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INTRODUCTION
Although individuals with congenital or acquired 

facial conditions may present with abnormalities across 
a spectrum of severity, even relatively subtle differences 
can result in considerable psychosocial impact.1 However, 
because a sensitive, objective, and universally accepted 
method of measuring facial deformity does not currently 
exist, there is also a lack of reliable means to assess the 

benefits of reconstructive facial surgery. Most medical 
practitioners are able to plan and evaluate their treat-
ments based on some combination of laboratory val-
ues, functional measures, or radiologic and pathologic 
findings. Facial reconstructive surgeons, however, are 
resigned to working almost exclusively with subjective 
assessments (ie, examining “before and after” photo-
graphs) or anthropometric measurements that may not 
faithfully reflect the complexity of human perception of 
facial appearance.

For the purposes of clinical evaluation and compari-
son of outcomes, it would be useful to create a scale of 
deformity across broad populations against which any 
face—and any facial disorder—could objectively be mea-
sured. It is challenging, however, for human raters to 
establish a gradient of facial form. Sorting through large 
numbers of faces requires the recognition and active 
retention of vast amounts of perceptual information, 
something better suited to a machine system than to the 
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Abstract

Background: A sensitive, objective, and universally accepted method of measuring 
facial deformity does not currently exist. Two distinct machine learning methods 
are described here that produce numerical scores reflecting the level of deformity 
of a wide variety of facial conditions.
Methods: The first proposed technique utilizes an object detector based on a cas-
cade function of Haar features. The model was trained using a dataset of 200,000 
normal faces, as well as a collection of images devoid of faces. With the model 
trained to detect normal faces, the face detector confidence score was shown to 
function as a reliable gauge of facial abnormality. The second technique developed 
is based on a deep learning architecture of a convolutional autoencoder trained 
with the same rich dataset of normal faces. Because the convolutional autoencoder 
regenerates images disposed toward their training dataset (ie, normal faces), we 
utilized its reconstruction error as an indicator of facial abnormality. Scores gener-
ated by both methods were compared with human ratings obtained using a survey 
of 80 subjects evaluating 60 images depicting a range of facial deformities [rating 
from 1 (abnormal) to 7 (normal)].
Results: The machine scores were highly correlated to the average human score, 
with overall Pearson’s correlation coefficient exceeding 0.96 (P < 0.00001). Both 
methods were computationally efficient, reporting results within 3 seconds.
Conclusions: These models show promise for adaptation into a clinically accessible 
handheld tool. It is anticipated that ongoing development of this technology will facil-
itate multicenter collaboration and comparison of outcomes between conditions, 
techniques, operators, and institutions. (Plast Reconstr Surg Glob Open 2022;10:e4034; 
doi: 10.1097/GOX.0000000000004034; Published online 18 January 2022.)
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human mind. In addition, human appraisal is influenced 
by personal or cultural preferences, as well as cognitive 
biases based on factors such as age, gender, race, and 
professional background. Here, we describe two com-
puter models that integrate data from an extensive and 
diverse population of normal faces and are able to then 
score any newly encountered facial image in an impartial 
and predictable manner. Being able to determine where 
a particular face falls within the spectrum of normality 
is an essential task for the facial reconstructive surgeon, 
and one that until now has relied almost exclusively on 
intuition.

Previously, our team used a generative adversarial 
network facial generator2 to produce authentic, normal-
ized analogues of raw facial images exhibiting deformity. 
The model we developed was also able to calculate the 
perceptual distance between the normalized face and 
its raw abnormal counterpart, yielding scores that cor-
related closely with the human ratings of deformity.3 
However, because that method turns out to be com-
putationally inefficient, it does not lend itself easily to 
adaptation into a portable application for clinical use. 
In the current report, we propose two alternative design 
approaches that avoid the steps of image normalization 
and perceptual distance measurement, and thus require 
less processing power: (1) an object detector model 
based on an ensemble of boosted Haar Cascade classi-
fiers, relying on the confidence level of the system to 
discriminate gradations of abnormality, and (2) a convo-
lutional autoencoder model, relying on the reconstruc-
tion error of the model as an indicator of deviation from 
the norm. Similar to our earlier method, both the object 
detector and the convolutional autoencoder models are 
shown here to generate facial scoring of a wide variety 
of facial conditions that correlates closely with human 
scoring. Moreover, we demonstrate that the object detec-
tor approach can be tuned to not only holistically evalu-
ate a face, but to judge discrete aesthetic units within a 
face, thereby potentially enhancing sensitivity to subtle 
differences in the orbital, nasal, and oral regions. Placing 
this type of technology into the hands of the clinician 
in the future could usher in a paradigm shift in the way 
patients, surgeons, researchers, and third-party payers 
interpret the clinical problem of facial deformity and the 
potential benefits of corrective surgical intervention.

METHODS

Data Preparation
An estimated 200,000 images of normal faces were 

used to train both the object detector and the convolu-
tional autoencoder. We produced these images using the 
StyleGAN facial image generator, which fabricates highly 
realistic facial images that are demographically well dis-
tributed and reflect a range of lighting, pose, and expres-
sion (Fig. 1).2 All images used in this study were in RGB 
mode and scaled to a common size of 224 × 224 pixels to 
align with our lower resolution testing dataset.

For the training of the object detector, a second group 
of negative (ie, nonface) images was required. For this, 

we used the Canadian Institute for Advanced Research 
100 dataset, which consists of 100 classes of images (600 
images per class).4 We excluded all facial classes from the 
dataset, leaving only objects such as nature, fruits, vegeta-
bles, electrical devices, and buildings. In total, this nega-
tive training group consisted of 47,500 images.

Both measurement techniques that we developed 
were tested using 30 open-source images of facial defor-
mity (licensed for re-use under the Creative Commons, 
Mountain View, Calif.), as well as 30 normal faces fabri-
cated with the StyleGAN (unique from the 200,000 normal 
faces used in the training phase). The 30 images depicting 
deformity included 12 women, 12 men, and six infants 
of indeterminate gender seven adults, 23 children; and a 
diversity of ethnic backgrounds as outlined in the Results 
section. Eighty volunteers aged 18–65 rated the 60 images 
on a 1–7 Likert scale (1: most deformed, 7: most normal).

Object Detector Method
We implemented the OpenCV version of the Haar 

Cascade object detector, which has been shown to 
work efficiently and reliably with resource-constrained 
devices.5 The Haar Cascade object detector scans images 
using a sliding window approach, summating pixel data 
in adjacent rectangular areas as it progresses sequen-
tially across an image. A given classifier is defined by the 
measured difference in pixel sums between adjacent 
areas, relative to a determined threshold value. The 
Viola-Jones method6 was applied, computing edge, line, 
and diagonal (four-rectangle) image features to target 
known facial properties (ie, orbital region darker than 
upper-cheeks, nasal bridge brighter than nasal side-
walls, etc.) (Fig. 2). As per the original description, our 
approach involved the use of an adaptive boosting algo-
rithm (AdaBoost)7 that takes weak classifiers and uses 
them to incrementally build a much better, stronger 
classifier by optimizing the weights for, and adding, one 
weak classifier at a time. To enhance the model’s accu-
racy and efficiency, we tuned the hyperparameters of 
image scaling and k-nearest neighbors using a sequential 
grid-search hyperparameter optimization approach.8 
As the Haar process cascaded forward through stages, 
the optimal hyperparameters were obtained for each 

Takeaways
Question: The field of facial reconstruction is hampered 
by the absence of an objective and clinically practical 
means of measuring disease severity and clinical outcome.

Findings: We designed two machine learning models that 
generate a numerical score of normality for any face. The 
models were trained using images of 200,000 normal 
faces, and tested on 30 images reflecting a range of facial 
deformity. The machine-generated data closely correlate 
with scores obtained from a cohort of human raters.

Meaning: Development of these systems will allow for 
a universal and objective means of assessing quality of 
clinical outcome by facilitating a meaningful comparison 
between techniques, surgeons, and institutions.
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cascade for each image, allowing background regions 
to be discarded more quickly and more computational 
attention to be placed on promising areas of the image.

Following the training phase, we derived a confidence 
score for our test images by taking into account the follow-
ing considerations: (1) each weak classifier is essentially 
a one-level decision tree; (2) each decision is associated 
with a threshold value in pixel sums between the adjacent 
rectangular areas of its Haar-feature; (3) the confidence 
score of a single weak classifier is the difference between 
its value and its threshold; and (4) during the AdaBoost 
training stage, each selected weak classifier gets associated 
with a relative weight. Therefore, all weak classifiers in a 

single stage of the cascade can be combined in a weighted 
manner, and the confidence score for each stage can be 
calculated (Fig.  3). Because final strong classifiers are 
determined by weighted majority “voting” of all weak clas-
sifiers, a higher percentage of weak classifiers in favor of 
the presence of a face equates to a higher confidence of 
facial detection [expressed here on a 0 (abnormal) to 10 
(normal) scale)].9

Convolutional Autoencoder Method
We designed an unsupervised anomaly detector based 

on a connected convolutional neural network and autoen-
coder [ie, a convolutional autoencoder (CAE)] that was 

Fig. 1. representative sample of normal faces fabricated by the facial generator (Stylegan) that pro-
vided the 200,000-image training database for both study models.
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trained on images of normal faces and tested on images of 
normal and abnormal faces. The architecture of our CAE, 
which is similar to the VGG16 architecture,10 is depicted 
in Figure 4.

As depicted, the convolutional encoder takes the 
input image and processes it through multiple convolu-
tional encoder layers that reduce the image dimensions 
from [224 × 224 × 3] to [14 × 14 × 512]. The height and 
width of the volumes (image input: [224 × 224] pixels) 
progressively decrease throughout the convolutional 
layers, while the depth, which represents the number of 
feature maps, increases as image features are extracted. 
Following a pooling layer, a one-dimensional vector is 
reached at the fully connected layer. Within the second 
half of the construct, the convolutional decoder receives 
the encoder output and reconstructs it through multiple 

convolutional layers. The convolutional decoder recon-
structs the image by increasing the volume from [14 × 
14 × 512] to the original dimensions of [224 × 224 × 
3]. Similar to VGG16, all convolutional layers in our 
model have 3 × 3 filters. During the training process, 
the CAE learns the forming features of the input nor-
mal images, as the autoencoder model learns the param-
eters required to minimize the reconstruction error of 
output versus input. The score of the reconstruction 
error is derived from a calculated cost function (Fig. 5) 
expressed on a 0 (normal) to 1 (abnormal) scale, where 
XTR denotes the training set. During testing, the recon-
struction error should be small for normal facial images 
having similar forming representations as the training 
dataset, while the score should be progressively higher 
for those images displaying more dissimilar facial 
features.

As for the Haar object detector method, we conducted 
a sequential grid-search hyperparameter optimization 
algorithm for the CAE to select the best combination of 
hyperparameters. After running the algorithm, we con-
firmed that the activation function of the internal layers 
is ReLU. The training process was done using 500 epochs 
with stochastic gradient descent, a learning rate of 0.01, 
and a momentum of 0.9.

Experiments were repeated in triplicate and the results 
were reported in terms of the average testing set (XTS) for 
all experiments. For all 60 images of facial deformity that 
we tested, a Pearson correlation was calculated between 
human rating and object detector confidence score, and 
between human rating and CAE reconstruction error. 
Significance was set at a P value less than 0.05.

Both machine learning models described in this study 
were trained and tested using the same machine setup 
using an NVIDIA GeForce RTX 2080 hardware accelera-
tor (NVIDIA, Santa Clara, Calif.) and Python 3.7 (Python 
Software Foundation, www.python.org).

Fig. 2. Training input and example of Haar feature extraction for object detector method. The whole face, as well as defined orbital, nasal, 
and oral aesthetic subunits were considered.

Fig. 3. algorithm used to derive confidence score of Haar cascade 
object detector.

http://www.python.org
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RESULTS
Diagnoses, reference numbers, human ratings, Haar 

Cascade object detector confidence scores, and CAE 
reconstruction errors for eight representative abnor-
mal testing images (open-source and licensed for re-use 
through the Creative Commons) are listed in Figure 6.11–18 
Note that for the object detector method, we were also 
able to obtain individual confidence scores for aesthetic 
subunits of the face.

For all 60 images of facial deformity and normality that 
we tested, a close correlation was found between human 
rating and object detector confidence score (r = 0.96,  
P < 0.00001, Fig. 7), and between human rating and CAE 
reconstruction error (r = 0.98, P < 0.00001, Fig. 8). The 
diagnoses and all human and machine scoring for the 30 
training images are listed in Table 1.

For the Haar Cascade, the average time to report the 
facial rating score for all four facial segments (orbital, 
nasal, oral, and full face) for one image was 3.2 seconds, 
whereas the CAE required 1.2 seconds to report the 
abnormality score for the full face.

DISCUSSION
With recent advancements in artificial intelligence, 

a rich set of computational methods and platforms are 
readily available for use and development.19–21 This pro-
vides a great opportunity for end-users in industries such 
as healthcare who are seeking to match new solutions to 
longstanding problems.22–24 Because the sensitive detection 

and recognition of faces has become almost commonplace 
today, it is inevitable that modern computer methods be 
adapted for use in the evaluation of faces within the clini-
cal setting. Our intention in this work was to construct a 
universal facial rating system that would align with human 
perception, and offer itself as an objective and clinically 
accessible modality for gauging any type of facial impair-
ment and assessing surgical outcomes. However, there are 
some important issues to bear in mind when considering 
the automated judgment of facial appearance.

First, no ground truth exists that can be applied as a ref-
erence standard. The detection and appraisal of percep-
tual difference within a face is inherently an idiosyncratic 
task. Yet, although human ratings may be influenced by 
bias or self-censorship, they also represent highly evolved 
judgments that integrate vast amounts of perceptual 
information within the context of cultural predilections. 
Existing measurement methods that target anatomic land-
marks and focus discretely on factors such as symmetry, 
proportion, or gender averageness are unable to capture 
the holistic information instinctively being processed by a 
human rater.25–32

Another issue that should be considered when measur-
ing faces is the concept referred to as lookism, a form of 
social discrimination that has been widely discussed else-
where.33 Despite an extensive body of literature outlining 
the biological and evolutionary foundations of our attrac-
tion to beauty,34 it is appreciated that a range of injustice 
is unwittingly committed upon those whose faces are per-
ceived as relatively less appealing.35,36 The introduction of 
a mechanized rating of appearance could therefore be 
seen as posing a hazard if used to expose and disparage 
individuals who rate poorly. However, precisely because 
evidence shows that the perception of facial appearance 
is so fundamentally hardwired into our cognitive pro-
cesses,37 it is unreasonable to expect humans to refrain 
from appraising faces. Ultimately, the ethical implemen-
tation of a facial measurement tool should be seen as no 
different than the expectation for right-minded behavior 
in response to any of the various and readily perceived dif-
ferences between people (age, gender, race, habitus, etc.).

In terms of functioning as a meaningful arbiter of 
the human face, a computer system ideally should dem-
onstrate (1) alignment with human judgment, (2) order-
preservation, (3) indifference to extraneous variations, 
and (4) sensitivity to subtle structural discrepancies. The 
high correlation between the output of our two machine 
learning models and the human ratings of the test images 
plainly confirms the models’ alignment with human judg-
ment. The order-preservation of the systems is reflected 

Fig. 4. Schematic illustration of implemented convolutional autoencoder architecture.

Fig. 5. algorithm used to derive reconstruction error of convolu-
tional autoencoder model.
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by the gradient of scoring across the training set that 
matched closely between machine and human (eg, consis-
tently superior scores for repaired versus unrepaired cleft 
lip deformities), and by the capacity of the Haar object 
detector to reliably distinguish the abnormal from the 
normal subunits of the face (Fig. 6, Table 1). Extraneous 
variations in the diversity of age, gender, and race of our 
test dataset did not seem to affect the reliability of the 
computer ratings, although we were not able to specifically 

test that with our limited sample size of test images. With 
regard to feature sensitivity, our machine learning models 
appeared to discern subtle changes in facial appearance 
as reflected in the gradient of scores ranging from an indi-
vidual with extensive neurofibromatosis to one with mod-
est jaw asymmetry.

A growing body of work involving the use of artificial 
intelligence in plastic surgery is now emerging, the vast 
majority of which has employed supervised learning and 

Fig. 6. Subset of test images (with diagnoses and source reference number11–18) used to evaluate 
the object detector and convolutional autoencoder machine learning models. Scoring ranges from 
abnormal to normal: human rating (1–7); object detector (0–10); cae (1–0). nF: neurofibromatosis; Tc: 
Treacher collins; Uc/l: Unilateral cleft lip; MFH: Midface hypoplasia; FP: Facial palsy; Vl: Vascular lesion; 
r Bc/l: repaired bilateral cleft lip.
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classification models to focus on diagnostic and outcome 
prediction.38 A recent systematic review references a host 
of studies predicting burn wound depth and clinical out-
come using machine learning models primed with vari-
ous combinations of patient images, demography, and 
laboratory parameters. Several groups have described 
automated systems used to diagnose and assess the sever-
ity of craniosynostosis based on shape analysis, whereas 
only a handful of studies have considered the assessment 
of facial parameters.39–43 The current study can be clearly 
distinguished from any of the preceding work in that our 

models combine a rich training dataset, a lack of require-
ment for anatomic landmark recognition or the use of 
arbitrary human scales, and a holistic consideration of 
faces that can theoretically be applied to any category 
of deformity. We are currently compiling a new database 
of high-resolution clinical images that are approved for 
analysis and publication. For the purpose of this proj-
ect, however, we relied on testing open-source images 
of lower quality, which compelled us to downgrade the 
resolution of the training set. This could theoretically 
limit sensitivity to facial feature details. Another avenue 

Fig. 7. Scatter plot of object detector confidence score relative to human ratings for all 60 test images 
(30 abnormal and 30 normal). For object detector the rating scale is 0 (abnormal) to 10 (normal), and for 
human rating it is 1 (abnormal) to 7 (normal).

Fig. 8. Scatter plot of convolutional autoencoder reconstruction error relative to human ratings for all 
60 test images (30 abnormal and 30 normal). For convolutional autoencoder the rating scale is 0 (nor-
mal) to 1 (normal), and for human rating it is 1 (abnormal) to 7 (normal).
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we are exploring to enhance discernment is to re-train 
our models separately based on gender and adult/child 
status of the faces, as well as on isolated facial aesthetic 
subunits. However, acknowledging any possible limi-
tation in the sensitivity of our method, we believe that 
the initial results we report here are impressive and 
notable—particularly in comparison with testing we 
performed with off-the-shelf, state-of-the-art detection 
tools, including YOLOv344 and fast.ai.45 The main issue 
we found with these latter tools is that they are designed 
to classify objects as either “human face or not human 
face”; therefore, even images depicting clinical defor-
mities were rated with extremely high confidence. Our 
custom tailored models provided far better granularity 
of measurement in a computationally efficient manner. 
We anticipate that development of this new technology 
into a clinically accessible, portable platform will usher 
in new opportunities for multicenter collaboration and 
objective comparison of outcomes between conditions, 
techniques, operators, and institutions.
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Table 1. Diagnosis, Human Rating, Haar Cascade Object Detector Confidence Score, and Convolutional Autoencoder 
Reconstruction Error for All 30 Test Images

Diagnosis 

Human Rating (1–7)
Object Detector  

Confidence Score (0–10)
Convolutional Autoencoder  
Reconstruction Error (1–0)

Total Face Total Face Oral Nasal Orbital Total Face

Neurofibromatosis 1.00 0.45 0.45 0.45 0.32 0.99
Treacher Collins 1.13 1.75 2.70 1.11 1.67 1.00
Complete R C/L 1.87 2.73 1.00 2.22 3.60 0.90
Complete L C/L 2.02 2.31 0.33 1.32 5.01 0.98
Complete R C/L 2.24 3.12 1.35 2.17 5.05 0.96
Midface hypoplasia 2.30 3.09 3.02 4.50 2.30 0.84
Complete L C/L 2.55 2.59 0.91 2.33 3.21 0.93
Incomplete R C/L 2.57 3.14 1.77 2.90 5.00 0.82
Incomplete L C/L 2.63 3.13 1.70 2.35 5.02 0.78
Incomplete L C/L 2.63 2.96 1.33 3.10 3.76 0.73
Complete R C/L 2.65 3.24 1.81 2.89 5.31 0.67
Incomplete R C/L 2.70 3.14 1.95 2.43 5.22 0.82
Incomplete L C/L 2.80 3.10 1.51 2.91 3.19 0.88
Repaired R C/L 3.21 3.37 3.00 3.21 4.22 0.66
Down syndrome 3.24 4.27 3.74 5.00 3.91 0.58
Facial palsy preoperative* 3.44 3.25 2.32 2.31 5.43 0.60
Vascular lesion 3.51 4.25 3.91 4.91 5.15 0.56
Facial palsy 3.53 4.90 2.54 3.26 6.02 0.52
Repaired B C/L 3.92 4.96 3.51 3.14 6.12 0.54
Down syndrome 4.72 4.83 4.44 5.41 4.21 0.51
Repaired B C/L 4.81 5.42 4.31 5.10 5.81 0.50
Facial palsy 5.11 5.23 4.21 4.94 5.94 0.50
Facial asymmetry 5.13 5.35 3.91 5.36 6.25 0.31
Facial asymmetry 5.17 5.94 6.13 4.98 6.66 0.49
Macrostomia 5.17 5.45 5.15 6.01 5.42 0.38
Facial palsy postoperative* 5.25 5.95 5.91 5.01 6.23 0.35
Orbital asymmetry 5.57 5.69 6.21 6.31 5.32 0.47
Down syndrome 5.67 5.88 5.81 5.89 5.81 0.43
Facial asymmetry 5.75 6.42 5.99 6.00 6.55 0.22
Moebius syndrome 5.87 6.25 6.05 5.98 6.21 0.24
*Pre- and postoperative images are of the same individual.
Scoring ranges from abnormal to normal: human rating (1–7); object detector (0–10); CAE (1–0). R: right; L: left; B: bilateral; C/L: cleft lip. 
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