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Recent studies have reported that the gut microbiota influences mood and cognitive
function through the gut-brain axis, which is involved in the pathophysiology of
neurocognitive and mental disorders, including Parkinson’s disease, Alzheimer’s
disease, and schizophrenia. These disorders have similar pathophysiology to that of
cognitive dysfunction in bipolar disorder (BD), including neuroinflammation and
dysregulation of various neurotransmitters (i.e., serotonin and dopamine). There is also
emerging evidence of alterations in the gut microbial composition of patients with BD,
suggesting that gut microbial dysbiosis contributes to disease progression and cognitive
impairment in BD. Therefore, microbiota-centered treatment might be an effective adjuvant
therapy for BD-related cognitive impairment. Given that studies focusing on connections
between the gut microbiota and BD-related cognitive impairment are lagging behind those
on other neurocognitive disorders, this review sought to explore the potential mechanisms
of how gut microbial dysbiosis affects cognitive function in BD and identify potential
microbiota-centered treatment.
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1 INTRODUCTION

Bipolar disorder (BD) is a mood disorder characterized by recurring manic or hypomanic episodes
alternating with depressive episodes, which presence increases the risk of multisystem complications,
including cognitive impairment and metabolic disorders, seriously affecting the quality of life
(Goldstein et al., 2011; Carvalho et al., 2020). Moreover, symptomatic remission constantly precedes
the recovery of psychosocial function following a mood episode in BD patients, which is a trend
mostly attributed to persistent neurocognitive impairment (Gitlin and Miklowitz, 2017). Thus,
therapies focusing on cognitive improvement are greatly significant, considering the well-being and
quality of life of BD patients (Bonnín et al., 2019).

Cognitive impairment in BD patients is characterized by defects in neurocognitive areas,
including executive function, verbal and visual memory, working memory, attention, and
reaction time (Cullen et al., 2016). Tatay-Manteiga et al. (2018) observed neurocognitive
dysfunction across all stages of BD. Selective cognitive decline even persists during remission in
BD patients (Ott et al., 2021). Cross-sectional evidence also suggests that neurocognitionmay worsen
with chronic comorbidity progression in BD patients (Berk et al., 2017). Compared to patients with
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schizophrenia (Barch and Sheffield, 2014) or neurodegenerative
diseases, such as Alzheimer’s disease (AD) (Simjanoski et al.,
2021), BD patients exhibit a similar cognitive profile but with a
milder degree of impairment, suggesting that there is overlapping
pathophysiology underlying the cognitive impairment across
these diseases. Currently, potential mechanisms of cognitive
impairment in BD patients require further exploration.
Neuroimaging studies have identified certain structural
abnormalities associated with cognition, including a reduction
in the prefrontal lobe (Abe et al., 2015) and hippocampal volume
(Hoseth et al., 2016) and cortical thinning. A reduction in brain
volume, especially in the hippocampus, is mostly attributed to
excessive glucocorticoid exposure induced by oxidative stress
(Alfarez et al., 2008) and abnormal neuroplasticity induced by
inflammation and reduced brain-derived neurotrophic factor

(BDNF) concentrations (Mondelli et al., 2011). Multiple
studies have also demonstrated that significant associations
exist between cognitive impairment in BD and inflammation,
oxidative stress, and metabolic disorders (Hoseth et al., 2016;
Cuperfain et al., 2020).

With the emergence of microbiome research, gut microbiota
and gut-brain hormones have also been linked to cognitive
impairment in severe mental disorders (Bioque et al., 2021;
Misiak et al., 2020). Gut microbiota may modulate the
function of the central nervous system, thereby altering
behavior and cognition (Table 1), while the brain can activate
signaling pathways affecting immune and metabolic function and
host behavior—influencing the population and composition of
the gut microbiota. The 2-way crosstalk between the central
nervous system and gut microbiota via various routes

TABLE 1 | Gut microbial dysbiosis can affect cognitive function in rodent models.

References Model type Effects
on cognitive function

Mechanism

Bercik et al. (2011) germ-free mice reduced exploratory behavior reduced hippocampal levels of BDNF
Gareau et al. (2011) germ-free mice memory dysfunction gut microbial dysbiosis; dysfunction of HPA axis
Crumeyrolle-Arias et al.
(2014)

germ-free mice deficits in social interaction decreased dopaminergic turnover rate in the frontal cortex,
hippocampus, and striatum

Desbonnet et al. (2014) germ-free mice social impairments and decreased social
preference

gut microbial dysbiosis; modulation of immune cell cytokines
release, changes in vagal nerve activity, and neuroendocrine
function

Hoban et al. (2016b) germ-free mice anxiety-related behaviors and impaired
social cognition

hypermyelinated axons in the prefrontal cortex

Luczynski et al. (2016) germ-free mice increased maladaptive stress responsivity expansion and dendritic morphological changes in the
amygdala and hippocampal

Lu et al. (2018) germ-free mice deficits in spatial memory, learning
memory, and social novelty

abnormal morphological development and maturation in the
grey and white matter

Desbonnet et al. (2015) antibiotic-treated mice deficits in memory and social interaction altered dynamic of the tryptophan metabolic pathway;
reduced BDNF, oxytocin, and vasopressin expression

Fröhlich et al. (2016) antibiotic-treated mice deficits in novel object recognition gut microbial dysbiosis; brain region-specific changes in the
expression of cognition-relevant signaling molecules, notably
BDNF, NMDA receptor subunit 2B, serotonin transporter,
and neuropeptide Y system

Hoban et al. (2016a) chronic antibiotic-treated mice deficits in spatial memory altered CNS serotonin concentration along with changes in
the mRNA levels of corticotrophin-releasing hormone
receptor 1 and glucocorticoid receptor

Möhle et al. (2016) antibiotic-treated mice decreased working memory decreased hippocampal neurogenesis; reduced Ly6C(hi)
monocytes

Ceylani et al. (2018) antibiotic-treated mice decreased locomotor activity and
impaired recognition memory

lower levels of serum BDNF are not associated with cognitive
impairment but with changes in affective-like behaviors

Zhan et al. (2018) senescence-accelerated mouse
prone 8

deficits in learning and memory of spatial
orientation

gut microbial dysbiosis

Lee et al. (2020a) fecal transplant gavages from aged
mice

depressive-like behavior, impaired short-
term memory, and impaired spatial
memory

decreased fecal SCFAs, acetate, propionate, and butyrate

Lee et al. (2020b) oral gavage of Escherichia coli deficits in spatial learning and memory gut microbial dysbiosis; release of lipopolysaccharide;
stimulation of vagal-dependent gut-brain signaling

Pearson-Leary et al.
(2020)

short-defeat latencies/vulnerable rats increased depressive-type behaviors inflammation in the ventral hippocampus; higher microglial
density and IL-1β expression in the ventral hippocampus

Xie et al. (2020) fecal transplant gavages from septic
mice

learning impairments and anxiety-like
behaviors

gut microbial dysbiosis; stimulation of vagal-dependent gut-
brain signaling

Wang et al. (2021) fecal transplant gavages from sleep
deprivation patients in germ-free mice

deficits in attention and memory domain metabolic dysbiosis; increased neuroinflammation and
microglial activity in the hippocampus and medial prefrontal
cortex

Hua et al. (2021) spared nerve injury mice deficits in spatial learning and memory the increase of Actinobacteria, Proteus, and
Bifidobacterium; disturbances of lipids and amino acid
metabolism
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including the immune system, enteroendocrine signaling, the
vagus nerve and the enteric nervous system, as well as multiple
gut microbial metabolites is known as the brain-gut axis (Cryan
et al., 2019). The gut microbiota might be involved in postnatal
development and have long-term implications for brain function
(Sharon et al., 2016). Increased intestinal permeability promotes
the release of pro-inflammatory cytokines and microbial-derived
metabolites [e.g., lipopolysaccharides (LPS) and lipoproteins]
into the circulatory system, causing systemic inflammation and
blood-brain barrier impairment (Braniste et al., 2014; Schirmer
et al., 2016; Houser and Tansey, 2017; Zhao et al., 2017).
Neurochemical signals activated by the gut microbiota can be
transmitted from the enteric nervous system to the central
nervous system via the vagus nerve (Forsythe et al., 2014;
Fung et al., 2017). Gut microbial dysbiosis also alters the
expression of 5-hydroxytryptamine (5-HT) receptors,
neurotrophic factors (e.g., BDNF), and N-methyl-d-aspartic
acid (NMDA) receptor subunits in the hippocampus (Bercik
et al., 2011), as well as myelin formation in the prefrontal
cortex (Hoban et al., 2016a), leading to impaired social
cognition. Such extensive overlapping mechanisms suggest a
significant role of the gut microbiota in the development of
cognitive impairment in BD.

Studies explicitly linking the gut microbiota to cognitive
impairment in BD remain limited in number compared to

those focusing on other neurodegenerative and psychiatric
disorders. Therefore, this review summarizes preclinical and
clinical evidence to explore potential mechanisms by which
the gut microbiota affects cognitive function in BD patients
and identify potential microbiota-centered treatment. Studies
linking the gut microbiota to cognitive impairment in
neurodegenerative and mental disorders might have
implications for BD patients. Several studies have addressed
the involvement of microbial-derived metabolites [e.g., single-
chain fatty acids (SCFAs), secondary bile acids (BAs), and LPS],
neurotransmitters, and gastrointestinal hormones in cognitive
function. Complex interactions with the gut microbiota may also
explain some cognitive side effects of certain psychiatric
medications (Figure 1). This review concludes by discussing
potential cognitive treatment targeting the gut microbiota,
which may improve the quality of life of BD patients.

2 Direct Effects of the GutMicrobiota and its
Metabolites on Cognitive Function in BD
Patients
Evidence of altered gut microbial composition in BD patients
suggests that gut microbial dysbiosis contributes to disease
progression and pathophysiology in BD patients (Evans et al.,
2017; Lai et al., 2020; McIntyre et al., 2021). Although there are

FIGURE 1 | Possible pathways for gut microbial dysbiosis to affect cognitive function in BD. Gutmicrobial dysbiosis is widely viewed in BD patients, whichmay have
a negative effect on cognitive function (e.g., learning and memory, executive function, and cognitive flexibility). Alterations in the gut microbial composition in BD patients
increase intestinal permeability, promoting the release of pro-inflammatory cytokines and microbial-derived metabolites into the circulatory system, causing systemic
inflammation and metabolic dysbiosis. Gut microbiota also modulates energy metabolism and cognitive function by influencing the synthesis of neurotransmitters
and gastrointestinal hormones, as well as the vagal-dependent gut-brain signaling. Psychiatric medications and changing diet patterns in BD patients have complex
interactions with gut microbiota, thereby influencing cognitive function. LPS, lipopolysaccharides; SCFA, single-chain fatty acids; GABA, γ-aminobutyric acid; PYY,
Peptide YY; KYN, kynurenine; KYNA, kynurenic acid; Ba, bile acid; TMAO, trimethylamine-N-oxide; NE; GLP-1, glucagon-like peptide-1; Treg, regulatory T cell; Th,
helper T cell; INF, Interferon; IL, Interleukin.
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few studies discussing the relationship between gut microbiota
and cognitive impairment in BD patients, some have found that
specific gut microorganisms are associated with reduced cognitive
function (Severance et al., 2016). The relationship between the gut
microbiota and specific cognitive domains, including learning,
memory, attention, processing speed, and executive function—all
of which are also impaired in BD—has been demonstrated in
animal and human studies on hepatic encephalopathy (Bajaj
et al., 2012), diabetes mellitus (Zheng et al., 2021), and aging
(Li et al., 2021). Gut microbial dysbiosis also contributes to
cognitive impairment in various neurodegenerative and
psychiatric disorders, including Parkinson’s disease (Mulak
and Bonaz, 2015; Sampson et al., 2016), AD (Jiang et al.,
2017), and schizophrenia (Bioque et al., 2021), suggesting
potential overlapping mechanisms between these conditions
and BD.

2.1 Gut Microbial Alterations in BD Patients
Disruption of intestinal homeostasis affects the host’s metabolism
and immune responses, leading to systemic disorders ranging
from metabolic syndrome to chronic inflammation, which is
closely related to the development of cognitive impairment
(Kesika et al., 2021; Liu et al., 2020; McGrattan et al., 2019;
Zeng et al., 2021). Therefore, a quantitative analysis of the gut
microbiota in BD patients may help to improve an understanding
of the mechanisms behind the development of cognitive
impairment in this population. The most dominant gut
microbial phyla in healthy adults include Firmicutes,
Bacteroidetes, Proteobacteria, Actinobacteria, and
Verrucomicrobia, with Firmicutes and Bacteroidetes
accounting for nearly 80% of the total amount (Eckburg et al.,
2005). In contrast, multiple studies have demonstrated alterations
in gut microbial composition in BD patients compared to healthy
controls (Figure 2). Lai et al. (2020) found that, in BD patients,
counts of Faecalibacterium prausnitzii, Bacteroides, Prevotella,
Atopobium cluster, Enterobacter spp., and Clostridium cluster

organisms were significantly increased, and the log10 (ratio of
Bifidobacteria to Enterobacteriaceae) was decreased. Another two
studies have shown an increase in organisms of the Firmicutes
and Bacteroides phyla but a decrease in those of the Bacteriodetes
phylum in BD patients, with the Firmicutes-to-Bacteriodetes
ratio being accordingly increased (Rong et al., 2019; Lai WT.
et al., 2021). An increased Firmicutes-to-Bacteriodetes ratio is a
recognized indicator of obesity (Crovesy et al., 2020; Magne et al.,
2020). However, bacteria of the Ruminococcaceae family and
Faecalibacterium genus, which are butyrate-producing bacteria,
were reduced in BD patients relative to healthy controls in other
studies (Hu et al., 2019; Lai WT. et al., 2021; Sublette et al., 2021).
In 4 of 5 studies, lower α-diversity was observed in BD patients
compared to healthy controls (Sublette et al., 2021).

In conclusion, the most convergent taxonomic finding in BD
patients is the reduction in butyrate-producing bacteria, gut
microbiota known to impact cognitive function by producing
SCFAs, including acetate and butyrate (Tanca et al., 2017). A
decrease in butyrate-producing bacteria, such as those of the
genus Faecalibacterium, was also observed in patients with AD
and accompanied by neuroinflammation and impaired cognitive
function (Ling et al., 2020; Marizzoni et al., 2020). Associations
between cognitive impairment and decreased butyrate-producing
bacteria have also been observed in patients with Parkinson’s
disease (Nuzum et al., 2020; Tan et al., 2021) and alcohol use
disorders (Leclercq et al., 2020) and are likely mediated by
butyrate. It has been demonstrated that butyrate levels in the
central nervous system can be influenced by gut microbial
composition; for example, Clostridium butyricum, as a
probiotic bacteria, restored butyrate content in the brain and
significantly alleviated cognitive impairment and
histopathological changes in a mouse model of vascular
dementia (Liu et al., 2015). Clostridium butyricum treatment
also attenuated cognitive impairment and prevented microglia-
mediated neuroinflammation in a manner mediated by butyrate
in an AD mouse model (Sun et al., 2020). Prolonged treatment

FIGURE 2 | Altered gut microbial composition in BD. 1 (Hu et al., 2019); 2 (Lai J. et al., 2021); 3 (Rong et al., 2019); 4 (Zheng et al., 2020); 5 (Evans et al., 2017)
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with sodium butyrate stimulates neurogenesis and improves
memory and associative learning (Kim et al., 2009;
Govindarajan et al., 2011). On the one hand, butyrate inhibits
histone deacetylase, which plays an important role in intestinal
barrier regulation and intestinal energy metabolism, thereby
affecting cognitive function (Leonel and Alvarez-Leite, 2012;
Tanca et al., 2017). Butyrate can also increase hippocampal
neurogenesis and the expression of the neurotrophic factor
BDNF, improving learning behavior and long-term memory
(Levenson et al., 2004; Sleiman et al., 2016). Considering the
neuroprotective and cognitive improvement effects of butyrate,
inadequate concentrations of butyrate-producing bacteria may be
involved in the pathophysiology of cognitive impairment in BD
patients.

2.2 Effects of Gut Microbial Metabolites on
Cognitive Function in BD Patients
The interaction between butyric acid-producing bacteria and
cognitive impairment suggests that microbiota-produced
small-molecule metabolites mediate host-microbiome
interactions (Donia and Fischbach, 2015). An analysis of brain
transcriptomic data from BD patients has also revealed
disturbances in gut microbial metabolites, such as tryptophan,
SCFAs, and BAs (Moolamalla and Vinod, 2020). These
overlapping metabolite profiles suggest potential routes for the
involvement of the gut microbiota in cognitive impairment in BD.

2.2.1 Effects of Inflammatory Gut Microbial
Metabolites
SCFAs (including acetate, propionate and butyrate), which are
typical anti-inflammatory molecules produced by the gut
microbiota, can exert anti-inflammatory effects by inhibiting
interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α)
expression through the FFAR2 (GPR43) receptor (Pirozzi et al.,
2018). Animal studies have provided evidence on the effects of
SCFAs on cognitive function through immunological pathways.
The effects of butyrate on cognitive function have been described
above. Additionally, decreased absolute concentrations of acetate,
propionic acid, and butyrate lead to blood-brain barrier
dysfunction, microglial activation, and elevated cortical IL-1β,
IL-6, and TNF-α expression levels in mice maintained on a high-
salt diet, exhibiting a reduced number of organisms in the
Bacteroidetes and Proteobacteria phyla and an increased
number of those in the Firmicutes phylum, respectively (Hu
et al., 2020). Mice with a deficiency of the SCFA receptor
FFAR2 showed global defects in microglia similar to those of
germ-free mice, suggesting that the gut microbiota regulates
microglia maturation and function (Borre et al., 2014; Erny
et al., 2015). Microglia cells mediate neuroinflammation as the
major innate immune cell population in the brain, playing an
important role in the pathophysiology of BD (Maletic and Raison,
2014) and cognitive impairment (Feng et al., 2017; Zhao et al.,
2019). However, to our knowledge, studies directly linking SCFAs
to cognitive impairment in BD are still scarce. Indirectly, butyrate
has been tested as a potential treatment for mood disorders,
including BD and major depressive disorder, acting by

controlling epigenetic programming associated with cognitive
and behavioral regulation as a histone deacetylase inhibitor
(Machado-Vieira et al., 2011). Lithium carbonate, one of the
most commonly used drugs for treating BD, may activate anti-
inflammatory regulatory T-cell responses through an FFAR2-
dependent mechanism by altering the SCFA-producing gut
microbiota (e.g., through upregulation of the butyric acid-
producing bacterium Akkermansia muciniphila) to change
SCFA profiles (Huang et al., 2022). With the support of some
clinical studies, given the positive effects of lithium carbonate on
cognitive functions, including memory and attention (Dias et al.,
2012), disruption of the SCFA profile may impair cognitive
function in BD patients through systemic inflammation.
Marizzoni et al. (2020) found that both cognitive function and
endothelial dysfunction in older adults are positively correlated
with the pro-inflammatory cytokines acetate and valerate but
negatively correlated with the levels of butyric acid and IL-10. The
gut microbiota with reduced SCFA production can also trigger an
intestinal inflammatory response and progression of Parkinson’s
disease (Unger et al., 2016; Vascellari et al., 2020; Aho et al., 2021).
Such clinical evidence suggests that SCFAs are involved in the
development of cognitive impairment through systemic
inflammation caused by endothelial dysfunction.

Gut-derived tryptophan metabolites are also one of the
microbiome-dependent signals regulating inflammatory
responses in the host. In the gastrointestinal tract, tryptophan
metabolism follows three major pathways, including the
kynurenine pathway, the aryl hydrocarbon receptor pathway,
and the serotonin production pathway (Figure 3). A review by
Więdłocha et al., 2021) supposed that metabolites of tryptophan
degradation along the kynurenine pathway not only have an
adverse effect on several psychiatric disorders, including BD,
schizophrenia, depression, dementia, and AD, but also toxicity on
cognitive function. An experiment conducted by Leblhuber et al.
(2018) revealed that elevation of the kynurenine pathway may be
associated with reduced Faecalibacterium prausnitzii and
activation of macrophages in AD patients with impaired
cognitive function. Notably, BD patients also show reductions
in Faecalibacterium populations (Hu et al., 2019). Several studies
have determined that gut microbial dysbiosis activates
indoleamine 2, 3-dioxygenase 1, the rate-limiting enzyme in
the kynurenine pathway (Agus et al., 2018). Depletion of the
gut microbiota in mice induces elevation of the
kynurenine–kynurenic acid pathway, anxiety-like behavior,
and cognitive deficits (Desbonnet et al., 2015). The
kynurenine–kynurenic acid pathway is also elevated in germ-
free mice transplanted with microbiota from schizophrenic
patients, leading to impaired learning and memory functions
(Zhu et al., 2020). In contrast, performances in both cognitive
function (including object exploration and recognition, passive
avoidance, and spatial discrimination, all depending on the
integrity of hippocampal function) and synaptic plasticity were
improved in a rodent model with reduced kynurenic acid
synthesis (Potter et al., 2010). Aside from the kynurenine
pathway, tryptophan can also be degraded into aryl
hydrocarbon receptor agonists by the gut microbiota, which
not only protect against increased gut permeability (Scott
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et al., 2020) but also reduce neuroinflammation by inducing
interferon-I signaling in astrocytes (Rothhammer et al., 2016).
Therefore, interventions aimed specifically at reducing
kynurenine pathway activation may constitute a promising
strategy for cognitive improvement in BD patients.

Gut microbial dysbiosis also increases the production of LPS, a
pro-inflammatory endotoxin, which diffuses into the blood along
with increased gut permeability. LPS also contributes to the
development of cognitive impairment through systemic
inflammation, as evidenced by lower scores on the Boston
naming test measuring visual confrontation naming, Verbal
Fluency measuring executive function, and Word List Memory
test measuring working memory (Chen et al., 2008). Additionally,
LPS has adverse effects on both structure and function in the

brain, increasing the activity of the amygdala responsible for
emotion control and affecting object-exploration behavior by
impairing cognitive function (Haba et al., 2012). LPS also
decreases BDNF expression in the hippocampus, inducing
cognitive impairment (Dinel et al., 2014). Consistently, gut-
derived LPS-related immune activation has been observed in
BD patients (Rudzki and Szulc, 2018). In mice transplanted with
intestinal flora from BD patients, elevated levels of inflammatory
cytokines and TRANK1 messenger RNA (TRANK1 is an
important risk gene of BD) in the hippocampus and prefrontal
cortex may be associated with LPS stimulation of BV-2 microglia
(Lai J. et al., 2021). Therefore, LPS leakage due to gut microbial
dysbiosis may play an important role in cognitive impairment
in BD.

FIGURE 3 | Dietary tryptophan metabolism follows three major pathways in the gastrointestinal tract: 1) the kynurenine pathway via IDO1, which can be activated
by gut microbial dysbiosis; 2) production of serotonin in enteroendocrine cells and indirect regulation of tryptophan availability under the control of gut microbiota; and 3)
the direct conversion to AhR ligands by gut microbiota. The figure shows an altered dynamic of the tryptophan metabolic pathway in IBS, BD, and germ-free mice based
on the available clinical data. Weights of arrows indicate the strength of pathway activation. IDO1, indoleamine 2,3-dioxygenase 1; TDO, tryptophan 2,3-
dioxygenase; TpH1, tryptophan hydroxylase 1; AhR, aryl hydrocarbon receptor.
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Bidirectional crosstalk between the hypothalamic-pituitary-
adrenal (HPA) axis and the gut-brain axis in severe mental illness
has been demonstrated in several studies (Misiak et al., 2020;
Bioque et al., 2021), in which pro-inflammatory gut microbial
metabolites play a key role. SCFAs not only decrease the activity
of microglia and limit local inflammatory processes, but also
decrease the expression of genes encoding proteins involved in
the HPA axis (van de Wouw et al., 2018). LPS can directly
stimulate cortisol secretion by human adrenal cells by a
cyclooxygenase-dependent mechanism (Vakharia and Hinson,
2005). Reduced SCFA production (Pirozzi et al., 2018) and LPS
leakage (Chen et al., 2008) in BD patients can also trigger an
intestinal inflammatory response, enhancing release of cytokines,
including IL-1β, IL-6 and TNF-α, all of which are potent
activators of the HPA axis (Turnbull and Rivier, 1995). Since
HPA axis activation and increased basal cortisol are known to be
responsible for cognitive impairment including worse
performance in visuospatial associative memory, attention and
executive function in BD patients (Tournikioti et al., 2018), gut
microbial dysbiosis may impair cognitive function in BD patients
by activating the HPA axis. A study by Aizawa et al. (2018)
provide some insight into the association between gut microbial
dysbiosis and the HPA axis dysregulation in BD, as a significant
negative correlation between the count of Bifidobacterium and
cortisol levels was found. Notably, HPA axis dysregulation in BD
may in turn further exacerbate gut microbial dysbiosis and
intestinal permeability (Vanuytsel et al., 2014; Yoshikawa
et al., 2017), thus creating a vicious cycle leading to further
cognitive impairment.

2.2.2 Effects of Gut Microbial Metabolites Associated
With Metabolic Syndrome
Studies have shown that gut microbial metabolites (including
SCFAs, BAs, and LPS) as signaling molecules regulate
physiological processes ranging from appetite and intestinal
motility to energy metabolism in the host (Heiss and
Olofsson, 2018). Therefore, gut microbial dysbiosis may lead
to metabolic disorders and contribute to metabolic comorbidities,
including diabetes mellitus and insulin resistance, playing an
important role in the pathophysiology of various psychiatric
diseases, including BD. BD patients presenting with metabolic
syndromes are often at high risk of cognitive impairment.

In addition to SCFAs, food-derived gut microbial metabolites
include BAs, trimethylamine-N-oxide (TMAO), and glutamate.
BAs are synthesized from cholesterol in the liver and further
metabolized to secondary bile acids by the gut microbiota
(Schmidt et al., 2010). Gut microbial dysbiosis disrupts the
signaling of BAs binding to the nuclear farnesoid X receptor
(FXR) and Takeda G protein-coupled membrane receptor 5
(TGR5) (Huang et al., 2016; Chiang and Ferrell, 2020), which
is also found in the brain (He et al., 2021). Although the effect of
BAs on cognitive function in BD remains unclear, an increased
ratio of secondary cytotoxic BAs to primary BAs has been linked
to AD and cognitive impairment (MahmoudianDehkordi et al.,
2019). INT-777, a TGR5 agonist, ameliorates synaptic
dysfunction and reverses Aβ1-42-induced cognitive
impairment in the mouse model of acute neurotoxicity by

upregulating the expression of postsynaptic and presynaptic
proteins (PSD95 and synaptophysin) and inhibiting apoptosis
(Wu et al., 2018). BAs, such as tauroursodeoxycholic acid, have
also been suggested as a potential treatment for AD
(Zangerolamo et al., 2021). Thus, BAs may also be potential
mediators between gut microbiota and cognitive impairment in
BD patients.

TMAO has also been demonstrated to mediate gut
microbiota-induced cognitive impairment. Administration of
TMAO increases synaptic impairments by inhibiting the
mammalian target of the rapamycin signaling pathway and
decreases the expression levels of synaptic plasticity-related
proteins, thereby exacerbating cognitive impairment (Li et al.,
2018). A choline-induced AD mouse model exhibited increased
TMAO synthesis, which is positively correlated with cognitive
deterioration (Wang et al., 2020). Therefore, the role of TMAO in
BD patients deserves further investigation.

3 THE ROLE OF GASTROINTESTINAL
HORMONES AND NEUROTRANSMITTERS
IN THE INTERACTION BETWEEN THE GUT
MICROBIOTA AND COGNITIVE
IMPAIRMENT IN BD

The brain–gut axis reflects a complex bidirectional
communication network between the gut microbiota and the
brain, which relies on various neurotransmitters, gastrointestinal
hormones, cytokines, and growth factors (Quigley, 2017; Cryan
et al., 2019). These neurotransmitters and gastrointestinal
hormones are produced by entero-endocrine cells in response
to gut microbial inducement (Heiss and Olofsson, 2018). The gut
microbiota also regulates the metabolisms of amino acids
essential for the synthesis of neurotransmitters and
gastrointestinal hormones (Holzer, 2016). Thus,
gastrointestinal hormones and neurotransmitters may be
important mediators in the interaction between the gut
microbiota and cognitive impairment in BD.

3.1 The Role of Gastrointestinal Hormones
Gut microbial dysbiosis increases the intestinal permeability and
penetration of pro-inflammatory factors, such as LPS, leading to
intestinal inflammation, which, in turn, promotes energy
absorption and reduces satiety via gastrointestinal hormones
(Gomes et al., 2018; Nagpal et al., 2018). These gastrointestinal
hormones have receptors expressed in regions of the brain that
regulate not only hunger and energy metabolism but also stress,
behaviors, and cognitive function (Chan et al., 2003; Bucinskaite
et al., 2009).

Glucagon-like peptide-1 (GLP-1), an insulinotropic hormone
secreted by entero-endocrine L-cells, can stimulate glucose-
dependent insulin secretion in response to carbohydrate
uptake (Holt & Trapp, 2016). In rodent models, butyrate and
propionate stimulate GLP-1 secretion from entero-endocrine
L-cells via FFAR2 (Tolhurst et al., 2012). Therefore, reduced
concentrations of butyrate-producing bacteria in BD patients
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may downregulate GLP-1 secretion. GLP-1 receptors are
expressed in the cerebral cortex, hypothalamus (ventral medial
nucleus and arcuate nucleus), and limbic system (amygdala and
hippocampus), all of which are regions responsible for the
regulation of emotion and cognition (Heppner et al., 2015).
GLP-1 and GLP-1 receptor (GLP-1R) signaling have a
neuroprotective role in the control of insulin resistance,
synaptic plasticity, and neuroinflammation and improve
cognitive function in learning, memory, executive function,
and attention (Müller et al., 2019; Flintoff et al., 2021).
Therefore, reduced GLP-1R signaling caused by reduced
butyrate-producing bacteria in BD patients may impair
synaptic plasticity and cognitive function, as demonstrated by
several studies. Liraglutide, a GLP-1 agonist, reversed manic-like
symptoms and impairment in working and recognition memory
by improving hippocampal oxidation and BDNF levels in a
D-amphetamine-induced BD model (Chaves Filho et al.,
2020). Serum GLP-1 levels are significantly lower in BD
patients compared to healthy controls and negatively correlate
with previous mood episodes (Rosso et al., 2015). In non-diabetic
BD patients, liraglutide had beneficial effects on several cognitive
domains, including auditory verbal learning, working memory,
and attention (Mansur et al., 2017). Therefore, it is likely that gut
microbial dysbiosis affects cognitive function in BD patients via
GLP-1R signaling.

Peptide YY (PYY) is another intestinal satiety hormone
produced by entero-endocrine L-cells, which affects the central
nervous system by inhibiting orexigenic neurons expressing
neuropeptide Y (Wynne and Bloom, 2006). Although there is
limited evidence directly linking PYY to BD, a reduction in
peripheral PYY concentrations might underlie the lack of
GABA inhibition associated with impaired cognitive function
in BD, considering that both neuropeptide Y and γ-aminobutyric
acid (GABA) are released by arcuate neuropeptide Y neurons
(Acuna-Goycolea et al., 2005; Huber et al., 2018).

Adipokines, represented by adiponectin and leptin, are
cytokines or hormones secreted by white adipocytes in
response to increased circulating inflammatory factors
(Aguilar-Valles et al., 2015). Gut microbial dysbiosis elicits
the penetration of microbial components (e.g., LPS),
compromising leptin signaling and leading to leptin
resistance and sustained high leptin levels (Faggioni et al.,
1997). Intracerebroventricular administration of LPS induces
an elevation in leptin receptors in the hippocampus,
accompanied by impaired learning and memory, suggesting
that leptin signaling disturbances in the hippocampus are
involved in the regulation of cognitive responses (Da Ré
et al., 2020). Studies suggest that leptin levels may affect
cognitive function in BD patients. The TNF-α antagonist,
infliximab, reduces plasma leptin levels in BD patients by
modulating soluble tumor necrosis factor receptor 2,
contributing to better performance on non-literal memory
tasks and increased overall cortical volume, both of which
are negatively correlated with the leptin level (Mansur et al.,
2020). Adiponectin is the most abundant plasma adipokine that
regulates energy expenditure, and it improves insulin sensitivity
and fatty acid oxidation as an anti-inflammatory factor (Berg

et al., 2002; Kubota et al., 2007). In current studies, adiponectin
has been shown to improve cognitive function mainly by
regulating insulin sensitivity and inhibiting inflammation
(Rizzo et al., 2020). Additionally, it alleviates isoflurane-
induced cognitive impairment in aging models by activating
the p38-mitogen-activated protein kinase pathway and
promoting the proliferation of hippocampal precursor cells
(Zhang et al., 2019). Studies on adiponectin levels in BD
patients remain controversial since body mass index seems to
be more strongly correlated with adiponectin levels than mood
status in BD patients (Platzer et al., 2019). Therefore, it is
difficult to identify the role of the gut microbiota in the
interaction between adiponectin and cognitive function in
BD patients, which may be more directly correlated with
comorbidities in BD patients.

Cholecystokinin (CCK) is a satiety hormone secreted from
I-cells of the proximal small intestines during digestion
(Raybould, 2007). Vagal afferent neurons, primary sensory
neurons to regulate meal size, exhibit decreased CCK
sensitivity when the gastrointestinal tract is colonized with
high-fat-type microbiome, leading to increased food intake
and body weight (Kim et al., 2020). LPS leakage due to
increased inflammatory microbiome including Bacteroides and
Prevotella also impairs CCK-induced satiety, and promotes food
intake and excessive weight gain in aging mice (Rubio et al.,
2021). Therefore, decreased CCK signaling caused by gut
microbial dysbiosis may exacerbate emotional and cognitive
impairment associated with obesity and metabolic syndrome.
Except for binding to local vagally expressed receptors, periphery
CCK can also act on CCKB receptors, which is widely expressed
in limbic system (including the hippocampus and the prefrontal
cortex), and thus directly affect emotion and cognition (Ballaz
et al., 2020). Despite multiple studies showing consistent
cognitive enhancing effects by CCKB receptor activation
(Taghzouti et al., 1999; Hebb et al., 2005; Plagman et al.,
2019), its role is virtually unknown in BD. Only one study by
Sears et al. (2013) found associations between suicide attempt and
12 SNPs of CCKB receptors in BD patients. Therefore, further
investigation into the role of CCK in cognitive function in BD is
warranted.

3.2 The Role of Neurotransmitters
Regulated by the Gut Microbiota
Gut microbiota can produce most of the neurotransmitters or
neuromodulators in the human brain, including dopamine
(which can be produced by Bacillus and Serratia),
norepinephrine (produced by Escherichia, Bacillus, and
Saccharomyces), serotonin (produced by Candida,
Streptococcus, Escherichia, and Enterococcus), or GABA
(produced by Lactobacillus and Bifidobacterium) (Donia and
Fischbach, 2015; Strandwitz, 2018). These neurotransmitters
mediate gut-brain signals, communicating with various regions
of the brain, including the frontal cortex, limbic system, and
autonomic and neuroendocrine centers, regulating not only
appetite-related sensations but also emotion, cognition, and
behavior (Holzer, 2016).
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Dysregulation of the dopaminergic system contributes to both
pathophysiology and impaired executive function in BD (Bercik et al.,
2011; Kao et al., 2018). Various gut microbiota can produce
dopamine, leading to dopaminergic aberrations when gut
microbial dysbiosis occurs in BD (Tsavkelova et al., 2000). Mice
treated with the dopamine transporter protein inhibitor GBR12909
(15mg/kg) constitute a validated animal model for BD, whereas
germ-free mice are less susceptible to GBR12909 with less mania-like
behavior, suggesting that the gutmicrobiota contributes to the disease
progression of BD via the dopaminergic system (de Miranda et al.,
2020). Additionally, para-Cresol-treated mice with social-behavioral
deficits have a similar gutmicrobial profile to that of BD patients (e.g.,
depleted Clostridiales), with a reduction in excitability and number of
evoked action potentials of dopamine neurons in the ventral
tegmental area (Bermudez-Martin et al., 2021). The increase in
Bacteroides and Prevotella, which is also observed in BD patients,
is negatively associated with dopamine transporter expression in the
brain (Hartstra et al., 2020). The application of probiotics has been
demonstrated to prevent cognitive impairment by regulating the gut
microbiota, thereby increasing serotonin, dopamine, and GABA
levels and restoring neuronal impairment (Song et al., 2021). The
evidence presented above strongly supports the interaction between
the dopaminergic system and gut microbiota, underlying the
cognitive impairment in BD.

Serotonin, also known as 5-HT, is significantly correlated with
cognitive function in BD patients (Chou et al., 2012). In clinical
studies, tryptophan levels and the kynurenine-dependent tryptophan
index were reduced in patients with bipolar mania and were
positively correlated with the Young Mania Rating Scale and Brief
Psychiatric Rating Scale scores (Myint et al., 2007). Reduced 5-HT
levels in the brain lead to impaired cognitive flexibility, which is the
characteristic type of cognitive impairment in BD (Evers et al., 2007).
Notably, the gut microbiota can divert tryptophan metabolism to the
production of kynurenine instead of 5-HT by activating indoleamine
2, 3-dioxygenase and tryptophan 2,3-dioxygenase (Badawy, 2017). A
lack of aryl hydrocarbon receptor ligands in the intestinal contents of
germ-freemice has been consistently observed (Lamas et al., 2016). In
germ-free mice, there are also relatively low plasma kynurenine levels
accompanied by increased indoleamine 2,3-dioxygenase activity, and
kynurenine levels increase in these animals after recolonization of the
gut microbiota (Clarke et al., 2013; Van der Leek et al., 2017). The
altered dynamic of the tryptophan metabolic pathway has also been
implicated in a study of postmortem anterior cingulate gyrus in BD
patients, showing increased tryptophan 2,3-dioxygenase activity and
kynurenine levels (Miller et al., 2006). Thus, the activation of the
kynurenine pathway by gut microbiota dysbiosis consequently
increases tryptophan consumption, which potentially contributes
to the reduced 5-HT neurotransmission in BD patients, a
statement being supported by studies focusing on comorbid
irritable bowel syndrome (IBS) in BD patients (Tseng et al., 2016)
(Figure 3). IBS, characterized by abdominal pain, bowel movement
disorders, and gut microbial dysbiosis, is considered to be a valid
contributor to BD (Castellini et al., 2016; Rosenblat et al., 2020). A
follow-up study showed that IBS patients in clinical remission still
experience persistent attention impairment, with a continuous
increase in plasma IL-6 levels, the kynurenine-to-tryptophan ratio,
and inactivation of the cortisol awakening response (Clarke et al.,

2020). Acute tryptophan depletion significantly reduces plasma
tryptophan and 5-hydroxyindoleacetic acid in IBS patients,
inducing a negative shift in affective memory but without
significant changes in mood (Kilkens et al., 2004). The evidence
above suggests that 5-HT regulation by the gut microbiota may be
involved in cognitive impairment in BD patients.

The gut microbiota profoundly affects peripheral GABA
levels. Multiple organisms of gut microbiota are also involved
in GABA synthesis, including a range of Bifidobacterium,
Lactobacillus, and 16 intestinal Bacteroides strains (Barrett
et al., 2012; Luck et al., 2021; Otaru et al., 2021). In germ-free
animals, there is a significant reduction in GABA levels in the gut,
serum, and brain (Matsumoto et al., 2013). Intestinal and
peripheral GABA levels may influence the central nervous
system through the gastrointestinal vagal nervous system.
Bravo et al. (2011) found that treatment with Lactobacillus
rhamnosus increases GABA(B1b) messenger RNA expression
in cortical (cingulate and prefrontal) regions and decreases
expression in the hippocampus and amygdala, consequently
reducing corticosterone levels and manic-like behaviors.
Moreover, the neurochemical and behavioral effects
disappeared in vagotomized mice. Lactobacillus casei also
stimulates gastrointestinal afferent vagal activity and inhibits
stress-induced activation of cells producing pro-
adrenocorticotropic hormone in the hypothalamic
paraventricular nucleus in a dose-dependent manner,
ameliorating somatic symptoms induced by learning stress
(Takada et al., 2016). As reviewed by Wagner-Skacel et al.
(2020), Lactobacillus has been significantly associated with the
circadian rhythm in BD patients, linking a GABA disorder caused
by the gut microbiota to cognitive function in BD. Thus, the gut
microbiota may affect the GABA system mostly through the
intestinal vagus nerve and modulate stress-related behavioral and
cognitive functions in BD patients.

Multiple studies have demonstrated the versatility of
glutamate, the agonist of N-methyl-d-aspartate receptor
(NMDAR), as the foremost excitatory neurotransmitter in the
central nervous system and modulator of gastrointestinal
metabolism (Baj et al., 2019). A systematic review conducted
by Reddy-Thootkur et al. (2020) shows that hippocampal
glutamate levels are increased in BD patients, but no
associations between glutamate metabolite levels and memory
performance are detected. Considering that many of those
included studies suffered from small sample sizes, the
relationship between glutamate and cognitive impairment in
BD require further exploration (Reddy-Thootkur et al., 2020).
A postmortem study in 10 BD patients revealed significant lower
protein and mRNA levels of NMDAR, indicating the presence of
excitotoxicity induced by abnormal glutamatergic signaling in BD
frontal cortex (Rao et al., 2010). Although there is evidence in
support of the impact of the glutamatergic system in cognitive
decline and disease progression in BD patients, information
regarding the possible ways glutamate (either from dietary
sources or microbial activities) may influence cognitive
function in BD are still scarce. A Pilot study noted that the
plasma and fecal glutamate levels, influenced by relative
abundance of certain bacterial families, are negatively
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associated with cognitive function including processing speed,
mental flexibility and executive function (Palomo-Buitrago et al.,
2019). Dietary or luminal glutamate may also activate vagal
afferents which directly or indirectly influence brain areas
including the cerebral cortex, limbic system, hypothalamus
and basal ganglia (Kondoh et al., 2009). From the foregoing,
further study is needed to investigate the impact of a dietary
glutamate and gut-endogenous glutamate in cognitive function
in BD.

As an important part of monoamine metabolism, the role of
D-amino acids in the gut-brain axis is gaining wider attention.
Gut microbiota contributes to the host pool of D-amino acids via
intrinsic amino acid racemases within certain gram-negative
microbiome (Radkov and Moe, 2014). Kawase et al. (2017)
found that gut microbiota could modulate the metabolism of
D-amino acids in the brain. They noted that D-aspartic acid,
D-serine were higher in some brain regions of GF mice than in
those of SPFmice, indicating that gut microbiota may regulate the
activity of aspartic acid racemase and serine racemase in the host
brain (Kawase et al., 2017). D-serine is an endogenous ligand for
NMDAR and thus play a key role in synaptic plasticity (Schell,
2004). Long-term potentiation, which underlies learning and
memory, depends on calcium dependent release of D-serine
from astrocytes in adult rat CA1 pyramidal hippocampus cells
(Henneberger et al., 2010). Genetic association studies convince
the role of D-serine in the pathology of BD, showing an
association between BD with the gene G72, whose product
activates the D-serine degrading enzyme (Chen et al., 2004;
Müller et al., 2011). Furthermore, ketamine metabolites (rac)-
dehydronorketamine and (2S,6S)-hydroxynorketamine decrease
intracellular D-serine concentrations in a concentration
dependent manner in PC-12 cells (Singh et al., 2016). Previous
study has found potential pro-cognitive effects with intravenous
subanesthetic ketamine in BD patients (Zhou et al., 2021). Based
on these findings, we suggest that gut microbiota may influence
synaptic D-serine availability and thus modulate cognitive
function in BD patients.

BDNF can also promote the growth and development of
neurons as a neurotrophic factor. Alterations in a 5-HT
receptor, BDNF, and NMDA receptor subunit expression in
the hippocampal region have been demonstrated in germ-free
mice (Bercik et al., 2011). However, studies of BDNF levels and
specific functional and behavioral alterations in germ-free or
antibiotic-treated animal models remain controversial (Holzer,
2016).

4 INTERACTIONS BETWEEN THE GUT
MICROBIOTA AND PSYCHIATRIC
MEDICATION
Significantly more attention is being given to the interactions
between psychiatric drugs commonly used in BD and the gut
microbiota. Cognitive side effects induced using antipsychotics in
the treatment of BD include impairments in verbal learning,
memory, cognitive control, and spatial working memory (Arts
et al., 2013; Flowers et al., 2016). Cognitive side effects have also

been previously implicated in chronic inflammation and
metabolic syndrome (Fang et al., 2019). Meanwhile, recent
studies have considered the interaction between psychiatric
medication and gut microbiota as a potential way by which
the gut microbiota affects cognitive function (Flowers et al.,
2019).

On the one hand, psychiatric medication has an important
influence on the gut microbial profile, which, in turn, induces
potential adverse events. Valproate significantly reduces fecal
microbial richness and induces a gut microbial profile similar
to that of patients with autism spectrum disorders (Liu et al.,
2018). Flowers et al. (2017) showed that treatment with an
atypical antipsychotic (AAP) in BD patients results in reduced
gut microbial diversity, especially in women. A subsequent study
focusing on patients with BD or schizophrenia also revealed
significantly lower gut microbial diversity in AAP users
compared to non-AAP users (Flowers et al., 2019). In
contrast, Hu et al. (2019) found no significant changes in gut
microbial α-diversity but noted an altered gut microbial
composition in BD patients treated with AAP monotherapy
(quetiapine). After such treatment, organisms of the Klebsiella
and Veillonella genera are significantly increased in BD patients.
Moreover, almost all AAPs can lead to weight gain, which may be
closely related to gut microbial dysbiosis (McEvoy et al., 2005).
Bahr et al. (2015b) found that the administration of risperidone
inhibited non-aerobic resting metabolism in the gut microbiota,
leading to a reduced total resting metabolism rate and increased
body weight. The decreased Bacteroidetes-to-Firmicutes ratio
induced by risperidone was linked to secondary weight gain in
adolescent children (Bahr et al., 2015a). Zeng et al. (2021) also
reviewed the potential role of the gut microbiota in cognitive
impairment due to the metabolic side effects of AAPs used as a
treatment in schizophrenic patients, which included disruption of
inflammatory cytokine signaling and neurotransmitter disorders.
Therefore, AAPs are likely to increase the risk of metabolic
disorders by affecting the gut microbiota, consequently
resulting in cognitive side effects.

On the other hand, the gut microbiota may also help to
mediate the cognitive improvement effects of psychiatric
medications for BD. Oral selective serotonin reuptake
inhibitors (SSRIs) increase the excitability of the intestinal
vagal nerve system through an intestinal epithelium-dependent
mechanism. Critically, blocking the intestinal vagal signal by
subdiaphragmatic vagotomy abolishes the antidepressant effect
of oral SSRI treatment (McVey Neufeld et al., 2019). Both
behavioral and neuroimaging studies have confirmed the
positive effects of SSRI treatment on attention, appraisal, and
memory before symptomatic remission. Additionally, Harmer
and Cowen (2013) suggested that the antidepressant effects of
SSRIs are cumulative results of improvements in cognitive
functions related to emotion processing. Accumulated evidence
highlights the potential role of vagal-dependent gut-brain
signaling in cognitive improvement by SSRI treatment.
Aripiprazole treatment also significantly increases the richness
and diversity of the gut microbiota, especially the relative
abundance of organisms of the minor genera Clostridium,
Peptoclostridium, Intestinibacter, and Christenellaceae, also
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accompanied by a rise in acetate, butyrate and isovalerate levels
(Cussotto et al., 2019). Increased numbers of butyrate-producing
bacteria may underlie the cognitive improvement of aripiprazole
(Ning et al., 2021; Peitl et al., 2021). Studies targeting the in vivo
interactions of various BD medications with both the gut
microbiota and cognitive function will provide new insights
into the mechanisms and side effects of these drugs.
Microbiota-centered treatment will also be important for
optimizing the management of BD patients.

5 POTENTIAL MICROBIOTA-CENTERED
TREATMENTS FOR COGNITIVE
IMPROVEMENT
Accumulated understanding of the brain-gut axis has led to the
development of microbiota-centered treatment in mental illness
acting through the gut flora. Both changes in diet habits and
psychobiotic supplements can easily modify the gut microbiota.
Fecal microbiota transplantation (FMT) facilitates a more stable
evolution of gut microbial transplantation.

5.1 Diet
Changing one’s dietary habits is the easiest method to modulate
gut microbiota. Gut microbial dysbiosis is a key factor of cognitive
impairment in diet-induced obesity (Desbonnet et al., 2014). A
dietary survey of 97 BD patients showed that BD patients had
greater intake levels of processed meat and sugar, fat, and salt
(Davison and Kaplan, 2012). Long-term consumption of a high-
fat diet increases the Firmicutes-to-Bacteroides ratio, which is
associated with obesity (Shi et al., 2015; Ussar et al., 2015). A
high-fat diet also led to insulin resistance and hyperglycemia in
diet-induced obese mice who exhibited neurotransmitter
disorders, including increased GABA and decreased
tryptophan levels (Scott et al., 2020). Further, a high-fat diet
can cause a significant decrease in tyrosine phosphorylation of
insulin receptors, accompanied by an increase in inflammatory
response signals (e.g., nuclear factor kappa-light-chain-enhancer
of activated B-cells, c-Jun N-terminal kinase) in whole-brain
lysate and a decrease in synaptic plasticity, leading to learning
and memory impairment (Kothari et al., 2017).

In contrast, healthy diets have shown therapeutic potential for
neurocognitive disorders. The Mediterranean diet, characterized
by a high intake of fruits, vegetables, nuts, whole grains, and high-
protein foods (i.e., fish), can help to reduce intestinal
inflammation, cognitive impairment, and the risk of dementia
(Pistollato et al., 2018). People at high risk of cardiovascular
diseases also showed higher scores on the mean Mini-Mental
State Examination and Cognitive Dysfunction Test after long-
term consumption of the Mediterranean diet (Martínez-
Lapiscina et al., 2013). In terms of dietary composition, a diet
high in protein and saturated fat contributed to a greater
abundance of Bacteroides (Wu et al., 2011). Fruits and
vegetables are rich in dietary fiber. Microbiota-accessible
carbohydrates found in dietary fiber increase the richness and
α-diversity of the gut microbiota and inhibit the hippocampal
glial activation and neuroinflammation induced by a high-fat

diet. In turn, these carbohydrates improved the performance of
mice in nest-building and temporal order memory tests (Shi et al.,
2020). Perez (2018) found that BD patients have lower
compliance with the Mediterranean diet and higher
biomarkers of insulin resistance compared to the healthy
population. Therefore, dietary management of BD patients is
crucial for reducing the risk of metabolic disorders and cognitive
impairment in clinical practice.

The ketogenic diet is another dietary pattern that has attracted
increasing attention in the treatment of neuropsychiatric diseases.
Several studies have confirmed the role of the ketogenic diet in
improving comorbidities and cognitive function in BD patients.
The ketogenic diet reduces hyperinsulinemia in BD patients by
alleviating mitochondrial dysfunctionmediated by impairment of
the phosphatidylinositol-3 kinase/protein kinase B/hypoxia-
induced factor-1α signaling pathway (Campbell and Campbell,
2020). The ketogenic diet may affect the function of vesicular
glutamate transporters and EAAT, Na+, K + -ATPase, Kir4.1,
aquaporin-4, Cx34, and KATP channels by affecting the
glutamate-glutamine cycle and glutamate synthase activity in
astrocytes, thus reducing mild cognitive impairment in BD
patients (Morris et al., 2020). Several studies have confirmed
the role of the gut microbiota in the ketogenic diet, although only
a few studies have discussed whether the gut microbiota is
involved in the cognitive improvement effect of the ketogenic
diet in BD patients. The ketogenic diet protects against seizures by
regulating gut microbiota colonization, which increases GABA
and glutamate levels in the hippocampus (Olson et al., 2018). In
AD patients with mild cognitive impairment, a 6-week ketogenic
diet increased the abundance of Enterobacteriaceae,
Akkermansia, Slackia, Christensenellaceae, and
Erysipelotriaceae and the synthesis of butyrate, accompanied
by an improvement in cognitive function (Nagpal et al., 2020).

5.2 Psychobiotics
Probiotics are live microorganisms that offer non-specific benefits
to the health of the host. Some of them may also modulate
functions of the central nervous system, reducing psychiatric
symptoms and improving cognitive function in patients, and are
therefore known as psychobiotics (Evrensel et al., 2019). Clinical
studies have demonstrated the role of probiotics in promoting gut
microbial diversity and improving cognitive function in BD.
Probiotics, including Lactobacillus rhamnosus strain GG and
Bifidobacterium animalis subsp. lactis strain Bb12, reduce the
risk of re-hospitalization among BD patients (Dickerson et al.,
2018). A cohort study conducted by Reininghaus et al. (2018)
showed a significant improvement in attention and psychomotor
processing speed on the Digit Symbol Test and executive function
on the Trail Making Test B in BD patients after long-term
administration of a probiotic supplement, mainly containing
organisms of the Lactobacillus genera and Bifidobacterium
genera.

Because some prebiotics support the growth of specific gut
microbiota with psychophysiological effects, some have been
designated as psychobiotics, including fructooligosaccharides,
inulin, and galactooligosaccharides (Sarkar et al., 2016).
Currently, there are limited studies addressing the effect of
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prebiotics in BD patients, but studies in animal models confirm
their potential for cognitive improvement. Prebiotics might
suppress inflammation that affects cognitive function.
Chitosan oligosaccharides effectively reduced learning and
memory impairment in an AD model by inhibiting oxidative
stress and reducing the release of pro-inflammatory factors, such
as IL-1 and TNF-α (Jia et al., 2016). Prebiotics also regulate the
synthesis of gastrointestinal hormones. Four weeks of
supplementation with prebiotics increased the expression of
anorexigenic gastrointestinal hormones, such as peptide
tyrosine-tyrosine, GLP-1, and leptin, while decreasing levels of
ghrelin and other anorexigenic hormones and helping to improve
learning and memory function in schizophrenia patients (Kao
et al., 2018). Weight gain induced by antipsychotics, including
olanzapine and risperidone, can also be reduced by prebiotics.
Intake of the prebiotic galactooligosaccharide mixture
significantly reduced olanzapine-induced weight gain, possibly
in association with an increased and decreased number of
organisms belonging to the Bifidobacterium and Firmicutes
genera, respectively, together with increased cortical phospho-
NMDA receptor 1 levels and decreased plasma TNF-α levels.
Therefore, these effects suggest that prebiotics may prevent the
metabolic and cognitive side effects of olanzapine.

5.3 Gastrointestinal Hormone Analogs
The possible mechanisms by which the gut microbiota modulates
energy metabolism and cognitive function by influencing
gastrointestinal hormones have been reviewed above.
Gastrointestinal hormone analogs may also improve cognitive
function in a mode similar to that of gastrointestinal hormones.
Liraglutide, the GLP-1 receptor agonist, improved
D-amphetamine-induced mania-like symptoms and working
and recognition memory impairment in a BD mouse model
(Chaves Filho et al., 2020). In non-diabetic BD patients,
liraglutide also showed beneficial effects in several cognitive
domains, including auditory verbal learning, working memory,
and attention (Mansur et al., 2017). Therefore, the
neuroprotective effect of liraglutide illustrates the potential for
gastrointestinal hormone analogs to serve as promising
adjunctive tools for BD treatment.

5.4 Fecal Microbiota Transplantation
FMT treatment involves the injection of filtrate feces from a
healthy donor into a patient. FMT not only increases the
microbial diversity but also provides long-term implantation
of donor strains compared to the short-term impact on the
gut microbiota achieved by changes in the diet or the addition
of psychobiotics (Weingarden and Vaughn, 2017). In animal
research, FMT treatment reversed cognitive impairment in AD
model mice by altering the gut microbial composition and SCFA
profile and increasing synaptic plasticity. Currently, few clinical
studies have focused on the feasibility and efficacy of FMT in BD
patients, although Hinton (2020) claimed that depressive
symptoms disappeared with weight loss in a BD patient who
had experienced 9 sessions of FMT treatment. Therefore, FMT
may have a potential role in improving the cognitive function of
BD patients, but further clinical experiments are warranted.

5.5 Vagus Nerve Stimulation
The vagus nerve establishes one of the important connections between
emotional and cognitive areas of the brain and gut functions. Vagal
afferent fibers express receptors for multiple gastrointestinal
hormones (GLP-1, CCK, peptide YY, ghrelin, etc.),
neurotransmitters (dopamine, GABA, NE, 5-HT, etc.), and gut
microbial metabolites (SCFAs, LPS, etc.), to transfer microbiota
signals to the central nervous system (Bonaz et al., 2018; Breit
et al., 2018). Brain pathway activated by oral administration of
Campylobacter jejuni, which has been proved to influence
behavior and brain functions at subclinical doses, has been
mapped using c-fos expression as a marker of neuronal activation
(Gaykema et al., 2004). In this study, brain activation was observed in
the nucleus tractus solitarius, the vagal afferent ending, and the
projections of the nucleus tractus solitarius including parabrachial
nucleus, paraventricular nucleus of the hypothalamus, amygdala and
thalamus, indicating vagally-mediatedmicrobiota effect onmood and
cognitive function (Gaykema et al., 2004). Consistently, Bravo et al.
(2011) found that treatment with Lactobacillus rhamnosus decreases
GABA(B1b) messenger RNA expression in the hippocampus and
amygdala, consequently reducing corticosterone levels andmanic-like
behaviors. Moreover, the neurochemical and behavioral effects
disappeared in vagotomized mice, indicating therapeutic potential
for treatment targeting vagal tone.

Vagus nerve stimulation, a medical treatment that is routinely
used in the treatment of epilepsy and other neurological
conditions, works by applying electrical impulses to the vagus
nerve (Wheless et al., 2018; González et al., 2019). A 5-year
prospective research in patients with treatment-resistant bipolar
depression showed that treatment with vagus nerve stimulation
was associated with better medication response and significantly
greater mean reduction in suicidality compared to treatment-as-
usual (McAllister-Williams et al., 2020). Chronic vagus nerve
stimulation also produces sustained clinical and cognitive
improvements in BD patients in a treatment-resistant
depressive episode (McAllister-Williams et al., 2020).
Therefore, vagus nerve stimulation seems to be a promising
adjunctive therapy for cognitive impairment in BD patients.

6 CONCLUSION

There is an exciting future potential for research on the
connection between gut microbiota and neurocognitive
elements in BD patients. Accumulated studies have offered
convincing evidence of the participation of microbial-derived
metabolites, neurotransmitters, and gastrointestinal hormones in
cognitive function. Complex interactions with the gut microbiota
may also explain some of the cognitive side effects of certain
psychiatric medications. Understanding the potential
mechanisms underlying the gut microbiota and cognitive
impairment in BD can unlock the door for the application of
microbiota-centered treatments in BD management, which may
help to prevent adverse events and improve the quality of life in
BD patients. However, further investigation is needed before
applying these findings in clinical practice despite applauding
the recent rise in these strategies.
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