multiple machine-learning algorithms. (A) Selection of the optimal param-eter(lamda) in the least absolute shrinkage and 
selection operator (LASSO) model, and generation of a coefficient profile plot. (B) LASSO coeffcient profile of the 31 genes, and different colours represent different 
genes. (C) The abscissa represents the numbre of features and the ordinate is 10 x CV Accuracy, which represents the accuracy of the curve change after 10 times 
cross-validation. In the figure, n = 8(1) indicates that there are 8 features, and the accuracy is 1. (D) Venn gram shows the intersection of critical signatures obtained 
by the three strategies.

Fig. 5. (A) The diagnostic power of RND2 and HOXA2, and combined in atherosclerosis by ROC curve. (B) RND2 expression level in human with or without AF.
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WGCNA. The genes in the module were then analyzed through the 
LASSO logistic algorithm and SVM algorithm. The results of the Venn 
diagram showed that RND2 and HOXA2 may be Hub genes. Gene 
investigation showed that HOXA2 is mainly related to the development 
of the nervous system, so further inflammation is not required. In 
addition, we detected the expression of RND2 by qPCR. By utilizing 
independent cohorts for discovery and validation phases, our study 
minimizes the risk of overfitting and enhances the robustness and 
generalizability of the identified biomarkers (RND2 and HOXA2). We 
found that the expression level of RND2 was increased in patients with 
sinus rhythm compared with those with AF. Taken together, our results 
provide a potential target for elucidating the pathogenesis of atrial 
fibrillation.

A total of 31,203 genes were identified using RNA sequencing. After 
conducting differential analysis, we found that 1,493 of these genes 
were differentially expressed, which is 4.7 percent of the total. This 
indicates the use of a standard and rigorous filtering criterion. The 
choice of log2FC ≥ 1 or ≤ -1 as the threshold has important biological 
implications. It indicates that the RNA expression level of a gene in the 
AF group is upregulated to at least 2-fold or downregulated to 50 % 
relative to the control group. Changes of this magnitude are highly likely 
to impact cellular processes, tissue functions, and even organism-level 
phenotypes. This threshold is widely accepted in molecular biology as 
a meaningful and reasonable cutoff for identifying genes with substan-
tial biological significance. While stricter thresholds (e.g., log2FC ≥ 1.5 
or 2) might further refine the results, they would exclude many genes 
that could still play critical roles in the pathophysiology of AF.

AF is the most common tachyarrhythmia, accounting for approxi-
mately 30 % of all patients with arrhythmias[18]. According to esti-
mates from the American Heart Association, more than 33 million 
people worldwide suffer from atrial fibrillation. In the United States, 2.3 
million people have atrial fibrillation, a number expected to increase to 
5.6 million by 2050, in part due to an aging population and increased 
prevalence of cardiovascular disease[18]. Because the atria cannot 
effectively pump blood into the ventricles and the atria fibrillate irreg-
ularly, blood will remain in the atria and form turbulence, forming 
thrombi. These blood clots may break off and enter the systemic circu-
latory system, causing blockage in the brain or other organs[19]. In 
addition, atrial fibrillation can also make the ventricular rate extremely 
irregular, resulting in reduced cardiac output and damage to the func-
tion of organs sensitive to blood supply, such as the brain. There are 
many causes of atrial fibrillation, including hypertension, coronary 
heart disease, heart valve disease, cardiomyopathy, hyperthyroidism, 
excessive alcohol consumption, and after heart surgery. Age is also an 
important factor in the development of atrial fibrillation, and the 
prevalence of atrial fibrillation increases with age. The incidence of 
atrial fibrillation increases significantly in people over 65 years of age. 
The occurrence and maintenance of atrial fibrillation are mainly related 
to structural remodeling, electrical remodeling and autonomic nerve 
remodeling. Although there have been a lot of studies on the patho-
genesis and treatment of atrial fibrillation, its pathogenesis has not been 
fully elucidated, and the treatment effect is unsatisfactory. Relying on a 
large amount of evidence-based medical data, the current treatment of 
atrial fibrillation mainly includes drug treatment and surgical treatment. 
Drug therapy is the basic treatment for atrial fibrillation, which means 
actively preventing thromboembolism, converting and restoring sinus 
rhythm, and controlling ventricular rate on the basis of treating the 
primary disease and triggering factors. However, its effect is not ideal 
and it is difficult to cure AF. Although surgical treatment methods 
mainly including maze surgery and Wolf Mini-maze surgery can cure 
atrial fibrillation, there are some complications. Therefore, in view of 
the problems that the pathogenesis of atrial fibrillation has not been 
fully elucidated and the treatment effect is unsatisfactory, we plan to use 
bioinformatics analysis methods to conduct research based on omics 
data to find the key gene RND2 in the pathogenesis of atrial fibrillation.

In recent years, biomarkers have gradually emerged in the study of 

atrial fibrillation, becoming an important tool for assessing the risk of 
atrial fibrillation, predicting disease progression, and guiding clinical 
decision-making. Biomarkers such as cardiac troponin T (cTnT) and N- 
terminal pro brain natriuretic peptide (NT-proBNP) have been widely 
studied to assess the risk and prognosis of atrial fibrillation[20,21]. In-
flammatory response plays an important role in the occurrence and 
maintenance of atrial fibrillation. Research has shown that patients with 
atrial fibrillation typically have a low-grade inflammatory state, with 
elevated levels of inflammatory factors such as tumor necrosis factor 
alpha (TNF − α) and interleukin-6 (IL-6) in atrial fibrillation patients. 
These inflammatory factors further exacerbate the occurrence and 
persistence of atrial fibrillation by promoting atrial fibrosis and elec-
trophysiological remodeling[22,23]. Metabolic abnormalities are also 
an important risk factor for atrial fibrillation, especially in patients with 
diabetes and obesity. Research has found that metabolic syndrome is 
closely related to the occurrence of atrial fibrillation, and metabolic 
abnormalities increase the risk of atrial fibrillation by causing electro-
physiological changes and structural remodeling in the atria. For 
example, in patients with diabetes, the late sodium current in atrial 
myocytes increases, which leads to the prolongation of action potential, 
thereby increasing the susceptibility to atrial fibrillation[24,25]. In 
addition, obesity and metabolic syndrome are also associated with atrial 
dilation and fibrosis, further exacerbating the occurrence of atrial 
fibrillation[26,27].

Rnd2 encodes a member of the Rho GTPase family and is mapped to 
chromosome 17 (q21). Unlike classical GTPases, Rnd2 changes its 
sequence at residues critical for GTP hydrolysis and is permanently in its 
GTP-bound form with no detectable GTPase activity. Rnd2 is present in 
the cytoplasm and endosomes and binds directly to vacuolar protein 
sorting 1-A (Vps4A), a central protein that regulates early endosomal 
trafficking and is abundantly expressed in the testis and brain. Rnd2 
migration in cortical neurons. Thus, cortical malformations caused by 
Rnd2 overexpression in the brain may be associated with the develop-
ment of epilepsy and focal cortical dysplasia (FCD). In addition, in the 
vasculature, sex hormone steroids induce vascular smooth muscle 
contraction, increasing the expression of Rnd2 in muscles. Finally, Rnd2 
is a centromeric neighbor of the breast and ovarian cancer susceptibility 
gene BRCA19. Our study confirms that RND2 plays an important role in 
the pathogenesis of AF, but further research is needed on the specific 
regulatory mode.

Several shortcomings of our study are worth mentioning. First, our 
study lacked relevant clinical data and could not conduct prognostic 
analysis. Although this study provides valuable insights into atrial 
fibrillation biomarkers, the relatively small sample size (20 AF patients 
and 10 controls) may limit its statistical power. Power analysis sug-
gested that at least 26 samples per group would be required to achieve 
optimal reliability. However, obtaining left atrial tissue samples, 
particularly from sinus rhythm donors, poses significant ethical and 
logistical challenges, which is a well-recognized limitation in clinical 
research. Despite this limitation, our study offers important preliminary 
findings that contribute to the understanding of atrial fibrillation 
mechanisms and lay the groundwork for future studies with larger co-
horts. Secondly, the AF sample size of the studies involved was limited, 
and the analysis failed to cover the impact of cardiovascular risk factors 
on the overall data analysis and results, which may affect gene expres-
sion in AF patients. To address these shortcomings, we will conduct 
further clinical studies with more detailed clinical data and larger 
sample sizes to confirm the study results. Finally, this study has pre-
liminarily screened the key marker genes of AF. We need to further 
confirm these findings in in vitro and in vivo studies, and further study 
to elucidate the pathological mechanism of RND2 in the pathogenesis of 
AF, which may contribute to the application of RND2 in the diagnosis 
and treatment of AF.
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