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Abstract

Background: To develop an algorithm to predict the visually lossless thresholds (VLTs) of CT images solely using
the original images by exploiting the image features and DICOM header information for JPEG2000 compression
and to evaluate the algorithm in comparison with pre-existing image fidelity metrics.

Methods: Five radiologists independently determined the VLT for 206 body CT images for JPEG2000 compression
using QUEST procedure. The images were divided into training (n = 103) and testing (n = 103) sets. Using the
training set, a multiple linear regression (MLR) model was constructed regarding the image features and DICOM
header information as independent variables and regarding the VLTs determined with median value of the
radiologists’ responses (VLTrad) as dependent variable, after determining an optimal subset of independent variables
by backward stepwise selection in a cross-validation scheme.
The performance was evaluated on the testing set by measuring absolute differences and intra-class correlation (ICC)
coefficient between the VLTrad and the VLTs predicted by the model (VLTmodel). The performance of the model was also
compared two metrics, peak signal-to-noise ratio (PSNR) and high-dynamic range visual difference predictor (HDRVDP).
The time for computing VLTs between MLR model, PSNR, and HDRVDP were compared using the repeated ANOVA
with a post-hoc analysis. P < 0.05 was considered to indicate a statistically significant difference.

Results: The means of absolute differences with the VLTrad were 0.58 (95% CI, 0.48, 0.67), 0.73 (0.61, 0.85), and 0.68
(0.58, 0.79), for the MLR model, PSNR, and HDRVDP, respectively, showing significant difference between them
(p < 0.01). The ICC coefficients of MLR model, PSNR, and HDRVDP were 0.88 (95% CI, 0.81, 0.95), 0.85 (0.79, 0.91),
and 0.84 (0.77, 0.91). The computing times for calculating VLT per image were 1.5 ± 0.1 s, 3.9 ± 0.3 s, and 68.2 ± 1.4 s,
for MLR metric, PSNR, and HDRVDP, respectively.

Conclusions: The proposed MLR model directly predicting the VLT of a given CT image showed competitive
performance to those of image fidelity metrics with less computational expenses. The model would be promising
to be used for adaptive compression of CT images.
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Background
Although the cost of storage and network resources have
continued to drop, there is still a demand for irreversible
compression of computed tomography (CT) images for
long-term preservation and efficient transmission of data,
especially between institutions at the regional or national
level [1–4]. However, the irreversible compression is not
always accepted by radiologists due to concern about
compression artifacts that might hinder diagnosis. There-
fore, the importance of achieving an optimal compression
level for a CT image, which provides the maximum data
reduction while preserving the diagnostic accuracy, has
gained the attention of radiologists [5].
Regarding the estimation of such optimal compression

level, many researchers have advocated that visually loss-
less threshold (VLT) is robust and conservative suffi-
ciently to be adopted for the compression of medical
images [6–11]. This approach focuses on image fidelity
(i.e. the visual equivalence between the original and
compressed images). The underlying idea of this ap-
proach is that if a compressed image is visually indistin-
guishable from its original, the artifacts should not affect
the diagnosis.
However, because the compressibility of an image is

affected by various factors including body parts, scan-
ning protocols, and image contents itself, the establish-
ment of a robust VLT for various images would require
a very large study [12, 13]. Instead, if a computerized al-
gorithm can accurately predict visual perception of radi-
ologists, it can be used for compressing a CT image
adaptively and automatically to its own VLT. For that
purpose, several researchers have experimented with
using image fidelity metrics, which measure the fidelity
of a distorted image, in predicting the VLT, and some of
the metrics showed promising results [5, 14–18]. How-
ever, to achieve the VLT of a given CT image, it is neces-
sary to iteratively compress the image to multiple
compression levels and to measure the image fidelity at
each compression level until the measured fidelity
reaches a cutoff value predefined by the metric.
It has been advocated that some of the factors influen-

cing the compressibility of CT images can be derived
directly from the Digital Imaging and Communications
in Medicine (DICOM) header information [19, 20], espe-
cially related to the image noise which is known as an
important factor affecting the compressibility of CT im-
ages as well as from image contents themselves [21–25].
Thereby, it is plausible to hypothesize that the VLTs of
CT images can be predicted by using those DICOM
header information and image features derived from the
original images.
This study aimed to develop a computerized algorithm

to predict the VLTs of CT images solely using the ori-
ginal images by exploiting the image features and

DICOM header information for Joint Photographic
Experts Group 2000 (JPEG2000) compression and to
evaluate the performance of the algorithm in compari-
son with pre-existing image fidelity metrics.

Methods
Our institutional review board approved this study and
waived informed patient consent. The study design was
described in Fig. 1.

A. Image acquisition and selection
A body radiologist with 13 years of clinical experience,
who did not participate in the human visual analysis,
retrospectively reviewed CT scans of adults which were
obtained from 256-channel or 64-channel multi-detector
row CT scanners (Brilliance; Philips Medical Systems,
Cleveland, OH) in Seoul National University Bundang
Hospital in early 2012. He compiled 206 studies (84 ab-
domen scans, 82 chest scans obtained by using our
standard radiation dose, and 40 low-dose chest scans; 79
scans from 256-channel scanners and 127 scans from
64-channel scanners) containing common abnormalities.
Of the 84 abdomen scans, 42 scans were randomly se-

lected and then reconstructed into 4-mm-thick trans-
verse sections and the remaining 42 scans were
reconstructed into 2-mm-thick sections. Likewise, 41 of
the 82 standard-dose chest scans were reconstructed
into 3-mm-thick sections and the remaining 41 scans
were reconstructed into 2-mm-thick sections. The 40 low-
dose chest scans were reconstructed into 3-mm-thick
sections. From each reconstructed image dataset, the same
radiologist selected a single section that most clearly
represented pathology. Therefore, the final study sample
was a set of 206 images, which was composed of five sub-
sets of different body regions (i.e., abdomen or chest) and
image noise levels (i.e., different section thicknesses and
radiation doses): 4-mm-thick abdomen images (abdo-
men thick), 2-mm-thick abdomen images (abdomen
thin), 3-mm-thick lung images (chest thick), 2-mm-
thick chest images (chest thin), and 3-mm-thick low-
dose chest CT images (low-dose chest).
Among various clinical CT protocols, we focused on

these five CT protocols because they are performed very
frequently in daily practice of our hospital and thus
cover a large portion of the image archive. The scan pa-
rameters and patient demographics for each subset are
tabulated in Table 1. All scan parameters followed the
clinical scan protocols of our hospital. Also, using the
five different subsets was to introduce heterogeneity in
the test dataset to some extent in terms of structural
content and image noise. The heterogeneity was consid-
ered important in measuring the robustness of the pre-
diction model in predicting the VLTs of CT images, as it
is well known that the image compressibility is
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significantly affected by structural content [17, 26] and
image noise level [12, 13].

B. VLT measurement by radiologists using QUEST
procedure
Five radiologists with 10, 9, 7, 6, and 4 years of clinical
experience, respectively, participated in the VLT meas-
urement. The 206 images were randomly assigned to five
reading sessions. The order of the reading sessions was

changed for each reader. Sessions were separated by a
minimum of 24 h to minimize reader fatigue.
Images were displayed in a monochrome monitor cali-

brated according to the Digital Imaging and Communi-
cations in Medicine part 14 grayscale standard display
function [26]. Detailed specifications of the display sys-
tem and viewing condition were described in Table 2.
The window level and width were set as 20 and 400 HU
for abdomen CT images and as −600 and 1500 HU for

Fig. 1 Study design. *Independent variables include five image features (image standard deviation, image entropy, relative percentage of low
frequency energy, variation in high frequency, and visual complexity) and DICOM header information (effective mAs, field of view, section
thickness, and reconstruction filter). DICOM: digital imaging and communications in medicine; VLT: visually lossless threshold

Table 1 CT imaging parameters and patient demographics

Subsets

Abdomen thick Abdomen thin Chest thick Chest thin Low-dose chest

Common scan parameters Detector collimation, 64 × 0.625 mm for 64-channel MDCT and 2 × 128 × 0.625 mm for 256-channel MDCT; gantry
rotation time, 0.42 s for 64-channel MDCT and 0.27 s for 256-channel MDCT; tube potential, 120 kVp; pitch, 1.077 to
1.172; matrix, 512 × 512

Body part Abdomen Abdomen Chest Chest Chest

Field of viewab 277.2 ± 20.7 (245–323) 281.0 ± 23.5 (249–321) 319.0 ± 27.1 (262–383) 317.9 ± 26.5 (271–375) 291.5 ± 22.9 (248–329)

Section thickness (mm) 4 2 3 2 3

Effective mAsac 121.5 ± 38.0 (69–222) 127.5 ± 34.2 (62–191) 152.3 ± 45.1 (58–249) 151.1 ± 30.5 (72–181) 25.6 ± 2.3 (22–31)

Effective radiation Dose (mSv)ad 7.5 ± 1.0 (4.5–9.8) 7.5 ± 1.5 (4.1–10.2) 7.2 ± 1.1 (4.3–9.5) 7.3 ± 0.9 (4.1–9.3) 1.6 ± 0.1 (1.4–1.7)

Reconstruction filter Soft-tissue Soft-tissue Medium-sharp Medium-sharp Medium-sharp

Agea 57.2 ± 27.2 (15–88) 55.3 ± 24.8 (15:82) 50.6 ± 26.4 (18–88) 53.1 ± 24.4 (22–91) 45.4 ± 22.4 (19–84)

Sex (Male:Female) 22:20 23:19 22:19 20:21 23:17

Note: aData are means ± standard deviations, with ranges in parentheses. bThe field of view was set for each patient to match the maximum
transverse diameter of the body to the image size. cAutomatic tube-current modulation was used. dEstimated by multiplying the dose-length
product measured on the CT console by a conversion factor (0.017 and 0.019 mSv•mGy-1•cm-1 for abdomen and chest, respectively) [39]
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lung CT images, which were the default window settings
in our clinical practice.
The five readers independently measured the VLT of

each image by visually comparing the image with its
distorted versions compressed to various compression
ratios (CRs) using the JPEG2000 algorithm (Accusoft-
Pegasus Imaging, Tampa, Fla) [27–30]. The VLT of each
image was determined through 25 comparison trials. In
each trial, the image pair of the original and compressed
version was alternately displayed on a single monitor.
The reader selectively toggled between the two images
(returning to the first image as desired) and was forced
to answer if they are distinguishable or not. Based on
the reader’s response, the QUEST algorithm [31] calcu-
lated the CR for the next trial. The CR for the initial trial
was 5:1. Details of the QUEST were described in else-
where [31].
Prior to the formal visual analysis, the readers were

instructed on how to perform the visual analysis with
five example images which were not included in the test
dataset. The readers also had a chance to perform the
analysis with another three example image pairs by
themselves so that they could become familiar with the
visual analysis.
Although we selected images containing abnormalities,

the readers were asked not to confine their visual ana-
lysis to the pathologies. Instead, the readers were asked
to examine an entire image to find any image differ-
ences. When analyzing the abdomen CT images, the
readers were asked to focus particularly on the small
vessels and edges of the organs and the texture of solid
organs and soft tissues. For the chest CT images, the
readers were asked to focus on the small airways, pul-
monary vessels, interlobular septa, interlobar fissures,
and the texture of the pulmonary parenchyma.

C. Selection of image features as independent variables
As inspired from the literature and our observations, we
selected five image features of image standard deviation
(Image_SD), image entropy (Image_entropy), relative per-
centage of low frequency energy (Percentage_LF), vari-
ation in high frequency (Variation_HF), and visual
complexity (Visual_complexity) as the candidates for the
determinants of the VLTs of CT images. Those five image
features were measured for each image using Matlab
(version 2011a, Mathworks, Nattick, Mass). The detail of
those image features is described elsewhere [25].

D. Selection of DICOM header information as
independent variables
We selected four DICOM tags which were considered to
affect the compressibility as the candidates for the inde-
pendent variables based on the results of the previous
study: [19] the effective tube current-time product
(effective mAs; tag number: 0018, 9332); section thick-
ness (ST; tag number: 0018, 0050); field of view (FOV;
tag number: 0018, 0090), and reconstruction filter type
(tag number: 0018, 9320).

E. Construction of the VLT prediction model
To construct and validate a prediction model, we applied
an analysis scheme widely used in the machine learning
field [32]. The 206 images were divided randomly into two
groups: 103 images for the training set and 103 images for
the testing set. With the training set, an optimal subset of
independent variables was determined using multiple lin-
ear regression (MLR) by performing backward stepwise
selection using the likelihood-ratio statistic (p = 0.05 for
entry and p = 0.10 for removal) as a selection criterion
[32]. At each step in the backward stepwise selection,
four-fold cross-validation scheme was used.
With the determined subset of independent variables, a

final model was constructed by fitting the MLR on the en-
tire training set while regarding the VLTs determined with
median value of the radiologists’ responses (VLTrad) as
dependent variable. The constructed MLR model was then
validated using the testing set. The detail of the validation
is described in the subsequent statistical analysis section.
The time for computing the VLTs predicted by the

model (VLTmodel) was measured for each image. In this
calculation, we included the time to load input files to
the memory and to save output files to the storage. We
used a PC platform running 64-bits Windows 7
(Microsoft Co., Redmond, WA) with a 3.2 GHz quad-
core processor (i7-3930 k; Intel Co., Santa Clara, CA)
and 32 GB main memory.

F. Image fidelity metrics
To compare the performance of the prediction model
with those of the pre-existing image fidelity metrics, we

Table 2 Display system and viewing conditions in human visual
analysis

Display system

Display resolution 1536 × 2048 pixels

Display size 31.8 × 42.3 cm

Image resolution 1483 × 1483 pixels
(stretched using bilinear interpolation)

Luminance 1.5–408.2 cd/m2

Viewing conditions

Ambient room light 30 lux

Reading distance 42–77 cm

Window setting level, 20 HU; width, 400 HU for abdomen CT,

level, −600 HU; width, 1500 HU for chest CT,
not adjustable

Magnification not allowed

Reading time not constrained
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tested two metrics, peak signal-to-noise ratio (PSNR)
[15] and high-dynamic range visual difference predictor
(HDRVDP) [33]. These metrics have been widely tested
in predicting radiologists’ perception of compression ar-
tifacts in CT images [5, 14–17, 34]. The detail of the
metrics is described in Appendix.
Each of the two metrics takes two images (original and

distorted images) as input and calculates the degree of
the fidelity of the distorted image. Thereby, to calculate
the VLT of a CT image using the metrics, it is necessary
to iteratively compress and measure the image fidelity
for multiple CRs until the measured fidelity reaches a
cutoff value predefined by the metric.
The cutoff value of each of the metrics was deter-

mined using the training set as follows. First, each image
on the training set was compressed to its VLTrad. Sec-
ond, the metric value was calculated for each pair of the
original image and compressed image to VLTrad. Note
that if a metric is completely accurate in predicting the
VLTrad, then the metric outputs for the VLTrad-com-
pressed images should be a constant value. The cutoff
value was defined as the mean of the metric values for
the entire training set (N = 103) to minimize the devi-
ation between the cutoff value and metric values.
The VLTs of each image using PSNR or HRDVDP

(VLT(PSNR or HDRVDP)) on the testing set was calculated
with the metrics’ own cutoff values using the iteration
scheme. The times for computing the VLT(PSNR or HDRVDP)

were measured for each image.

G. Statistical analysis
The sample size of 206 images (103 images for training
set and 103 images for testing set) was determined to
provide narrow two-sided 95% confidence intervals (CIs)
for the absolute difference between VLTrad and VLTMLR

(|VLTrad-MLR|) as follows. First, to measure the standard
deviation (SD) of | VLTrad-MLR |, we conducted a prelim-
inary test with 100 images. The 100 images were repeat-
edly divided (200 times) randomly into two sets, a
training (50 images) and testing (50 images) data sets.
For each division, an MLR model was constructed on
the training and |VLTrad-MLR| was measured on the test-
ing set. The mean of SD of the 200 |VLTrad-MLR| was
0.51. With this SD, the sample size of a testing set was
estimated to be 103 to construct a 95% CI of | VLTrad-

MLR| with the width of no greater than 0.10. In addition
to the testing set, a separate sample of the same size was
required for the training set (n = 103).
Interobserver agreement between the five readers was

evaluated by measuring the ICC coefficient. Using the
testing set, the performance of each of the MLR model
and the two metrics was evaluated by measuring ICC
coefficient, and bland-Altman plot between VLTradiologist,
and VLT(MLR model, PSNR, or HDRVDP). The difference

between |VLTrad-model|, |VLTrad-PSNR|, and |VLTrad-

HDRVDP| were compared using the repeated measures
analysis of variance (ANOVA) with a post-hoc analysis.
The time for computing VLTs between MLR model,
PSNR, and HDRVDP were compared using the repeated
ANOVA with a post-hoc analysis. P < 0.05 was consid-
ered to indicate a statistically significant difference.

Results
A. VLT measured by radiologists
The ICC coefficient between the five readers was 0.56
(95% CI, 0.53, 0.57; p < 0.01). The VLTs varied with dif-
ferent subsets, especially different section thicknesses
(Fig. 2). The VLTrad of thick sections were significantly
higher than those of thin sections for both of abdomen
(thick vs. thin, 7.3 ± 0.5 vs. 6.3 ± 0.4; p < 0.01) and chest
(9.2 ± 1.1 vs. 7.1 ± 1.3; p < 0.01). The VLTs of chest thick
sections were significantly higher than those of low-dose
chest images (9.2 ± 1.1 vs. 7.5 ± 1.4; p < 0.01).

B. Optimal variable selection
According to the results of backward stepwise selection,
the ST, effective mAs, and reconstruction filter among the
DICOM tags and Visual_complexity, and Variation_HF
among the image features were determined as the opti-
mal subset of independent variables while the remaining
variables were excluded.

C. Performance of MLR model, PSNR, and HDR-VDP (Figs. 3
and 4)
The means of |VLTrad-MLR|, |VLTrad-PSNR|, and |VLTrad-

HDRVDP| were 0.58 (95% CI, 0.48, 0.67), 0.73 (0.61, 0.85),
and 0.68 (0.58, 0.79), respectively, showing significant
difference between them (p < 0.01). According to the

Fig. 2 Scatter plot of the radiologists’ pooled responses. The VLTrad
represents the visually lossless thresholds determined with median
value of the five radiologists’ responses for each image
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post-hoc analysis, the significant difference was shown
between |VLTrad-MLR| and |VLTrad-PSNR|. The ICC coeffi-
cients of MLR model, PSNR, and HDRVDP were 0.88
(95% CI, 0.81, 0.95), 0.84 (0.77, 0.91), and 0.85 (0.79,
0.91). The Bland-Altman plot demonstrates the discrep-
ancy between VLTrad and VLT(MLR model, PSNR, or HDRVDP)

with a mean difference (bias) and a 95% confidence limit
of agreement (Fig. 5).

D. Computing time of image features
The mean computing times for calculating VLT per
image were 1.5 ± 0.1 s, 3.9 ± 0.3 s, and 68.2 ± 1.4 s, for
MLR metric, PSNR, and HDRVDP, respectively. The dif-
ferences between them were significant (p < 0.01).

Discussion
In this study, we proposed a MLR model which predicts
the VLT of JPEG2000 compressed CT images using the
image features and DICOM header information. The

mean of absolute difference between the VLTs measured
by radiologists and the VLTs calculated by the MLR
model was 0.58. The ICC coefficient of the VLTs mea-
sured by radiologists and the VLTs calculated by the
MLR model was 0.88. The proposed model showed su-
perior or comparable performance to those of the PSNR
and HDRVDP while requiring less computational ex-
penses. Our model utilized “visually lossless” compres-
sion, and does not interfere with a doctor’s diagnosis.
Human visual system cannot find the difference between
the original image and the compressed image resulting
from the model. In clinical applications, it is crucial to
compute the optimal VLT value to keep the quality of
the compressed image that does not degrade the diag-
nostic value in any case. Therefore, the proposed model
would be promising to be used for adaptive compression
of CT images.
According to our results, among the DICOM header

tags, the ST, effective mAs, and reconstruction filter

Fig. 3 Scatter plots of VLTrad and VLT(MLR model, PSNR or HDRVDP) for the MLR model (a), for the PSNR (b) and for the HDRVDP (c). Symbol + represents
each image

Fig. 4 JPEG 2000 compressed CT images in transverse abdominal view of a 78-year-old female. (a) the original image. (b) the compressed image
by a radiologist. (compression ratio 8.6:1.) The compressed images using (c) the MLR model (8.8,1), (d) the PSNR (9.5,1), and (e) the HDRVDP (9.3,1)
respectively. Window width and level are set to 400 and 20 HU. Since the images are generated by visually lossless compression methods, all the
images are indistinguishable from the original image
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played an important role in predicting the VLT of CT
images. These results were expected since those DICOM
tags are theoretically related to image noise and thus to
the degree of compression artifacts. In addition, the
image features of Variation_HF and Visual_complexity
are also shown as factors predicting the VLT of CT im-
ages, which are devised by being inspired from the previ-
ous research on the modeling of human visual system
(HVS) [25]. Note that there might exist other HVS-
related image features which outperform those two
image features.
Previous studies [5, 14–18] evaluated several image

fidelity metrics, such as PSNR and HDRVDP in measur-
ing the fidelity of compressed CT images. The principal
goal of these studies was to introduce the image fidelity
metrics into an adaptive compression. However, those
metrics have a couple of limitations from a practical
viewpoint. First, they analyze the image characteristics of
a compressed image in comparison to its original,
requiring a substantial computational expense. Second,
to achieve an optimal compression level for an image, it
is necessary to iteratively compress the image to multiple
compression levels and to measure the image fidelity at
each compression level until the measured fidelity
reaches a predefined threshold. In contrast, the predic-
tion model proposed in this study can directly predict
VLTs of CT images without the iterative compression
and fidelity measurement at multiple CRs, thereby com-
putationally efficient. In an academic medical center
with 900-bed tertiary care, where this study is con-
ducted, the total number of CT examinations from
August 2011 to January 2012 is 43,854. The required
time and computational power for compressing all the
CT examinations in such a great scale is not trivial.
Using inefficient compression models may increase the
waiting time of patients, particularly for the model like
HDRVDP which requires about 46 times more

computational cost comparing to our method. Further-
more, the models can probably induce unnecessary load
on picture archiving and communication system (PACS)
and gradually degenerate durability of the system.
Our model cannot be directly applied to clinical prac-

tice due to the following reasons: first, this study used a
small number of test images; second, we did not test all
available DICOM header information and image fea-
tures. Furthermore, more sophisticated classification
methods exist as an alternative to MLR, such as artificial
neural network, support vector machine, and AdaBoost
[32]. However, it should be noted that our study did not
intend to suggest a prediction model which can serve as
a global compression guideline for all CT images. In-
stead, the purpose of our study is rather to propose a
new scheme of adaptive compression which directly pre-
dicts the VLT of a given CT image solely using the ori-
ginal image without compression.

Conclusion
In conclusion, we proposed a MLR model which directly
predicts the VLT of a given CT image solely using the
original image without compression. The proposed
model showed superior or comparable performance to
those of image fidelity metrics while requiring less com-
putational expenses. The model would be promising to
be used for adaptive compression of CT images.

Appendix
Description of image fidelity metrics
The PSNR and HDRVDP were performed after convert-
ing the 12-bit images to 8-bit images by applying the
same window settings used in the human visual analysis.
This conversion was to reproduce the clinical practice,
in which images are displayed with an appropriate
window setting.

Fig. 5 Bland-Altman plots between VLTrad and VLT(MLR model, PSNR, or HDRVDP) for the MLR model (a), for the PSNR (b) and for the HDRVDP
(c). Symbol + represents each image
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PSNR
The PSNR [15] has been widely used in measuring the de-
gree of image distortion due to its computational simpli-
city. The PSNR (in decibels [dB]) was calculated as follows:

PSNR ¼ 20 log10
255

RMSE

� �
; ð1Þ

Where

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x¼1

512 P
y¼1

512

f x;yð Þ−g x;yð Þð Þ2

5122

vuuut
; ð2Þ

and where RMSE stands for root-mean-square error and
f(x, y) and g(x, y) are the pixel values in the original and
compressed images, respectively.

HDRVDP
The HDRVDP, which is publicly available [33, 35], is an
extension of Visual Difference Predictor [36], one of the
most widely used perceptual metrics simulating individ-
ual components of the HVS. Because modern medical
display systems are significantly brighter than general-
purpose displays, the HDRVDP, which covers a wide
range of luminance, is likely suitable for medical applica-
tions. The HDRVDP has been reported to accurately re-
produce radiologists’ perception of compression artifacts
in CT images [5, 14–17, 37].
The HDRVDP takes two images as input and then out-

puts a probability-of-detection map in which the pixel
value indicates the probability, ranging from 0 to 1, that
an observer viewing the two images will detect the differ-
ence at that pixel location. The map was summarized into
a single value representing the overall perceptual image fi-
delity using the Minkowski metric [38] as follows:

HDR−VDP ¼
X
u

X
v

p u; vð Þβ
n o !1

β

; ð3Þ

where p(u, v) is the probability-of-detection map. β
was set to 2.4 according to the results of previous
studies [18].
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