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ABSTRACT The draft genomes of green-colored Chlorobium phaeovibrioides
GrKhr17 and brown-colored Chlorobium phaeovibrioides BrKhr17, green sulfur bacte-
ria with gas vesicles isolated from Lake Bolshye Khruslomeny, are presented. These
sequences contribute to genomic analyses of the Chlorobiaceae family that are part
of ongoing research seeking to better understand their ecosystem-specific adapta-
tions.

Meromictic lakes along the White Sea region harbor many populations of green
sulfur bacteria (GSB) that offer a great opportunity for study diversity in exam-

ining the evolution of green- and brown-colored types of GSB (1–4). The green-colored
strain GrKhr17 and brown-colored strain GrKhr17 of GSB (Fig. 1) were isolated from the
chemocline of the meromictic Lake Bolshye Khruslomeny (Oleniy Island, Kovda Inlet,
Kandalaksha Gulf, White Sea). The strains were maintained using a recently described
medium (5) with sodium bicarbonate (1.5 g liter�1) and sodium sulfide (0.5 g liter�1) at
20 to 25°C in light (2,000 lx) under anaerobic conditions. The main pigment of strain
GrKhr17 was bacteriochlorophyll (BChl) d, and the main pigment of strain BrKhr17 was
BChl e. The pigments were determined in a 50% glycerol cell suspension using a
spectrophotometer (SF-56A, OKB Spectr). A particular feature of the strains was the
presence of gas vesicles, which are absent in Chlorobium phaeovibrioides DSM 269T and
Chlorobium phaeovibrioides DSM 265 (6, 7).

DNA was purified from the bacterial colonies grown in the semisolid medium
described earlier, and under the same conditions, using the cetyl trimethylammonium
bromide (CTAB) method (8). A NEBNext Ultra DNA library prep kit (New England Biolabs,
USA) was used to prepare fragment libraries for genome sequencing. Sequencing was
undertaken using the Illumina HiSeq 1500 platform with single-end 250-bp reads. A
total of 404,903 and 432,293 reads were obtained from GrKhr17 and BrKhr17, respec-
tively. Low-quality reads were trimmed using a Trimmomatic v. 0.36 (9) with default
settings. Subsequently, the quality-filtered reads were de novo assembled with SPAdes
v. 3.12.0 using default settings (10). The final draft genome assembly of GrKhr17
contained 40 scaffolds, covering a total of 1,959,778 bp, with an L50/N50 value of
4/187,559, a G�C content of 52.73%, and an average sequence coverage of 33�. The
final draft genome assembly of BrKhr17 contained 67 scaffolds, covering a total of
2,094,018 bp, with an L50/N50 value of 5/161,558, a G�C content of 53.04%, and an
average sequence coverage of 31�. Identification of the protein-coding sequences and
primary annotation were performed using the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP v. 4.7) (11), which identified 1,910 genes, 1,817 protein-coding se-
quences, 46 pseudogenes, and 51 RNA genes for strain GrKhr17, and 1,994 genes, 1,876
protein-coding sequences, 67 pseudogenes, and 51 RNA genes for strain BrKhr17.
Functional annotation of the protein-coding genes was performed using BlastKOALA
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(12) and supported with BLASTp (E value � 1e-20) (13) searches against the NCBI
nonredundant protein database.

The 16S rRNA sequence analysis using the nucleotide BLAST (13) revealed that
GrKhr17 and BrKhr17 share 99.93% and 99.87% similarity, respectively, with Chlorobium
phaeovibrioides DSM 265 (GenBank accession number CP000607). The average nucle-
otide identity (ANI) and digital DNA-DNA hybridization (dDDH) values were calculated
using the ANI calculator from the Kostas lab (http://enve-omics.ce.gatech.edu/ani) (14)
and the Genome-to-Genome Distance Calculator (GGDC) v. 2.1 (http://ggdc.dsmz.de/
ggdc.php) (15), respectively. In comparison with Chlorobium phaeovibrioides DSM 265,
the ANI values of strains GrKhr17 and BrKhr17 were 99.1% and 99.0%, and the dDDH
values were 91.7% and 90.6%, respectively. The calculated values exceeded the pro-
posed species boundary values for species delineation (ANI � 95 to 96%, dDDH � 70%)
(16), which suggests that strains GrKhr17 and BrKhr17 are novel strains of the known
species Chlorobium phaeovibrioides.

The genomes of Chlorobium phaeovibrioides GrKhr17 and BrKhr17 contain the gvp
gene cluster (17), which encodes proteins that are involved in gas vesicle biogenesis
(18). The genome of Chlorobium phaeovibrioides BrKhr17 contains the BChl e gene
cluster (19), which includes BChl e biosynthesis genes bciD and bchF3, as well as the
cruB gene, which is responsible for the biosynthesis of isorenieratene (20). Chlorobium
phaeovibrioides GrKhr17 does not possess the BChl e gene cluster. Both announced
genomes lack genes of the sox system for thiosulfate oxidation. Sequencing and
analysis of these bacteria revealed genomic determinants of the particular phenotype
of new strains of Chlorobium phaeovibrioides from Arctic meromictic lakes.

Data availability. These whole-genome projects have been deposited in DDBJ/
ENA/GenBank under the accession numbers RXYJ00000000 (Chlorobium phaeovibri-
oides GrKhr17) and RXYK00000000 (Chlorobium phaeovibrioides BrKhr17). The versions
described in this paper are RXYJ01000000 and RXYK01000000, respectively. Raw se-
quence reads are available under the SRA accession numbers SRR9141222 (Chlorobium
phaeovibrioides GrKhr17) and SRR9141223 (Chlorobium phaeovibrioides BrKhr17).
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FIG 1 Color of the cultures of Chlorobium phaeovibrioides strains BrKhr17 and GrKhr17.
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