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Here, we present detailed kinetic analyses of a panel of soluble
lipid kinases and phosphatases, as well as Ras activating proteins,
acting on their respective membrane surface substrates. The
results reveal that the mean catalytic rate of such interfacial
enzymes can exhibit a strong dependence on the size of the reac-
tion system—in this case membrane area. Experimental measure-
ments and kinetic modeling reveal how stochastic effects
stemming from low molecular copy numbers of the enzymes alter
reaction kinetics based on mechanistic characteristics of the
enzyme, such as positive feedback. For the competitive enzymatic
cycles studied here, the final product—consisting of a specific lipid
composition or Ras activity state—depends on the size of the reac-
tion system. Furthermore, we demonstrate how these reaction
size dependencies can be controlled by engineering feedback
mechanisms into the enzymes.

enzyme kinetics j membrane j stochastic kinetics j PIP lipid j cell signaling

Enzyme kinetic reactions are commonly described in terms
of deterministic rate equations. Within this type of mathe-

matical analysis, reactant and product concentrations are
treated as continuous variables, and the state of a system at any
point in time is a deterministic function of the starting condi-
tions. Even complex behaviors including bistability (1), sensitive
dependence on initial conditions (e.g., chaos) (2), and spatio-
temporal pattern formation (e.g., Turing instabilities) (3) can
all be described with deterministic rate equations. It is compu-
tationally efficient to simulate deterministic chemical kinetics,
and this method is widely used in biological sciences. For exam-
ple, more than 100 papers have been published in the last 5 y
analyzing Ras activation using deterministic chemical rate
equations, with many of these making predictions about disease
mechanisms and therapeutic approaches (4, 5). These mathe-
matical methods, however, smooth over the fact that molecules
and molecular reactions are intrinsically discrete. Moreover,
the small size of cellular structures often limits physiological
biochemical reactions to low molecular copy numbers, where
the effects of discreteness and stochasticity become prominent.

How spatial confinement and low molecular copy numbers
within cells and organelles might affect biochemical reactions has
attracted significant interest over the years (6–10). However, the
space of possibilities remains sparsely mapped and surprising
results continue to emerge. For example, stochastic fluctuations
can increase sensitivity in cellular signaling reactions (11), and
they play an essential role in the bacterial chemotaxis molecular
logic circuit (12). They can also induce (stochastic) bistability in
systems that lack this property according to continuous kinetic
rate equations (13). Recent experimental observations of a sys-
tem of competing lipid kinases and phosphatases, driving inter-
conversion between PI(4)P and PI(4,5)P2 in a lipid membrane,
have revealed other types of macroscopic divergence from contin-
uum kinetic predictions (14). Specifically, this system was
observed to deterministically reach a PI(4)P-dominated state in
large reaction systems. Under spatial confinement, however, the

same system could exhibit stochastic bistability or even determin-
istically reach a PI(4,5)P2-dominated state, depending only on
the size of the reaction environment. Stochastic effects led to a
deterministic alteration in the average behavior, not just an
increase in variation. Although stochastic kinetic modeling was
able to reproduce this basic behavior, the underlying physical
mechanism remains obscure. This stochastic geometry sensing
mechanism also produces more elaborate pattern formations,
including polarization, under different types of spatial confine-
ment that exhibit marked similarity with living biological systems.

A distinctive feature of the competing lipid kinase–phosphatase
system is that the soluble enzymes act on substrates restricted to
the membrane surface. This basic reaction configuration is
shared by broad classes of signal transduction enzymes in biol-
ogy, including numerous protein or lipid kinases and phospha-
tases as well as GTPase-activating proteins (GAPs) and Guanine
nucleotide exchange factors (GEFs) (15–18). For these systems,
the enzyme must first contact the membrane, then find the sub-
strate and catalyze a two-dimensional reaction at the membrane
interface. This additional step offers many mechanisms for regu-
latory control of signaling reactions (19–21). For example,
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positive feedback can be easily installed on enzymes by incorpo-
rating a product binding site, which localizes the enzyme on the
membrane, without the need for structural allosteric mecha-
nisms. Other physical properties such as curvature and mem-
brane tension can alter the enzyme activity by changing the par-
titioning of enzymes from the solution to the reaction surface (22,
23). Additionally, the cellular cytoskeleton and membrane topo-
graphical features can create dynamic physical barriers and con-
finement zones on cellular membranes (24–26). While these mem-
brane structures are all exposed to the same cytosolic solution, the
differing sizes of their effective reaction environments offer
another regulatory mechanism if signaling reactions exhibit scale
sensitivity.

Here, we examine a panel of soluble lipid kinases and phos-
phatases, as well as Ras activating proteins, acting on their
respective membrane surface substrates. Using micropatterned
supported lipid membranes, liposomes, and membrane-coated
microbeads, we perform detailed kinetic analyses of these
enzymes as a function of reaction system size. Results reveal
that the mean catalytic rate of such interfacial enzymes can
exhibit a strong dependence on the physical area of the mem-
brane, which sets the copy number of enzymes within an inter-
active system. We find that the size dependence of the reaction
rate is caused by positive feedback in the enzymatic mechanism.
Furthermore, we demonstrate that size dependency can be
deleted from or engineered into enzymes by deleting or adding
specific lipid-binding domains. A simple analytical model, as
well as more detailed stochastic kinetic simulations, reveal how
size dependency of the reaction rate emerges from a coupling
between positive feedback, nonequilibrium aspects of the enzy-
matic reaction cycle, and intrinsic stochasticity.

These basic features that lead to the size dependency of the
enzymatic reaction rate are extremely common among native bio-
logical signaling enzymes. We report here that Phosphatase and
Tensin Homolog (PTEN) and Phosphatidylinositol-4-Phosphate
5-Kinase (PIP5K) as well as the Ras activator Son of Sevenless
(SOS) all exhibit size-dependent reaction rates. Furthermore,
when coupled in a competitive enzymatic cycle, subtle differences
in size sensitivity of the competing reactions can completely
change the final output in a system size-dependent manner.
While these experiments are done in reconstituted systems, we
suggest that the underlying physical phenomenon of size-
dependent enzymatic reaction rate is unavoidable in living cells.

Results
PTEN Exhibits Reaction System Size-Dependent Catalytic Activity.
Phosphatase and Tensin Homolog (PTEN) is a well-studied
and important lipid-modifying enzyme (27, 28) that catalyzes
the dephosphorylation of PI(3,4,5)P3 into PI(4,5)P2 and inor-
ganic phosphate. PTEN is a soluble enzyme, which must
encounter the membrane for its catalytic reaction (Fig. 1A)
(29). PTEN contains an N-terminal PI(4,5)P2-binding domain
(PBD), which creates a positive feedback loop in which PTEN
catalyzed formation of PI(4,5)P2 on the membrane drives the
recruitment of more PTEN to the membrane (28). Membrane
localization can also lead to processivity (30, 31), in which mul-
tiple catalytic events occur during a single membrane binding
dwell cycle.

We initially investigated PTEN catalytic activity on liposomes
of different sizes. Liposomes consisting primarily of DOPC (1,2-
dioleoyl-sn-glycero-3-phosphocholine) with 2% molar fraction of
PI(3,4,5)P3 were prepared by extrusion through polymer filter
membranes of either 30- or 1,000-nm pore size. While extrusion
yields broadly dispersed liposome sizes, extrusion through 30-nm
pores produces distinctly smaller liposomes than obtained from
the 1,000-nm pore size (32). For the liposome assays, PTEN cata-
lytic activity was monitored by detecting released inorganic

phosphates from the reaction using a phosphate binding protein
labeled with the environmentally sensitive fluorescence probe
MDCC (N-[2-(1-maleimidyl)ethyl]-7-(diethylamino)coumarin-3-
carboxamide), which increases fluorescence yield upon binding to
inorganic phosphate (33). Kinetic traces of PTEN activity reveal
that the reaction is slower in 30-nm extruded liposomes compared
to 1,000-nm extruded liposomes (SI Appendix, Fig. S1). By fixing
both the PTEN solution concentration and the PI(3,4,5)P3 surface
concentration in the membrane, but varying the total amount of
liposomes, the reaction velocity was mapped to overall substrate
concentration (Fig. 1B). The apparent enzyme catalytic efficiency
can be obtained by fitting the resultant reaction velocity traces to
a Michealis–Menten kinetic analysis (see Materials and Methods).
The catalytic efficiency (kcat/KM) of PTEN is increased by 50%
when reacting on 1,000-nm pore extruded liposomes compared
with liposomes obtained from 30-nm pore extrusion. The same
size-dependent effect was also evident on membrane-coated
microbeads (34), where PI(4,5)P2 production was monitored by
imaging the binding of the fluorescently labeled PH domain of
phospholipase C δ (PLCδ) to PI(4,5)P2 using confocal micros-
copy, normalized by the fluorescence from a lipid-linked Texas
Red fluorophore (Texas Red 1,2-Dihexadecanoyl-sn-Glycero-3-
Phosphoethanolamine) present in the membrane at a fixed den-
sity (0.5%) (Fig. 1C). Under the experimental conditions used
both here on microbeads and in the supported membrane corral
arrays described later in this section, generally less than 0.1% of
PI(4,5)P2 lipids are bound by the fluorescent probe at any given
time (14). After PTEN is added, PI(4,5)P2 is produced at faster
rates in membrane-coated microbeads with a larger diameter
(Fig. 1 D and E and Movie S1). The time to 95% completeness of
reaction is 80% longer in 2.34-μm beads compared to 6.89-μm
beads.

Changing the diameter of liposomes or microbeads not only
changes membrane surface area but also curvature. Since mem-
brane curvature can significantly change the reaction rate of
some enzymes (21), we implemented the PTEN activity assays
in a planar micropatterned supported lipid bilayer (SLB)
format (Fig. 2A) (35). Grids of chromium metal lines, prefabri-
cated onto glass coverslips, create barriers to support mem-
brane formation and effectively confine the membrane into
two-dimensional corrals with micrometer-scale dimensions (31,
36). Lipids and membrane-associated proteins diffuse freely
within each confined corral but cannot cross the barriers. How-
ever, all corrals are in contact with the same bulk solution, and
the low vertical height of the metal lines (∼9 nm in these
experiments) has essentially no effect on the diffusion and flow
of molecules in the bulk solution phase. The SLB experimental
system provides superior subsecond time resolution and control
of reaction size homogeneity compared to the liposome and
bead assays (14). Moreover, the system is completely planar,
leaving the surface area and shape to be the only geometrical
variables.

The catalytic activity of PTEN was observed in the unre-
stricted free lipid bilayer, with a scale on the order of
millimeters, and in 5 × 5 μm corralled membrane arrays. Con-
finement grids were patterned side by side with the unrestricted
regions, enabling simultaneous monitoring in both regions
under identical reaction conditions (Fig. 2B and SI Appendix,
Fig. S2A and Movie S2). PTEN and the lipid sensor were intro-
duced into the system from the solution flowed into the flow
cell. All regions of the supported membrane are in contact with
the exact same solution above. Under these conditions, restrict-
ing the membrane surface reaction size from the free lipid
bilayer to 5 × 5 μm corrals significantly slows down the mean
reaction rate. This is evident in the total internal reflection fluo-
rescence (TIRF) intensity plots—mapping PI(4,5)P2 membrane
concentration—illustrated in Fig. 2B. At 4 min into the reac-
tion, the bulk membrane area is nearly completely converted to
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PI(4,5)P2 while each of the corralled membrane regions lags
significantly. This kinetic experiment is quantified in Fig. 2C
where the mean normalized PI(4,5)P2 density is plotted versus
time for corralled and free membrane regions (replicates shown
in SI Appendix, Fig. S2A). The maximum difference in normal-
ized reaction progress (Δx) across the reaction period can reach
more than 0.2. Since all membrane regions in this experiment
are entirely flat, membrane curvature is ruled out as a cause of
the differential enzyme efficiency. Membrane surface area
alone is sufficient to cause the difference in reaction speed.

As will be discussed in further detail in the last two sections,
this size-dependent enzymatic reaction speed is fundamentally
the result of stochastic effects in enzyme copy number on the
membrane surface. However, it is important to note that
observed reaction rates do not vary substantially from corral to
corral in the 5 × 5 μm array. Each corral confined reaction is
consistently slower than the unrestricted membrane (SI
Appendix, Fig. S2A).

Size-dependent reaction speed is a property of the enzyme
and is not universal. Similar experiments on another lipid phos-
phatase, phosphatidylinositol 5’-phosphatase domain of Lowe
Oculocerebrorenal Syndrome Protein (OCRLPD), do not exhibit
reaction size–dependent effects. Kinetic traces of OCRLPD cata-
lyzed reactions on the bulk membrane and in 5 × 5 μm corral
arrays are essentially identical, exhibiting Δx values below 0.05
throughout the reaction (Fig. 2 D and E and SI Appendix, Fig.
S2B and Movie S3).

Positive Feedback Enables Size-Dependent Catalytic Activity. We
characterized the mechanistic origin of PTEN reaction size sensi-
tivity by first removing its positive feedback. In the PTEN domain
structure, the PBD domain is followed by phosphatase, C2, and
C-terminal domains (27). We truncated the PBD domain to

construct the PTENΔPBD variant, which lacks the PI(4,5)P2 mem-
brane binding–mediated positive feedback loop (Fig. 3A). The
activity of PTENΔPBD is significantly compromised and no activity
was observable on 2% PI(3,4,5)P3 lipid membranes (SI Appendix,
Fig. S3). Increasing the overall membrane negative charge by
adding 5% PS, in addition to the 2% PI(3,4,5)P3, facilitated the
reaction and revealed that PTENΔPBD does not exhibit size
dependency (Fig. 3A and SI Appendix, Fig. S2C and Movie S4).
Control experiments including PS with full-length PTEN exhibit
the same size dependency observed on 2% PI(3,4,5)P3 mem-
branes, confirming that PS is not responsible for inhibiting
reaction size sensitivity (SI Appendix, Fig. S4). The PTEN
PBD domain is essential for its reaction size–dependent cata-
lytic activity.

The apparent primary function of the PTEN PBD domain is
to mediate membrane recruitment by binding PI(4,5)P2, provid-
ing a positive feedback loop. However, it remains unclear if the
inability of PTENΔPBD to exhibit size-dependent activity is
solely caused by loss of positive feedback or other unknown
functions of the PBD. To investigate this, we constructed a
reaction system with native PTEN but in which the PI(4,5)P2

positive feedback loop is eliminated. PTEN phosphatase activ-
ity is promiscuous, and it readily catalyzes 3’-dephosphorylation
of not only PI(3,4,5)P3 but also other phosphatidylinositols con-
taining 3’-phosphate, such as PI(3,4)P2 to PI(4)P(37). PBD
binding, however, is quite specific and only PI(4,5)P2 strongly
activates PTEN while other phosphatidylinositols, including
PI(3,4)P2, either do not activate or only weekly activate PTEN
(37, 38). Therefore, without any PI(4,5)P2-mediated activation,
PTEN catalyzed 3’-dephosphorylation of PI(3,4)P2 to PI(4)P
cannot exhibit strong positive feedback. As anticipated, kinetic
analysis of PTEN catalyzed PI(3,4)P2 to PI(4)P reactions in the
bulk membrane and in 5 × 5 μm corral arrays also do not

Fig. 1. In vitro PTEN phosphatase reaction in different sizes of membrane. (A) Kinetic scheme of a lipid-modifying enzyme performing reaction on the
membrane surface. The enzyme can dynamically bind and unbind to the membrane surface. Once bound to the membrane, the enzyme can access the
substrate at the membrane and catalyze product formation following the Michaelis–Menten kinetics. (B) Turnover of PI(3,4,5)P3 to PI(4,5)P2 by 10 nM
PTEN was measured in various total solution concentrations of PI(3,4,5)P3 at a fixed 2% surface concentration of PI(3,4,5)P3 on either 30- or 1,000-nm
diameter liposomes. Fitting the data to the Michaelis–Menten equation reveals kcat/KM values shown on the graph. (C) Schematic of the membrane-
coated microbeads experiment setup. Microbeads coated with SLB with 96.5% of DOPC, 2% PI(3,4,5)P3, 1% Biotin-PE, and 0.5% TR-DHPE were tethered
to glass surface functionalized with Biotin-BSA (bovine serum albumin) using neutravidin. PTEN catalyzes the conversion of PI(3,4,5)P3 to PI(4,5)P2. Produc-
tion of PI(4,5)P2 is monitored with Alexa488-PLCδPH. (D) Time sequence of images tracking 200 nM PTEN reaction on 6.89-μm beads and 2.34-μm beads.
(E) Average kinetic traces of normalized PI(3,4,5)P3 to PI(4,5)P2 conversion by 200 nM PTEN plotted against time (n = 6). The Inset shows time to 95% com-
pleteness of the reactions in 6.89-μm beads and 2.34-μm beads.
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exhibit any detectable size-dependent catalytic activity (Fig. 3B
and SI Appendix, Fig. S2D and Movie S5).

By engineering a PI(4)P-binding domain into PTEN, we con-
structed a variant with positive feedback in the PI(3,4)P2 to
PI(4)P reaction. DrrA is a GEF of Rab1 that contains a PI(4)P-
binding domain (DrrA 544 to 647) (39). We refer to this

fragment as DrrA hereafter. Kinetic traces from the
PTEN–DrrA reaction on 2% PI(3,4)P2 membrane follow a
strongly sigmoidal shape, indicating the reaction has positive feed-
back. Starkly contrasting PTEN, PTEN–DrrA shows strong reac-
tion size–dependent catalytic activity in the 3’-dephosphorylation
of PI(3,4)P2 (Fig. 3C and SI Appendix, Fig. S2E and Movie S6).
Using a similar strategy, the OCRLPD catalyzed PI(4,5)P2 to
PI(4)P dephosphorylation reaction, which intrinsically lacks feed-
back, can be augmented with positive feedback by fusing
OCRLPD with a DrrA domain. Kinetic traces of DrrA–OCRLPD

show both positive feedback and size-dependent reaction speed
(Fig. 3D and SI Appendix, Fig. S2F and Movie S7). Overall, these
data illuminate a clear and causal relationship between membrane
binding–mediated positive feedback and reaction size dependency
of catalytic activity.

Across the wide variety of chemical reactions catalyzed by
interfacial enzymes, positive feedback through product binding
is a common feature among many of them. In addition to lipid
phosphatases such as PTEN, lipid kinases such as PIP5K, and
GEFs such as SOS have all been reported to natively possess
such a mechanism (14, 40). We therefore posited that these
enzymes all could exhibit reaction size dependency in their cat-
alytic activity and tested this with the kinase domain of PIP5K
(PIP5KKD) and the catalytic N-terminal fragment of SOS
(SOSHDPC). PIP5KKD catalyzes PI(4)P to PI(4,5)P2 reaction at
the expense of an ATP and separately binds PI(4,5)P2.
SOSHDPC catalyzes nucleotide exchange, converting Ras-GDP
to Ras-GTP and can bind Ras-GTP with a stronger affinity at
an allosteric site (36). Both PIP5K and SOS showed size-
dependent catalytic activity (Fig. 3 E and F and SI Appendix,
Fig. S2 G and H and Movies S8 and S9). Notably, while the cat-
alytic domain of SOS, SOScat, contains the allosteric Ras-GTP
(product) binding site and showed clear positive feedback in its
catalytic activity, it is not size sensitive under the conditions in
our experiment (SI Appendix, Fig. S5 and Movie S10). As will
be clarified in the last section, this can be attributed to the fact
that SOScat is distinctively less processive than either
SOSHDPC or native full-length SOS (36, 41, 42). While strong
processivity is neither a requirement nor sufficient for reaction
size sensitivity, it is an amplifier of these effects.

Competitive Enzymatic Cycles Amplify Effects of Reaction Size
Dependency. Native forms of all of the enzymes studied here
operate in competitive reaction cycles under physiological con-
ditions. Kinases are opposed by phosphatases, Ras GEFs are
opposed by GAPs, and this is a common theme across many
biological signaling systems. In such competitive reactions,
small differences in reaction rate can determine what the final
outcome is, and this can amplify the consequences of even
small reaction size dependencies among the competing
enzymes. As an example of this, we here study the competitive
reaction between PIP5K and OCRL. This system drives inter-
conversion between PI(4)P and PI(4,5)P2 and is one of several
similar competitive lipid kinase–phosphatase systems we have
recently found to exhibit complex reaction size sensitivity and
pattern forming tendencies (14).

A time sequence of images following a reaction trajectory for
the PIP5K:OCRL system on SLB corral arrays of various sizes
is illustrated in Fig. 4A (Movie S11). For these experiments, the
supported membrane has an initial composition of 2% PI(4)P
and 2% PI(4,5)P2 (in a DOPC background), and lipid sensors
for PI(4)P (DrrA), in blue, and PI(4,5)P2 (PLCδ) in yellow
track the composition over time, by TIRF imaging. The reac-
tion is initiated by injecting a solution of both enzymes, ATP,
and lipid sensors into the imaging flow cell. As can be seen in
the image sequence, the larger area of the membrane is
smoothly driven to a PI(4,5)P2-dominated state, indicating that
the average balance between kinase and phosphatase in this

Fig. 2. Kinetics of enzymes on confined planar lipid bilayer. (A) Scheme
of the SLB experimental setup. Nanofabricated chromium barriers parti-
tion a supported bilayer into micrometer-scale corrals, each containing
identical composition. When the enzyme converts substrates to products
at the membrane, the products can be monitored with a fluorescently
labeled lipid binding domain that binds to the product. (B) Time sequence
of images of 100 nM PTEN reaction on membrane containing 2%
PI(3,4,5)P3 monitored by 20 nM Alexa488-PLCδPH. Reactions in 5 × 5 μm
membrane corrals were imaged alongside with reaction in free bilayer in
the same experiment. (C) Dephosphorylation reaction of PI(3,4,5)P3 to
PI(4,5)P2 by 100 nM PTEN in 5 × 5 μm of membrane corrals and free bilayer
plotted together. Top graph: the difference between the reaction trajec-
tory in the free bilayer and 5 × 5 μm membrane corrals, Δx, at each time
point. The Inset shows time to 95% completeness of the reactions in free
bilayer and 5 × 5 μm membrane corrals. (D) Time sequence of images of
50 nM OCRLPD reaction in membrane containing 4% PI(4,5)P2 monitored
by 20 nM Cy3-DrrA. (E) Dephosphorylation reaction of PI(4,5)P2 to PI(4)P
by 50 nM OCRLPD in 5 × 5 μm membrane corrals and free bilayer.
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particular experiment favors the kinase. However, under the
identical enzyme mixture in the solution, the system exhibits
bistability in 5 × 5 μm corral arrays and is uniformly driven to a
PI(4)P-dominated state in 2 × 2 μm corral arrays. In this case,
the net reaction outcome—a PI(4)P- or PI(4,5)P2-dominated
state—depends on the size of the membrane reaction system.
This effect can drive reaction outcome with near certainty; note
that there are no visible 2 × 2 μm corrals ending in the
PI(4,5)P2-dominated state even though this is the kinetically
favored state in the bulk average.

The complete inversion in the outcome of the PIP5K:OCRL
system, as a function of reaction size, is achieved based on dif-
ferences in the size dependency of the individual enzymatic
reactions. In this case, PIP5K has positive feedback and exhibits
size-dependent reaction rates whereas OCRL does not. The
effect of reaction size on the balance between these two reac-
tions is illustrated schematically in Fig. 4B. For a given enzyme
concentration in solution, the reaction rate for PIP5K increases
with reaction size while that of OCRL is constant. As such, it is
possible to achieve a situation in which positive feedback in
PIP5K provides it with a kinetic advantage in large systems,
while OCRL can still dominate in sufficiently small systems. We
note that in our previous study of a similar system with PIP5K,
many of the experiments utilized variants of OCRL with engi-
neered positive feedback (14). In those experiments, both

enzymes exhibit positive feedback and size sensitivity. The par-
ticular balance between size sensitivity of the competing
enzymes led to exactly the opposite size preference seen here:
PIP5K selectively dominated in small corrals. These contrasting
results underscore how controllable the size dependency of
enzymatic reaction rates can be.

Activation of membrane signaling in physiological systems
often involves increasing the activity of a kinase to overcome
the suppressing activity of phosphatases. Effects of reaction
size confinement on this balance for the PIP5K:OCRL system
are illustrated through a set of PIP5K titration experiments
shown in Fig. 4C. The competitive reaction is run on a series of
membrane corral arrays, spanning a factor of 100 in surface
area (2 × 2 μm to 20 × 20 μm), at fixed OCRL concentration (1
μM) and a series of PIP5K concentrations ranging from 2 to 10
nM. Although in all cases, the competitive reaction exhibits two
well-defined possible outcome states, the PIP5K concentration
at which switching between these states occurs exhibits a sharp
dependence on reaction size (Fig. 4D). The size range we
tested here resembles the length scale of larger geometrical fea-
tures in cellular systems, such as filopodia, lamellipodia, and
polarization in the plasma membrane. The concentration range
of PIP5K also falls within physiological expression levels (43).

The competitive reaction between Ras activation by SOS and
deactivation by the p120 Ras GAP exhibits a similar size

Fig. 3. Biochemically engineering size-dependent reaction speed. (A) Dephosphorylation reaction of PI(3,4,5)P3 to PI(4,5)P2 by 23 μM PTENΔPBD in 5 × 5
μm membrane corrals and free bilayer. PBD: PIP2-binding domain; PPTase: Phosphatase domain; C-tail: C-terminal tail. (B) Dephosphorylation reaction of
PI(3,4)P2 to PI(4)P by 3 μM PTEN in 5 × 5 μm membrane corrals and free bilayer. (C) Dephosphorylation reaction of PI(3,4)P2 to PI(4)P by 170 nM PTEN-
DrrA in 5 × 5 μm membrane corrals and free bilayer. (D) Dephosphorylation reaction of PI(4,5)P2 to PI(4)P by 100 pM DrrA-OCRLPD in 5 × 5 μm membrane
corrals and free bilayer. (E) Phosphorylation reaction of PI(4)P to PI(4,5)P2 by 2 nM PIP5KKD in 5 × 5 μm membrane corrals and free bilayer plotted
together. (F) Nucleotide exchange reaction of Ras-GDP to Ras-GTP catalyzed by 20 nM SOSHDPC in 5 × 5 μm membrane corrals and free bilayer plotted
together. The reaction is monitored by binding of a fluorescently labeled Ras-binding domain.
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dependency of reaction outcome (SI Appendix, Fig. S6). This
effect is observed for SOSHDPC but not SOScat (SI Appendix,
Fig. S7) and follows consistently with our observation that
SOSHDPC exhibits substantially greater size-dependent activity
than SOScat. Both of these SOS constructs have positive feed-
back, but their difference lies in the degree of processivity. The
lipid-binding properties of SOSHDPC enable it to linger at the
membrane for longer dwell times than SOScat in these experi-
ments. As such, stochastic variation in enzymatic reaction rate
resulting from enzyme binding and desorbing from the mem-
brane is amplified for SOSHDPC relative to SOScat, and these sto-
chastic fluctuations are key to the strength of reaction size depen-
dency. Note that SOScat and SOSHDPC are truncated forms of
SOS and that the native full-length SOS protein is extremely
processive (36, 41, 42).

Size Dependency of Reaction Rate Arises from a Stochastic
Mechanism. We investigate the underlying mechanism of reac-
tion size dependence of catalytic activity with stochastic kinetic
modeling of the basic Michaelis–Menten enzymatic process.
The reaction scheme for the interfacial enzymes considered
here is depicted in Fig. 5A. The enzyme in solution (E0) is
recruited to and desorbs from a membrane-bound state (E1)
via overall kinetic rate parameters (kon and koff), which are not
necessarily constants since they may depend on membrane
composition (e.g., concentration of the enzymatic product). On
the membrane, the enzyme interacts with the substrate (S),
forming an enzyme–substrate complex (E1:S) with overall
kinetic rates (kf and kr), from which the product is formed with
a catalytic rate constant (kcat). We perform stochastic kinetic
modeling of this reaction scheme using a Gillespie algorithm
(44), describing the state vector for the system in terms of dis-
crete copy numbers of each species on the membrane (E1, S,
E1:S, P). The concentration of the solution species, E0, is fixed,

reflecting the experimental condition where there is a large res-
ervoir of enzymes in solution. Transitions between states are
described with transition probabilities, corresponding with each
of the kinetic rates, some of which are functions of the state of
the system (full detail in Materials and Methods). This modeling
is spatially homogeneous (matching experimental conditions),
and the system size in spatial dimensions maps to different
overall molecular copy numbers in the simulations.

Stochastic kinetic modeling readily reproduces the experi-
mental observation of reaction size–dependent catalytic activity,
while deterministic rate equations fail to predict such effects.
Sets of reaction trajectories for the same enzymatic system in
differently sized membrane corral arrays are shown in Fig. 5B.
As expected, stochastic variation clearly becomes more pro-
nounced in the smaller corrals. More importantly, the mean
catalytic activity also differs. Mean reaction trajectories from
these simulations on 1 and 0.25 μm2 arrays are plotted in Fig.
5C in the same format used for the presentation of experimen-
tal data in Fig. 2, illustrating the substantial agreement between
modeling and experiment results (reference SI Appendix for
discussion). If membrane binding of the enzyme is decoupled
from product density, effectively removing the positive feed-
back, size dependency of the reaction rate is lost (Fig. 5D and
SI Appendix, Fig. S8).

To conceptually illustrate the underlying physical mechanism
of size dependency in reaction rate, we construct a highly sim-
plified stochastic system that still exhibits the basic effect. In
this example, consider a molecule that binds to a surface in a
one-way process with a kinetic rate that depends on the surface
concentration of already bound molecules (positive feedback)
(Fig. 6A). We can examine the overall reaction rate by looking
at the mean first passage time (MFPT) for the system to double
the density of adsorbed molecules (σ). Fig. 6A depicts the den-
sity doubling process (copy number n molecules goes to 2n) for

Fig. 4. Size-dependent reaction speed controls the reaction outcome in a competition reaction. (A) Time sequence of the competition reaction of 10 nM
PIP5K and 700 nM OCRL monitored by 20 nM Alexa488-PLCδPH and 20 nM Cy3-DrrA in 2 × 2 μm corrals and 5 × 5 μm corrals, as well as the unrestricted
free bilayer. (B) Size-dependent reaction speed in a competition reaction can lead to a change of reaction outcome based on size. (C) Images of the final
steady-state outcome for a series of 4% PI(4)P membrane with surface areas ranging from 400 to 4 μm2 when exposed to various concentrations of PIP5K
and a fixed 1 μM OCRL. (D) The probability of the PI(4,5)P2 enriched reaction outcome for a series of 4% PI(4)P membrane with different dimensions at 1
μM OCRL and various concentrations of PIP5K. The data are fitted with a general sigmoidal equation.
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several different sized systems, starting from n = 1, 2, or 3
adsorbed molecules, at equivalent starting surface density. The
number of individual molecular binding events required for
density doubling goes as n, and the probability distribution for
doubling time, τD, is given by successive convolution of the
individual transition time distributions for each of the n transi-
tions: pðτDÞ ¼ p1ðτ1Þ⊗ p2ðτ2Þ⊗ p3ðτ3Þ⋯⊗ pnðτnÞ. For this
one-way adsorption process, the MFPT for doubling is simply
the average doubling time, hτDi, and since this is a Markov pro-
cess, hτDi ¼∑n

i¼1hτii.
For the case of simple binding, with no feedback, the overall

rate of binding to a surface with area, A, is independent of the
number of already adsorbed molecules and given by kA. With
this constant rate of binding, the delay time between each of
the individual binding events follows an identical Poisson inter-
val distribution, pðτÞ ¼ kAe�kAτ and pðτDÞ is the corresponding
gamma distribution: pðτDÞ ¼ kAð Þ nþ1ð ÞτDne�kAτ=n!. In this case
with zero-order feedback, the MFPT for doubling is indepen-
dent of system size and identical to the value calculated from a

continuum approach with deterministic rate equations (Fig. 6B;
also see Materials and Methods).

When there is positive feedback (of order m) affecting the
adsorption process, the MFPT for density doubling is calcu-
lated as above, except now the intermediate transitions no lon-
ger occur with an identical rate. For a system starting with n
molecules, the ith transition has rate kσmA, where σ¼
ðnþ i� 1Þ=A is the momentary density of adsorbed molecules
while waiting for the ith transition event. The rate of each suc-
cessive step now depends on σ and correspondingly increases,
reflecting the positive feedback as a function of already
adsorbed molecules. Plots of doubling MFPT versus system
size for feedback of order m = 1, 2, and 3 are shown in Fig. 6B.
With the positive feedback, a system size dependence of the
overall reaction rate is evident with the reactions going more
slowly in smaller systems. At larger system sizes, the stochastic
analysis converges on the same result (dashed lines) obtained
from continuum deterministic rate equations.

Fundamentally, stochastic effects originating from the dis-
crete binding of molecules to the surface reduce the efficiency
of the positive feedback. In the extreme case of beginning with
a single molecule, the MFPT for doubling essentially never
experiences any effects of feedback since the process is finished
with the first transition. As systems get progressively larger, and
more individual steps are taken throughout the reaction trajec-
tory to achieve the same density doubling, each successive step
occurs faster as the system is able to respond to the now gradu-
ally increasing density (Fig. 6C). Effects of feedback are maxi-
mized in large systems, where the surface density of adsorbed
molecules essentially varies continuously.

Size Dependency of Reaction Rate Is a Nonequilibrium Effect. In
addition to the stochastic element, the mechanism of reaction
size dependency is also intrinsically rooted in the fact that the
system is changing. This is clearly demonstrated by examining
reaction velocities under steady-state conditions (e.g., as might
be done in some classic Michaelis–Menten analyses). Fig. 6D
illustrates a plot of mean reaction velocity versus reaction pro-
gress for the 1- and 0.25-μm2 corral arrays for the system com-
putationally analyzed in Fig. 5 B and C. Marked on the plot is
the system composition (substrate and product densities) at
which the maximum difference in mean reaction velocity
between the two corral sizes was observed. Results from sto-
chastic simulations on the two corral sizes at this composition
but now under steady-state conditions (with substrate and
product densities fixed) are plotted in Fig. 6E. As expected,
reaction velocity variation is substantially larger in the smaller
corrals. However, under these steady-state conditions, there is
no longer any size dependency of the mean reaction rate.

The reaction size–dependency effect stems from the
enzyme–membrane binding reaction being out of equilibrium
and the way in which this binding reaction stochastically follows
the changing membrane composition. This can be shown by
running stochastic simulations for the system depicted in Fig.
5C in which the positive feedback is preserved, but the individ-
ual kinetic rate constants for membrane binding are allowed to
be very fast compared to the catalytic rate (increasing both kon
and koff or reducing kf and kcat). In these situations, the
enzyme–membrane binding reaction is always near equilibrium
(or quasi steady state), and the reaction size dependency corre-
spondingly vanishes (SI Appendix, Fig. S9). In sufficiently small
systems, where individual catalytic steps can appreciably change
the system product density, nonequilibrium behavior is essen-
tially assured since the enzyme–membrane binding reaction
cannot synchronously follow the stochastic steps of the catalytic
reaction. However, we also observe reaction size sensitivity in
systems with relatively high substrate density (e.g., Fig. 5C). In
these cases, the enzymes are significantly processive, driving

Fig. 5. Size-dependent reaction speed modulated by reaction discreteness
and enzyme processivity. (A) Kinetic scheme for stochastic kinetic model-
ing. The interfacial enzyme binds to a membrane from the solution and
catalyzes a surface Michaelis–Menten reaction at the membrane. Positive
feedback is included by having the enzyme on rate dependent on σP (den-
sity of product on the membrane). (B) Kinetic traces from 1,000 stochastic
simulations plotted with their mean (colored lines) using the reaction
mechanism described in A. (Top) Simulation in 1-μm2 membrane. (Middle)
Simulation in 0.25-μm2 membrane. (Bottom) Simulation in 0.16-μm2 mem-
brane. t0.95 marks the time for the average to reach 95% completeness of
reaction. (C) Average of kinetic traces from stochastic simulations in 1 × 1
μm (1 μm2) membrane and 0.5 × 0.5 μm (0.25 μm2) membrane plotted
together. Simulation with deterministic rate equation was plotted in
dashed line. The shaded area shows the SD. The Top graph shows the dif-
ference between the reaction trajectory in 1- and 0.25-μm2 arrays, Δx, at
each time point. The difference of normalized product at max Δx is signifi-
cant at P value <0.01. (D) Simulation with no positive feedback (on rate
independent of σp).
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more than 100 catalytic cycles per binding event at the early
stages of the reaction. This dramatically amplifies stochastic
variation in the overall reaction velocity and correspondingly
amplifies size sensitivity.

We note that positive feedback and a nonequilibrium reac-
tion cycle are the necessary and sufficient conditions for reac-
tion size sensitivity. Enzymatic processivity is an amplifier of
these effects but is not required. Reaction size sensitivity can be
readily detected without any processivity at sufficiently low total
substrate density (SI Appendix, Fig. S10).

Discussion
The impacts of size and geometry of cellular structures on
intracellular biochemical reactions and signaling processes have
previously been considered in a variety of different contexts.
For example, cell shape has been shown to direct stronger cyclic
adenosine monophosphate (cAMP) signaling in the dendrites
of neuronal cells through the interplay between reaction diffu-
sion and changes in surface to volume ratios (45). In an analo-
gous mechanism, mitogen-activated protein kinase (MAPK)
phosphorylation level upon EGF stimulation can be enhanced
in elliptic cells compared to circular cells (46). In these exam-
ples, where the reaction occurs at the membrane but the effec-
tor diffuses through solution, effective changes in local surface
area to volume ratios caused by membrane bending and cell
shape can establish zones of higher reactivity or depletion of
the effectors and consequently alter local or global reaction
outcome (6, 22, 45, 46). Size sensing behavior has also been
reported in the depolymerization of microtubules (47) and
actin filaments (48). In these cases, the size-dependent effects
originate from a lower dimensional version of the surface area
to volume ratio—the length to end-point ratio. Elongating fila-
ment length increases the number of available binding sites per

filament and recruits more enzymes. Processive movement of
the enzyme toward the end of the filament then leads to con-
centrated activity at the end of the filament that is proportion-
ate with its length. The size sensitivity in mean catalytic rate
that we report here, however, is quite distinct from these other
processes. It is not dependent on an interdimensional ratio,
such as surface area to volume, nor are there any requirements
on diffusion or enzymatic processivity. Also, unlike the exam-
ples mentioned above, and the beautiful spiraling Turing pat-
terns exhibited by the Min system (49), the size sensitivity we
describe is not predictable by continuum mathematical descrip-
tions of reaction kinetics: this size sensitivity is intrinsically
stochastic.

The patterned supported membrane experimental platform
provides a unique way to isolate the effects of system size from
other geometrical features, such as membrane curvature. For
the lipid kinase–phophatase reactions studied here, this resolv-
ing capacity confirms that it is size, not curvature, that led to
the observed differential kinetic rates. However, membrane
curvature is a major aspect of physiological membrane systems,
and there is significant interest in curvature driven effects.
Studies on the regulation of lipase and phospholipase activity
by curvature are notable examples. Classical as well as modern
research performed on this topic mainly utilizes liposomes of
different sizes to represent different curvatures, leading to dis-
coveries of diverse curvature sensing mechanisms (22, 23).
Depending on feedback characteristics of the enzymes (50),
such experimental observations may also be influenced by size-
dependent reaction effects as described here. Planar supported
membrane microarrays could be useful in control experiments
to distinguish these mechanistic details.

We have demonstrated that even the extremely minimal sys-
tem consisting of an ensemble of identical soluble enzymes acting

Fig. 6. Size-dependent reaction speed based on positive feedback through recruitment. (A) A kinetic model of a surface binding process. Surfaces with
different areas start with the same density σ0 and can bind molecules with a defined kinetic rate to evolve to density state 2σ0. (B, Left) The kinetic
scheme for direct positive feedback binding. kσmA is the binding rate. m is the order of positive feedback. In the case of m = 0, there is constant mem-
brane binding with no positive feedback. (Right) The MFPT for different surface areas to reach σ = 2 with direct positive feedback binding kinetics. (C)
Membrane size alters the continuity of positive feedback. Discontinuity becomes more prominent in smaller system sizes. Deviation from continuous posi-
tive feedback leads to a weaker positive feedback and slower overall reaction. (D) Fig. 5C plotted in reaction velocity versus time. The shaded area shows
the SD. The Top graph shows the reaction velocity difference (ΔV) between 1- and 0.25-μm2 arrays. The red arrow indicates the time point where ΔV is at
maximum. (E) Stochastic simulations at a fixed substrate and product densities plotted in reaction velocity versus time. The condition corresponds to the
membrane composition at the red arrow in D.
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on a membrane substrate can exhibit a reaction size–dependent
mean catalytic rate. For a pair of such enzymes in a competitive
reaction, this effect can lead to complete reaction inversion, in
which the final product depends on the system size. Although
these effects arise through a stochastic mechanism, the results
are not random and can be achieved with almost complete cer-
tainty. Reaction size dependency of an interfacial enzymatic reac-
tion emerges when two conditions are met: 1) the enzyme exhib-
its feedback, and 2) the intermediate binding interaction between
enzyme and membrane is not well equilibrated with the changing
membrane composition. Feedback is a genetically encodable
(and engineerable) property of the enzyme while the nonequili-
brium characteristic is a property of the reaction system. These
requirements are so basic, and simply met, that we suggest it is
unavoidable that they occur within cells and possibly govern
some biological functions. In addition to the enzymatic reactions
studied here, many important signaling events that involve the
activation of membrane substrate by soluble enzymes, such as
activation of Cdc42 (51, 52), RhoA (53), Rab-5 (54), Arf-1, and
Arf-6 (55), have been shown to exhibit positive feedback. Vesicle
budding and fusion processes (56) and protrusion and retraction
of membrane structures such as filopodia and lamellipodia (57)
as well as the formation of receptor signaling domains and pro-
tein condensates at the membrane (58) all represent dramatic
changes in spatial confinement coupled with membrane signaling
activity. All of these situations, and many others in cells, present
viable opportunities for size-dependent reaction rates to be uti-
lized in a regulatory mode.

Materials and Methods
Procedures for protein purification, microfabrication, and all lipid bilayer
experiments are included in SI Appendix.

Stochastic Simulations. The time evolution of all species in the reaction was
simulated stochastically using the Gillespie algorithm. Within the reaction
space, the membrane composition was approximated to be spatially homoge-
neous. The simulation was performed in MATLAB according to the kinetic
scheme in Fig. 5A. We approximated the solution concentration of E0, qE0, to
be constant since in the experiment there is a large solution reservoir. Each
molecular species is expressed as the exact number of molecules. The rate for
each transition is calculated as follows:

E0 ! E1; r1 ¼ kon � qE0 � rP �A,
E1 ! E0; r2 ¼ koff � rE1 �A,

E1 þ S ! E1S; r3 ¼ kf � rE1 � rS �A,
E1S! E1 þ S; r4 ¼ kr � rE1S �A,
E1S! E1 þ P; r5 ¼ kcat � rE1S �A:

A is the area of the membrane in μm2, and the surface density of each
membrane-associated species, rx, is expressed as discretemolecular copy num-
ber per unit area.We used the following rate parameters:

kon � qE0 ¼ 0:0001 t�1ðqE0taken as constant for infinite solution reservoirÞ:,
koff ¼ 0:1 t�1,

kf ¼ 0:005 μm2t�1,

kr ¼ 1 t�1,

kcat ¼ 50 t�1:

The kinetic parameters used are within similar ranges with reported kinetic
rate constants for PTEN (26). All simulations begin with 26,600/μm2 substrate
and 1,400/μm2 product (corresponding to 1.9% molar fraction of substrate
and 0.1% molar fraction of product on the membrane) unless otherwise
stated. This initial condition is used since in our simple model enzyme recruit-
ment to the membrane is strictly through binding to product. For any enzyme
to be recruited to themembrane, some product is required to “seed” the reac-
tion in the simulation. This is to mimic the initial enzyme catalysis from the
solution that starts the reaction, without introducing unnecessary complexity
to the model. Simulations of 1 and 0.25 μm2 were used to mimic large- and
small-scale membrane reactions, respectively. We note that a larger area dif-
ference amplifies any scale dependence in the simulations, though larger

reactions require significantly more computation time. Statistics were col-
lected from 1,000 simulations.

For the reaction case that has no positive feedback, the E0 ! E1 rate is
modified to be independent of rP:

E0 ! E1; r1 ¼ kon � qE0 �A:
The rate parameters used are as follows:

kon � qE0 ¼ 1:4 t�1,

koff ¼ 0:1 t�1,

kf ¼ 0:005 μm2t�1,

kr ¼ 1 t�1,

kcat ¼ 50 t�1:

For the reaction case that is fixed at steady state, the kinetic parameters used
are as follows:

kon � qE0 ¼ 0:0001 t�1,

koff ¼ 0:1 t�1,

kf ¼ 0:005 μm2t�1,

kr ¼ 1 t�1,

kcat ¼ 50 t�1:

Simulations begin with 14,000/μm2 substrate and 14,000/μm2 product (corre-
sponding to 1%molar fraction of substrate and 1% molar fraction of product
on the membrane), and the densities are fixed. The formed product from the
reaction is recorded separately to calculate the reaction velocity. The simula-
tion was performed until the numbers reach a steady state. Then, the reaction
was allowed to run for an extended time andwas recorded.

For the reaction case with near-equilibrium enzyme binding, either the kon
and koff are changed to the following:

kon � qE0 ¼ 0:01 t�1,

koff ¼ 10 t�1,

or kf and kcat are changed to the following:

kf ¼ 0:0001 μm2t�1,

kcat ¼ 1 t�1:

For the reaction case with near-equilibrium enzyme binding at low substrate
density, simulations begin with 76/μm2 substrate and 4/μm2 product. Either
the kon and koff are changed to the following:

kon � qE0 ¼ 0:01 t�1,

koff ¼ 10 t�1:

Or kon, kf , and kcat are changed to the following:

kon � qE0 ¼ 0:02 t�1,

kf ¼ 0:0001 μm2t�1,

kcat ¼ 1 t�1:

For the reaction case with the incorporation of catalysis from solution by ran-
dom collision of the enzymewith the membrane, we have included additional
reactions:

E0 þ S ! E0S; r6 ¼ kf2 � qE0 � rs � A,
E0S ! E0 þ S; r7 ¼ kr � rE0S � A,
E0S ! E0 þ P; r8 ¼ kcat � rE0S � A,

kf2 � qE0 ¼ 0:003 t�1ðqE0taken as constant for infinite solution reservoir:Þ:
Simulations begin with 28,000/μm2 substrate and 0/μm2 product.

Deterministic Simulations. Deterministic simulations were done by numeri-
cally solving coupled kinetic equations in MATLAB. Densities are evaluated as
number of molecules per μm2, and the solution enzyme concentration, qE0, is
constant. The rate equations are as follows:

drE1
dt

¼ kon � qE0 � rP � koff � rE1 � kf � rE1 � rS þ kr � rE1S þ kcat � rE1S,
drE1S
dt

¼ kf � rE1 � rS � kr � rE1S � kcat � rE1S,
drP
dt

¼ kcat � rE1S � kon � qE0 � rP þ koff � rE1,
drS
dt

¼ �kf � rE1 � rS þ kr � rE1S:
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The rate constants are as follows:

kon � qE0 ¼ 0:0001 t�1,

koff ¼ 0:1 t�1,

kf ¼ 0:005 μm2t�1,

kr ¼ 1 t�1,

kcat ¼ 50 t�1:

Simulations begin with 26,600/μm2 substrate and 1,440/μm2 product (corre-
sponding to 1.9% molar fraction of substrate and 0.1% molar fraction of
product on the membrane).

Analytical Model for Surface Adsorption. In terms of a continuum description
with deterministic chemical kinetic rate equations, the surface density of
adsorbed molecules, r, from an infinite solution reservoir follows the rate
equation:

dr
dt

¼ krm,

where k is a constant, andm represents the order of positive feedback (e.g.,m
¼ 0 for no feedback, m ¼ 1 for linear feedback, etc.). In this continuum
description, the time for density doubling from r0 to 2r0 (sD) can be obtained
by integrating the following rate equation:

sD ¼ 1
k

ð2r0

r0

1
rm

dr:

Taking a stochastic approach, the process of density doubling consists of a
Markov chain of n molecular adsorption events (copy number n molecules

goes to 2n), each with defined transition rates. We consider systems with dif-
ferent initial copy numbers of molecules, n, and correspondingly different
areas, An, at equivalent initial surface density to examine system size–specific
effects. For a system starting with n molecules, the ith transition has
rate krmAn, where r¼ ðnþ i� 1Þ=An is the momentary density of adsorbed
molecules while waiting for the ith transition event. The waiting time distribu-
tion at each step is given by pi sið Þ ¼ βie

�βisi where βi � krmAn and
hsii ¼

Ð1
0 sipi sið Þdsi ¼ 1=βi. The full probability distribution for sD resulting

from successive convolution of the individual transition time probability distri-
butions can be expressed in closed form as follows (59):

p sDð Þ ¼
Xn
i¼1

β1 � � � βnY
j ¼ 1
j 6¼ i

n ðβj � βiÞe�βisD :

Since the delay time probability distributions for each of the transitions are
independent, the mean doubling time, equivalent to MFPT for this one-way
process, can be calculated directly from the individual mean delay times,
hsDi ¼

Xn

i¼1
hsii, without need for the full distribution.

Data Availability. All study data are included in the article and/or supporting
information.
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