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In situ interfacial architecture
of lithium vanadate-based cathode
for printable lithium batteries

Zhuangzhuang Wang,1,5 Wenwei Sun,1,5 Dejian Tang,1,5 Weilin Liu,1 Fancheng Meng,1,2 Xiangfeng Wei,3

and Jiehua Liu1,2,4,6,*

SUMMARY

Most Li3VO4 anodes are obtained by pre-architecture methods in which
Li3VO4 anode materials are prepared with more than six key processes
including high-temperature annealing and long preparation time. Herein, we
propose an in situ post-architecture strategy including Li3VO4-precursor solu-
tion (ink) preparation and then annealing at 250�C. The integrated Li3VO4

based electrode not only possesses good electrical conductivity and porous
microstructure but also has superior stability because of Cu anchoring and in-
clusion by in situ catalysis. The integrated electrode demonstrates a high
reversible capacity (865 mA h g�1 at 0.2 A g�1) and good cyclability (100%
capacity retention after 200 cycles at 1 A g�1). More importantly, the post-
architecture electrode has a high energy density of 773.8 Wh kg�1, much
higher than reported Li3VO4-based materials, as well as most cathodes.
Therefore, the electrode could be used to the printable cathode of low-
voltage high-energy-density lithium batteries.

INTRODUCTION

Metal vanadates have caused wide interest because of their low cost, high specific capacity, and electric-

neutrality structures for lithiation/delithiation (Ni et al., 2019; Liu et al., 2019). Compared to commercial

graphite and lithium titanate, lithium-rich vanadates have attracted much attention due to low volume

swelling and stable cycling, safe working potential, and high energy density (Mo et al., 2017; Liao et al.,

2017; Liang et al., 2020). Very recently, disordered rock salt Li3V2O5 was synthesized by V2O5 lithiation,

which exhibits reversibly cycle two Li ions with a specific capacity of 266 mA h g�1(Liu et al., 2020a).

Li3VO4 possesses the desired Li+ insertion potential and a high theoretical capacity of 394 and 593 mA h

g�1 when two and three electrons transfer, respectively (Xu et al., 2019; Liang et al., 2015). Peapod-like

Li3VO4/N-doped carbon nanowires were synthesized through a morphology-inheritance route, displaying

a high reversible capacity of about 400 mA h g�1 at 0.1 A g�1 (Shen et al., 2017b). Deflated balloon-like

Li3VO4/C/reduced graphene oxide (LVO/C/rGO) microspheres were prepared by the ‘‘double-carbon

decoration’’ strategy for improving their electrical conductivity and enduring 20% volume swelling when

deep discharging/charging (Liu et al., 2018). LVO/C/rGO exhibited a high intercalation capacity of

591 mA h g�1 under discharging/charging range of 0.02–3.0 V.

However, most of Li3VO4 anodes are obtained by pre-architecture methods in which anode materials are

prepared at high temperatures in advance, and then the electrodes are constructed (Scheme S1).(Shen

et al., 2017a; Chen et al., 2015; Li et al., 2015) Pre-architecture methods are common routes for prepar-

ing electrodes of energy storage devices, but there are more than six key processes to obtain the elec-

trodes with a long time of 2–3 days including solvothermal process/annealing, separating, drying, mill-

ing, stirring, coating, vacuum drying, and so on. The preparation processes are not only complex but

also high energy consumption. The annealing temperatures are often higher than 500�C (Iwama

et al., 2016; Huang et al., 2019). On the other hand, Li3VO4-based electrodes are often used as an anode

in lithium-ion batteries (Zhang et al., 2016b; Qin et al., 2019). Their potential applications have been ne-

glected as cathodes in lithium batteries. Low-voltage lithium batteries will have more and more market

demand with the development of small electronic components and devices, but they require a high en-

ergy density.
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Herein, we proposed a post-architecture strategy including Li3VO4-precursor-solution (ink) preparation

and annealing at 250�C for 1-3 hr (Scheme S1). The integrated Li3VO4-based electrode was obtained

with good electrical conductivity and porousmicrostructure, which can endure 1000-time bending because

of the in situ catalysis of interfacial Cu to Cu(I) and Cu(II) anchoring Li3VO4. Moreover, the preparation time

is reduced from 48 hr to less than 4 hr. As cathode, the integrated electrode demonstrated high specific

capacity (higher than 865 mA h g�1 at 200 mA g�1) and good cyclability with 100% capacity retention

(547 mA h g�1 after 200 cycles at 1,000 mA g�1). More importantly, the integrated Li3VO4 based electrode

has a higher energy density (773.8 Wh kg�1) than the most reported cathodes (500-700 Wh kg�1) and could

be used as a potential cathode in printable high-energy-density lithium batteries.

RESULTS

Post-architecture of integrated Li3VO4 based electrodes

Figure 1A is a schematic illustration of an integrated Li3VO4-based electrode. First, the Li3VO4 precursor

solution was obtained by mixing the V2O5 and LiOH in an H2O solution. After a few-layer graphene so-

lution was added, the ink was formed when part of the solvent (H2O) is evaporated. Then the ink could

be coated or printed on Cu foil and then the integrated Li3VO4-based electrodes (post-LVO-air and

post-LVO-N2) were obtained after facile annealing at 250�C in the air (Figure S1) and 300�C in N2,

respectively. If no otherwise specified, the above-obtained samples are named post-LVO-air and post-

LVO-N2.

To test the stability of copper foil, bare Cu foils were annealed at different temperatures from 20 to 300�C in

the air (Figure 1B). The surface of the copper foil is not oxidized significantly below 150�C because of no

color change, while the surface of the copper foil is slightly oxidized when annealed at 200 and 250�C.
The copper foil is oxidized significantly when annealing at 300�C. The copper foil is oxidized significantly

and its color turns gray on the surface. The result was also supported by their resistance variation (Fig-

ure S2). The resistance of Cu foil annealed at 300�C has increased greatly. Therefore, wemainly characterize

the post-LVO-air at 250�C. Figure 1C shows the post-LVO-air electrode is highly stable because no active

Figure 1. Integrated Li3VO4-based electrodes

(A) Schematic illustration of the electrode.

(B) Micrographs and photographs (inset) of Cu foils annealed at 20, 200, 250, 300�C. Scale bar, 200 mm.

(C) The bend test of the post-LVO-air electrode obtained by post-architecture before bending and after bending 1,000

times.

(D) The bend test of the pre-LVO electrode obtained by pre-architecture before and after 1-cycle winding.
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materials fall off after 1000-time bending with a curvature radius of 3 mm. Video S1 is the bend test of the

post-LVO-air electrode related to Figure 1. However, the pre-LVO, which was pure Li3VO4 obtained at

300�C in N2, was peeled off easily from Cu foil when first bending in Figure 1D.

Morphologies and elemental analysis

The morphologies of Li3VO4-based electrodes were characterized by field emission scanning electron mi-

croscopy (FESEM), transmission electron microscopy (TEM), and scanning transmission electron micro-

scopy (STEM). Figures 2A and 2B show FESEM images of post-LVO-air, which has two-dimensional

Li3VO4/G nanosheets and flower-like Li3VO4 on the surface. Flower-like Li3VO4/G could offer high electron

conduction, endure the volume swelling when lithium storage, and facilitate the contact of the electrolyte

with the electrodes. Figure S3 shows the post-LVO-N2 has a similar morphology to that of post-LVO-air.

Figure 2C is a TEM image of post-LVO-air which indicates that the porous structure was formed by stacked

Li3VO4 nanocrystals supporting each other. Figure 2D is the HRTEM image of post-LVO-air that shows the

Li3VO4 plane is (002) with a lattice space of 0.249 nm. STEM image also supports the non-solid-core flower-

like Li3VO4 microsphere (Figure 2E). Figures 2F–2H are V, O, and Cu mappings of post-LVO-air. V and O

atoms have a uniform dispersion in flower-like Li3VO4, suggesting Li3VO4 is the main composition on the

Figure 2. Morphologies and elemental analysis

(A) FESEM image of integrated Li3VO4 based electrode. Scale bar, 2 mm.

(B) Enlarged FESEM image of integrated Li3VO4-based electrode. Scale bar, 200 nm.

(C) TEM image of integrated Li3VO4-based electrode. Scale bar, 200 nm.

(D) HRTEM image of integrated Li3VO4-based electrode. Scale bar, 1 nm.

(E) STEM image of integrated Li3VO4-based electrode. Scale bar, 200 nm.

(F) V elemental mapping of integrated Li3VO4-based electrode.

(G) O elemental mapping of integrated Li3VO4-based electrode.

(H) Cu elemental mapping of integrated Li3VO4-based electrode.
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surfaces. Interestingly, Cu atoms have a uniform dispersion, as well as V and O atoms, indicating V2O5 or

lithium vanadate could catalyze Cu to Cu ions which were incorporated in Li3VO4 electrode.

Structures and composition properties of Li3VO4 based electrodes

Powder X-ray diffraction (XRD) is used to investigate the crystal structures and components of Li3VO4-

based electrodes including pre-LVO, post-LVO-N2, and post-LVO-air. In Figure 3A, pre-LVO has the char-

acteristic peaks of orthorhombic Li3VO4 (PDF#38-1,247) (Zhang et al., 2016c). Post-LVO-N2 has the same

peaks as the post-LVO-air. The peaks of post-LVO-N2 at 26.53
� is corresponding to the (002) peak of the

graphitized carbon (Wang et al., 2018a). Moreover, the diffraction peaks at 16.45�, 21.67�, and 22.98� are
assigned to (100), (110), and (011) planes of Li3VO4, which has smaller lattices than that of post-LVO-air

at 16.26�, 21.52�, and 22.80�(Zhang et al., 2016a; Wang et al., 2018b). The cell volume of post-LVO-air in-

creases, which was caused by Cu ion doping. There is a shift of (110) peak from 21.56 (post-LVO-N2 and

pre-LVO) to 21.52� for post-LVO-air (Figure S4). Moreover, there is crystal-oriented growth along <011 >

direction because of I011/I110 ratio of 1.04 for post-LVO-air, larger than that of 0.45 for pre-LVO. However,

there are no peaks for CuO or Cu2O crystals.

Raman spectra were tested to investigate the structural features of pre-LVO and post-LVO-air. In Figure 3B,

the peak at 1,352 cm�1 is assigned to defects and disorder (D band) of graphene in the post-LVO-air. The

strong peak at 1,582 cm�1 is related to the vibration of the sp2 bond as same as graphite (G band). The peak

intensity ratio (ID/IG) is 0.35 indicating that the few-layer graphene has fewer defects and can be used as the

conductive reagent. Raman spectra were tested to analyze the stretching and bending vibration of VO4
3�

anions. The band appearing at about 821 cm�1 is attributed to symmetric stretching of (VO4
3�), whereas

the band at around 786 cm�1 is assigned to asymmetric stretching of (VO4
3�) (Yang et al., 2018).

X-ray photoelectron spectroscopy (XPS) was employed to analyze the chemical composition and surface

chemical bonding state of post-LVO based electrodes. In Figure 3C, XPS survey spectra show that Cu,

O, V, and C elements can be recognized in post-LVO-air, while O, V, and C elements were indexed in

Figure 3. Structures and composition properties of Li3VO4-based electrodes

(A) XRD patterns of pre-LVO, post-LVO-N2, and post-LVO-air.

(B) Raman spectra of pre-LVO and post-LVO-air.

(C) Full XPS spectra of post-LVO-N2 and post-LVO-air.

(D) Fitted Cu2p3/2 XPS spectra of post-LVO-air.
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post-LVO-N2 (Zhou et al., 2017). Post-LVO-air has a Cu content of 2.0 atom%. We think that V2O5 could in

situ catalyze Cu (0) to Cu(II) or Cu(I) on the surface of Cu foil which not only strongly rivet Li3VO4 on Cu foil

but also doped into the lattices of Li3VO4. The high-resolution Cu 2p3/2 spectrum was fitted into two peaks

that correspond to Cu(II) (933.0 eV) and Cu(I) (435.0 eV), which also were supported by the satellite peak at

941.8 and 944.2 eV (Figure 3D).(Pei et al., 2017; Ma et al., 2008) High-resolution V 2p spectrum corresponds

to V(V) in VO4
3� at 517.3 eV (Figure S5). In Figure S6, the fitted O 1s peaks at 530 and 532 eV are ascribed to

Cu-O/V-O and adsorbed oxygen and C-O, respectively.

Figure S7 shows the results of cyclic voltammetry (CV) tests of post-LVO-N2 at a scan rate of 0.5 mV s�1 for

the first five cycles. The initial discharge profile is different from the followed cycles because of the forma-

tion of SEI film at 0.65 V (Ren et al., 2020). In the third to fifth cycles, two reduction peaks around 0.9 and 0.5 V

are attributed to the corresponding reduction of V5+ to V3+ and Li+ insertion into the anode (Liu et al., 2018).

The oxidation peak centered at about 1.3 V is attributed to the Li+ extraction and the oxidation of V3+ to

V5+(Hu et al., 2016). Figure S8 is the CV curves of pre-LVO with a similar test condition. Because the pre-

LVO was dried at 120�C, there are a pair of weak redox peaks at 2.6 and 1.7 V indicating Cu(II) was involved

in the electrochemical test.

Electrochemical performance of Li3VO4-based electrodes

Figures 4A and 4B shows the typical galvanostatic discharge-charge curves of post-LVO-N2 at 200 mA g�1

within the potential window of 0.01–3 V. The post-LVO-N2 has discharge capacities of 695.1 and 494 mA h

g�1 for the first and third cycles, which is perfectly in consistence with the CV measurements. However, the

pre-LVO electrode only has capacities of 557 and 254.1 mA h g�1, much less than these of post-LVO-N2.

The post-LVO-N2 and pre-LVO electrodes are tested at low and high rates to investigate their cycling per-

formance. Figure S9 exhibits excellent cycle performances at a current density of 200 mA g�1. Post-LVO-N2

delivers a high reversible capacity of 482.4 mA h g�1 after 100 cycles, the capacity retention is 100%

compared to that in the fifth cycle. Moreover, the Coulombic efficiency approaches 100% after activation

in the first five cycles.

After 3 cycles activation at 0.5 A g�1, there is a capacity of 258.4 mA h g�1 at a high rate of 2 A g�1 in Figure S10.

The capacity is still 234.6mA h g�1 with a capacity retention of 91% after 600 cycles. Different rate performances

are also provided in Figure 4C. There are the retention capacities of 478.8, 390.2, 317.9, 254.5, 211.9, and 464.2

mA h g�1 for post-LVO-N2, much higher than the capacities of 298.9, 240.0, 178.7, 119.3, 91.4, and 313mA h g�1

for pre-LVOat 0.2, 0.5, 1, 2, 4, and 0.2 Ag�1, respectively.Wenote that Cu ions could bedoped into LVO to form

Li3CuxVO4+x with an improved capacity when annealing in air.

Therefore, we in situ synthesized the post-LVO-air electrodes at 200, 250, and 300�C. Figure S11 shows the CV

curve of the post-LVO-air obtained at 200�C. The weak oxidation peak at 2.6 V shows a little Cu inclusion

contribute to the capacity of the electrode. The result is supported by its charge-discharge curves, indicating

that the capacities are only 631.8 and 424.7 mA h g�1 in the first and third cycles (Figure S12). Figure 4D shows

the post-LVO-air obtained at 250�Chas a strong oxidation peak at 2.6 V, indicatingCu inclusion in the post-LVO-

air electrode. In Figure 4E, its capacities are 1,377 and 865.4 mA h g�1 in the first and third cycles, much higher

than those of post-LVO-air obtained at 250�C. However, the oxidation peak at 2.6 V becameweak when anneal-

ing at 300�C (Figure S13). The capacities of post-LVO-air obtained at 300�C are 1,457 and 662 mA h g�1 in the

first and third cycles (Figure S14). That is, the post-LVO-air electrode has the highest reversible capacity when

annealing at 250�C. The rate performances of post-LVO-air electrodes are also tested at different temperatures

in Figure 4F. The retention capacities of 810.4/759.1, 684.2/651.8, 576.2/533.4, 456.3/418.8, 334.6/295.7, 861.8/

807.1 mA h g�1 for post-LVO-air obtained at 250/300�C at 0.2, 0.5, 1, 2, 4, and 0.2 A g�1, respectively, much bet-

ter than those of pre-LVO and post-LVO-N2.

The resistances of the batteries are elucidated by electrochemical impedance spectra (EIS). The first semi-

circle in the high-frequency region is related to the impedance of Li ions through the passivation layer on

the active material surface (solid-electrolyte interface). In Figure 4G, the post-LVO-air obtained at 250�C
has smaller charge-transfer impedances than those of post-LVO-air electrodes obtained at 200 and

300�C according to the first semicircle. After 10 cycles, the impedance becomes smaller than the post-

LVO-air based fresh cell (Figure S15). To test their high-rate performance, the post-LVO-air obtained at

250�C was activated at 0.5 A g�1 and tested in long-time performance at 1 A g�1. In Figure 4H, the elec-

trode exhibits excellent cycling performance with Coulombic efficiency of 100% at a high rate of 1 A
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g�1. There is still a high capacity of 546.9 mA h g�1 after 200 cycles, a little higher than the capacity of 538

after activation in the sixth cycle.

The energy densities were calculated with LVO based electrode as the cathode in lithium batteries. In Fig-

ure 4I, the energy densities are provided for pre-LVO, post-LVO-N2, post-LVO-air obtained at 200, 250, and

Figure 4. Electrochemical performance of Li3VO4-based electrodes

(A) Charge-discharge curves of pre-LVO at 0.2 A g�1.

(B) Charge-discharge curves of post-LVO-N2 at 0.2 A g�1.

(C) Rate performance of pre-LVO and post-LVO-N2 at 0.2–4 A g�1.

(D) CV curves of post-LVO-air obtained at 250�C in the air at a scan rate of 0.5 mV s�1.

(E) Charge-discharge curves of post- LVO-air at 0.2 A g�1.

(F) Rate performance of post-LVO-air electrodes at 0.2–4 A g�1.

(G) Nyquist plots of post-LVO-air electrodes.

(H) High-rate performance of post-LVO-air electrodes at 1 A g�1

(I) Energy densities of pre-LVO, post-LVO-N2, and post-LVO-air electrodes.
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300�C. The pre-LVO has energy densities of 132.2 and 130 Wh kg�1 at the first and third cycles, which is not

suitable for cathode electrodes, less than the theoretical energy density of 271 Wh kg�1 for Li4Ti5O12. The

post-LVO-N2 has a high energy density of 397.2 and 323.2 Wh kg�1 at the first and third cycles, but lower

than LiMn2O4 (�560 Wh kg�1) and LiFePO4 (�578 Wh kg�1)(Yu et al., 2015). More importantly, the post-

LVO-air obtained at 250�C has achieved high energy densities of 1,139 and 773.8 Wh kg�1, higher than

post-LVO-air obtained at 200 and 300�C as well as the most of cathodes including high-voltage LiVPO4F

(660 Wh kg�1-) and LiNi0.5Mn1.5O4 (700 Wh kg�1) (Xue et al., 2020; Wu et al., 2014). Therefore, the post-

LVO-air obtained at 250�C has great potential in low-voltage lithium batteries. Figure S16 shows post-

LVO-air based batteries have a specific capacity of 664.4 mA h g�1 and an energy density of 732.4 Wh

kg-1 with a cut-off voltage of 0.5 V.

It should be pointed out that the capacity of pre-LVO-air is much higher than the theoretical capacities

(394 and 593 mA h g�1) of Li3VO4 for two and three electrons transfer, as well as the most reported works

(Table S1).(Liao et al., 2018; Shen et al., 2017a, 2017b; Xu et al., 2019; Ren et al., 2020; Liu et al., 2020b;

Huang et al., 2019; Qin et al., 2019) We infer that the Cu ions contribute part of the capacity because

Cu(0) was catalyzed to Cu(I) and Cu(II) to form Cu-inclusion LVO (Scheme S2). On the other hand, the

surface of Cu foil becomes rougher after Cu surface oxidation which is supported by FESEM image

and Cu mapping on the cross-section image of the electrode in Figure S17, and strong Cu-O-V bondings

could be formed on the interface of Cu foil, by which Cu-inclusion LVO could be firmly fixed to the cop-

per foil and enhance its cycling performance. The possible reason for improved performance is due to

the capacity of copper oxide which may be an amorphous structure in the electrode. Moreover, copper

oxide microregions exist on the Cu foil which could anchor the LVO based electrode film and further

improve the stability and rate performance.

DISCUSSION

In summary, the integrated Li3VO4 based electrode was successfully synthesized by the post-architecture

strategy including Li3VO4-precursor ink and then annealing at 250�C for 1-3 hr. The preparation time is

shortened to�4 hr, much less than 48-72 hr in pre-architecturemethods. The integrated Li3VO4 based elec-

trode exhibits good electrical conductivity and superior stability, which could endure 1000-time bending

because of Cu anchoring and inclusion in Li3VO4 electrode by in situ catalysis. Importantly, the integrated

electrode demonstrated good cyclability at high rates and high specific reversible capacity (two times as

the theoretical capacity of Li3VO4). More importantly, the post-LVO-air obtained at 250�C possesses

high energy densities of 1,139 and 773.8 Wh kg�1 in the first and third cycles, respectively, much higher

than pre-LVO, post-LVO-N2, as well as most of the cathodes. We think the post-LVO-air could be used

as the cathode for printable low-voltage high-energy-density lithium batteries due to facile postarchitec-

ture and excellent electrochemical performance.

Limitations of the study

This work focuses on lithium vanadate based cathode by in situ interfacial architecture for printable lithium

batteries. The integrated electrode demonstrates a high reversible capacity, good cyclability, and a high

energy density owing to good electrical conductivity, porous microstructure, and superior stability.

Because Cu foil is used as the substrate, we cannot get the precise data of Cu content in the electrode

by XPS and Cu mapping characterizations which is a limitation of the work. The electrode capacity is not

accurate due to the uncertain Cu ions content. The authors encourage the researchers who are interested

in the related work to propose new methods and routes to improve the performance of printable lithium

batteries.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Jiehua Liu (liujh@hfut.edu.cn).

Materials availability

All unique reagents generated in this study have been deposited to the Lead Contact without restriction.

Data and code availability

All of the data supporting this study has been shown in the article and supplemental information. Other

related data are available from the corresponding author upon reasonable request.

METHOD DETAILS

Preparation of LVO based electrodes

In a typical post-architecture route, 5 mmol V2O5 and 30 mmol LiOH$H2O were added into 20-40 mL

distilled water to form a clear yellow solution. The ink was formed after 20 wt% graphene paste was added

and evaporated to remove �70% water. The post-LVO-air electrodes were obtained when the ink was

coated or printed on Cu foils and then annealed at 200-300�C. The post-LVO-N2 electrodes were obtained

at the same condition unless annealed at N2 and 200-400�C.

By doing a contrastive experiment, the pre-LVO electrode was obtained by the pre-architecting route.

5 mmol V2O5 and 30 mmol LiOH$H2O were added into 40 mL distilled water to form a clear yellow solution.

After removing the water, the white powder (Li3VO4) was obtained after annealing at 300�C for 10 hr and

milling for 2-3 hr. The Li3VO4/G paster was formed after graphene was added and milled for enough time.

The pre-LVO electrode was obtained after coating on Cu foil and drying at 100�C for 24 hr. The mass

loading is 1.5–2 mg cm�2 in the electrode.

Characterization

XRD patterns were performed with a D/MAX2500V diffractometer with Cu-Ka radiation (l = 1.54056 Å).

FESEM images were collected by SU8020 (HITACHI). TEM images and elemental mappings were collected

using a JEM 2100F with an HAADF-STEM detector and an Oxford EDS. XPS (ESCLAB250) measurements

were carried out by using a monochromated Al Ka X-ray source at the power of 150 W. Raman spectra

were collected by employing Lab Raman HR Evolution.

Electrochemical measurements

Electrochemical measurements were carried out in lithium-LVO cells at room temperature. Electrochemical

tests were using coin cells (CR2032) with 1 mol/L LiPF6 in EC/DMC (1:1 by volume) as an electrolyte, lithium

foil as counter and reference electrodes, and LVO based electrodes as cathodes. All cells were assembled

in the Ar-filling glove box. Cyclic voltammograms (CV, 0.01–3 V) curves were measured at a scanning speed

of 0.5 mV s�1 by electrochemical workstations (DH7000 and CHI760E). The EIS measurements were per-

formed with a 5 mV s�1 voltage amplitude over a frequency range of 0.02 Hz–100 kHz. Galvanostatic

charge/discharge curves and cycling performance were conducted using a battery tester (Neware

CT4008) at different current rates of 0.2 A g�1 to 4 A g�1. Energy density was calculated based on the in-

tegral area of the discharge curve at different cut-off voltages.

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Lithium peroxide monohydrate Sinopharm Chemical Reagent Co. Ltd CAS1310-66-3

Vanadium pentoxide Alfa Aesar CAS 1314-62-1
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