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Abstract
Background: Delineation of clinical target volume (CTV) for radiotherapy is a 
time-consuming and labor-intensive work. This study aims to propose a novel 
convolutional neural network (CNN)-based model for fast auto-segmentation of 
CTV. To evaluate its performance and clinical utility, a blind randomized valida-
tion method was used.
Methods: Our proposed model was based on the generally accepted U-Net ar-
chitecture using computed tomography slices with CTV contours delineated by 
experienced radiation clinicians from 135 rectal patients receiving neoadjuvant 
radiotherapy. The Dice similarity coefficient (DSC) and 95th percentile Hausdorff 
distance (95HD) were used to measure segmentation performance. The validated 
dataset of additional 20 patients for clinical evaluation by 10 experienced oncol-
ogy clinicians from 7 centers was randomly and blindly divided into two groups 
for clinicians' scoring and Turing test, respectively. Second evaluation was per-
formed with different randomization after 2 weeks.
Results: The mean DSC and 95HD values of the proposed model were 0.90 ± 0.02 
and 8.11 ± 1.93 mm for CTV of rectal cancer patients, respectively. The average 
time for automatic segmentation in the validation groups was 15 s per patient. 
By clinicians' scoring, the AI model performed better than manually delineat-
ing, though the differences were not significant (Week 0: 2.59 vs. 2.52, p = 0.086; 
Week 2: 2.55 vs. 2.47, p  =  0.115). Additionally, the mean positive rates in the 
Turing test were 40.5% in Week 0 and 45.2% in Week 2, which demonstrated the 
great intelligence of our model.
Conclusions: Our proposed model can be used clinically for assisting contour-
ing of CTVs in rectal cancer patients receiving neoadjuvant radiotherapy, which 
improves the efficiency and consistency of radiation clinicians' work.
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1   |   BACKGROUND

Rectal cancer remains to be one of the most common 
and deadliest malignancies worldwide.1 Neoadjuvant 
radiotherapy has been proved to play a critical role in 
the treatment of locally advanced rectal cancer, which 
demonstrated better local control rates than surgery 
alone.2 In the process of radiation therapy, the delinea-
tion of clinical target volume (CTV) and organs at risk 
(OARs) is one of the most essential steps. In spite of sev-
eral guidelines for the contouring delineation on rectal 
cancer patients,3–5 it still remains difficult for all delin-
eated slices to be precise and acceptable. Inappropriate 
contouring for CTV and OARs would reduce therapeutic 
advantages and increase the risk of radiation exposure 
of normal issues, respectively. Additionally, there is still 
lack of delineation consensus considering the inevita-
ble and significant intra-  and inter-observer inconsis-
tence between radiation oncologists and centers.6 Thus, 
innovations on contouring are required to improve its 
accuracy and reproducibility, and to decrease intra- and 
inter-observer discrepancy.

Manually delineating regions of interest (ROIs) slice 
by slice on computed tomography (CT) images is a time-
consuming and labor-intensive work for radiation on-
cologists. More applications related to radiation therapy 
have been conformed for diseases in recent years, and 
thus radiation clinicians are required to accurately com-
plete the delineation of ROIs in a short time. To improve 
contouring efficiency, automatic segmentation assisted by 
state-of-the-art tools was outlined with the advancement 
of multidisciplinary concepts and techniques. Artificial 
intelligence (AI), especially deep learning algorithms, has 
demonstrated extraordinary feasibility in medicine and 
may be able to bring revolutionary changes in the work-
flow of radiation therapy.7–9

It was reported that a series of studies had devel-
oped automatic contouring models using convolutional 
neural network (CNN), which predominated in the 
computer vision field for image segmentation.10–13 Kuo 
et al. developed a deep dilated CNN (DDCNN)-based 
model for segmentations of the rectal cancer patients' 
CTV with a mean DSC value of 0.877, showing 3.8% 
higher than that of U-Net they used.14 Both of the two 
methods are based on two-dimension convolutions, 
whereas Rasmus et al. designed a three-dimension 
V-net architecture that derived from the U-Net, with 

a higher DSC reaching 0.90 more than U-Net (0.84) 
and DDCNN (0.87).15 Subsequently, Ying et al. devel-
oped a DeepLabv3+ architecture for delineating CTV 
in rectal cancer patients that received postoperative 
radiotherapy, which demonstrated similar DSC values 
as previous studies, thought it performed significantly 
better than the U-Net-derived ResUNet in quantitative 
parameters.16 Though these previous studies reported 
high quantitative performance CNN-based contouring 
models for rectal cancer, clinical evaluation was not 
further validated in these studies, and almost none of 
them had been tested in the real clinical circumstances. 
Furthermore, there are still no commonly accepted 
methods and criteria for clinical practice.

Compared to other organs, the delineation of rectum 
CTV should be more challenging for the complexity of 
pelvic compartments. In most cases, there is actually 
lack of clear boundaries of rectum CTV, and thus the 
conventional methods of contouring that relied on the 
images’ gray-level are limited. In contrast, the novel 
CNN can extract and identify significant texture features 
of high levels by learning from a large database of im-
ages with artificial marked contours, which would delin-
eate more accurate and applicable ROIs. In the present 
study, we developed an auto-segmentation model based 
on the classical U-Net architecture for neoadjuvant ra-
diotherapy of rectal cancer patients. To assess its clini-
cal accuracy and utility, the blind randomized validated 
tests were also performed by 10 experienced oncology 
clinicians from seven centers.

2   |   METHODS

2.1  |  Data source

Computed tomography images from 135 consecutive pa-
tients (training set: 122 cases; validation set: 13 cases) with 
locally advanced rectal cancer that received neoadjuvant 
radiotherapy at Peking Union Medical College Hospital 
between July 2018 and August 2019 were included to de-
velop the deep learning-based auto-segmentation model. 
All patients' ground truth (GT) CTVs were manually de-
lineated by radiation oncologists with more than 10-year 
experience. This study has been approved by the Ethics 
Committee of Peking Union Medical College Hospital and 
all patients have signed informed consent.

K E Y W O R D S

deep learning, rectal cancer, neoadjuvant radiotherapy, convolutional neural network, clinical 
evaluation
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2.2  |  Simulation

Patients were in the supine position immobilized with 
thermoplastic trunk mask. They received a contrast-
enhanced CT scan with a Big-Bore CT (Philips). Images 
were acquired from upper bound of L1–2 cm below the 
lower edge of ischial tuberosity.

2.3  |  CTV definition

According to the RTOG consensus, the CTV includes in-
ternal iliac, presacral, and perirectal nodal regions.

2.4  |  Network model

U-Net is a successful architecture in medical image seg-
mentation due to its skip connections which combines the 
high-level semantic feature maps from the decoder and 
low-level detailed feature maps from the encoder. In our 
new model (Figure 1A), we take the advantage of U-Net, 
and augment the combination of multiscale feature by 
adding some skip connections with learnable weights. In 
encoder path, the added connections connect each layer 
to every other layer in a feed-forward fashion. In decoder 

path, similar connections added as well. Furthermore, we 
propose a scheme to learn to connect/disconnect the added 
connections on its importance (Figure 1B). After weight of 
each connection is trained, we only keep the corresponding 
connections with weights larger than a predefined thresh-
old. With GTX 1080 GPU, the final model was constructed 
via more than 50 circles for identifying the optimal one that 
demonstrated the lowest validation loss score.

Following the development of our proposed model, 
the Dice similarity coefficient (DSC) and 95th percentile 
Hausdorff distance (95HD) were used to measure its segmen-
tation performance. The DSC is defined as shown in Equation 
(I), while 95HD is defined as shown in Equation (II–IV).

where A represents the GT contours manually delineated by 
clinicians and B denotes the auto-segmentations generated 
by AI. A∩B means the intersection of A and B. The values of 
DSC range from 0 to 1, where 0 represents no intersection 
between A and B and 1 means perfect overlapping.

DSC(A, B) =
2 |A ∩ B|

|A| + |B|
, (I)

95HD(A, B) = max (h(A, B), h(B, A), 95th), (II)

h(A, B) = max
a∈A

min
b∈B

||a − b|| , (III)

F I G U R E  1   Development of our 
U-Net architecture. En is encoder block. 
Down and Conv are down sample and 
convolution layers. WEN is connection 
weight responding to a specific connection
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where ||.|| is the Euclidean norm of the points in A and B. 
HD can be described as the maximal value of the shortest 
distance between the point sets of A and B.

2.5  |  Clinical evaluation

To further assess clinical practicality of the proposed 
model, we prospectively enrolled another consecu-
tive 20 patients who diagnosed with locally advanced 
rectal cancer for neoadjuvant radiotherapy between 
November 2019 and December 2019. Patients who had 
a history of pelvic surgery, other malignancy, or chronic 
diseases were excluded. These patients were randomly 
divided into two groups as a ratio of 1:1 for clinicians' 
scoring and Turing test, respectively, by the statistician 
(Figure 2).

For clinicians' scoring, five GT and five AI contours 
of each patient were randomly extracted. Then a total of 
100 contours (GT: 5 × 10 contours; AI: 5 × 10 contours) 
were randomized by the statistician (Figure  2), and 
were blindly and independently scored by 10 clinicians 
from seven centers. After 2  weeks, all contours were 
evaluated again by clinicians with differently random-
ized coding. The scoring criteria are as follows: 0 point 
(Rejected: The contour is unacceptable and requires re-
drawing), 1 point (Major revision: The contour requires 
significant revision, and treatment planning should not 
proceed without correction), 2 points (Minor revision: 
The contour should be revised with a few minor edit but 
has no significant effect on treatment without correc-
tion), and 3 points (Totally accepted: Perfect and com-
pletely acceptable for treatment). The scoring samples 
are shown in Figure 3.

Turing test is an important measure of how “intelligent” 
an AI model can be. In our test, clinicians were shown two 
contours overlaid in each CT slice (one was generated by 
AI and the other one was manually delineated, but which 
color represented AI or GT was unknown to clinicians). 
A total of 100 CT slices with merged GT and AI contours 
from 10 patients were tested (Figure 2). The two contours 
in each slice were randomly marked with two colors (red 
and green) by the statistician. Finally, all clinicians would 
independently give a comment which “color” was better 
for radiation therapy. Similarly, all slices were evaluated 
again by clinicians with the different randomization of 
both code and color 2  weeks later. If the AI model per-
forms better than the manually delineated among more 
than 30% of slices, it can be considered to pass the Turing 
test and to be intelligent. Some typical samples are shown 
in Figure 4.

2.6  |  Statistical analysis

In this study, all randomizations and statistical analyses 
were performed by the statistician and were unknown to 
all clinicians. DSC and 95HD values were expressed as 
mean with standard deviation. The difference between the 
two randomized groups of patients for clinicians' evalua-
tion and Turing test was compared by the Mann–Whitney 
U test. The agreement of clinicians' evaluation between 
the time interval of 2 weeks was assessed using the Kappa 
test (Kappa value ≥ 0.2 can be considered with an accept-
able range of consistency), and the distribution consist-
ency of Turing test was compared by the McNemar’s test. 
p < 0.05 was considered statistically significant.

3   |   RESULTS

3.1  |  Segmentation performance

The values of DSC and 95HD for each patient from our pro-
posed model are shown in Table 1. The mean DSC values 
plus standard deviation of the two randomized validated 
groups for clinicians' evaluation and Turing test were 
0.91  ±  0.02 and 0.89  ±  0.02 (p  =  0.113), while the mean 
95HD values were 8.59 ± 1.98 and 8.97±1.86 (p 0.284), re-
spectively. The average time for automatic segmentation in 
the validation groups was 15 s per patient, compared with 
about 45–60 min for manual work in the clinical practice.

3.2  |  Clinicians' scoring

To verify our proposed model's clinical usefulness, 10 oncol-
ogy clinicians from seven centers with more than 10 years 
of clinical experience blindly evaluated the segmented 
contours and scored them on 4 levels: 0 point (Rejected), 
1 point (Major revision), 2 points (Minor revision), and 3 
points (Totally accepted). The evaluation results are dem-
onstrated in Table 2. Those with score ≥ 2 were defined to 
be suitable for clinical application. According to the evalu-
ation by clinicians in Week 0, 94.6% of AI contours and 
94.0% of GT contours were scored as ≥2 points, while 65.0% 
and 58.0% were 3 points, which could be directly used for 
radiation without any revision, respectively. More specifi-
cally, the AI group's mean scores were better than the GT’s, 
though there was no significant difference (Week 0: 2.59 vs. 
2.52, p = 0.086; Week 2: 2.55 vs. 2.47, p = 0.115; Table 2). 
To further evaluate the clinical practice, we calculated the 
mean value of scores from all clinicians for each contour 
(Figure  5A,B). None of AI contours had mean score less 
than 2 points in both two scoring evaluations (Week 0 and 
Week 2). The Kappa value for each clinician was obtained 

h(B, A) = max
b∈B

min
a∈A

||b − a|| , (IV )
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(Table 2) and most of them demonstrated acceptable con-
sistency among results between the 2-week interval.

3.3  |  Turing test

Another 10 patients that met our criteria were enrolled for 
Turing test and 10 slices were randomly extracted from 
each of them (Figure  1). For each slice, the AI and GT 
contours were independently delineated and were then 

merged with different and random colors, which were 
blind to all clinicians. The slice would be recorded as posi-
tive when its AI contour performed better than the GT con-
tour. As shown in Table 3, the positive rates of all clinicians 
met the intelligence criterion of AI model (more than 30%). 
The mean positive rates for Week 0 and Week 1 were 40.5% 
and 45.2%, respectively, and there was also acceptable con-
sistency between 2 weeks via the McNemar’s test.

Each slice was also scored as zero or one point (for the slice, 
if a clinician think AI contour is better than GT, it will get one 

F I G U R E  2   Flow chart for clinicians' scoring and Turing test. AI, artificial intelligence; GT, ground truth

F I G U R E  3   Sample contours for clinicians' scoring in patients with rectal cancer receiving neoadjuvant radiotherapy. Rejected (0 point): 
(A, B); Major revision (1 point): (C, D); Minor revision (2 points): (E–H); and Totally accepted (3 points): (I–L)

(A) (B) (C) (D)

(E) (F) (G) (H)

(I) (J) (K) (L)
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point, otherwise zero point). The mean score for each slice 
has been calculated (Figure 5C,D). Most of slices had score 
≥0.3, which means there were at least three clinicians thought 
the AI contour in this slice was better than GT. Nearly half 

of slices were scored ≥0.5, indicating clinicians cannot distin-
guish between AI and GT contours in these slices.

4   |   DISCUSSION

In the past decade, there has been encouraging advance-
ments with regards to radiation therapy. CTV delinea-
tion is a key step in the planning of radiotherapy delivery 
that mainly relies on the time-consuming manual work. 
Additionally, the inter- and intra-observer variability can-
not be ignored, which are related to tumor control and 
prognosis. However, the emerging techniques in recent 
years were devoted to the improvement of delineation ef-
ficiency and contouring standardization, and the CNN for 
automatic segmentation based on deep learning performed 
best. Radiation therapy has been considered to be the ef-
fective neoadjuvant treatment for rectal cancer preopera-
tively or postoperatively.17 In our study, we first developed 
a U-Net-based CNN model for automatically contouring 
CTVs in rectal cancer patients receiving neoadjuvant radio-
therapy. Furthermore, the blind evaluation and Turing test 
by 10 experienced clinicians from different centers were 
also first designed to assess the model's clinical accuracy 
and usefulness. The mean DSC values of the two rand-
omized validated groups were 0.91 ± 0.02 and 0.89 ± 0.02, 
which were similar to the previous studies on rectal cancer 
patients using different CNN architectures.14–16 However, 
all of these studies focused on mathematics quantitative 
compares, and none of them performed clinical evaluations.

Given the complexity of pelvic compartments and the 
ambiguous boundaries between rectums and others, de-
lineating high-quality CTVs is a kind of challenging work, 
which requires advanced AI techniques for assistance. 
The U-Net architecture we used has demonstrated en-
couraging application foregrounds in auto-contouring of 
medical images.18 Our proposed model was constructed 

F I G U R E  4   Sample slices for Turing test in patients with rectal cancer receiving neoadjuvant radiotherapy. Red: artificial intelligence 
(AI) contour; Green: ground truth (GT) contour. (A–D): AI performs better than GT; (E–H): AT performs worse than GT

(A) (B) (C) (D)

(E) (F) (G) (H)

T A B L E  1   DSC and 95HD values of our proposed model in the 
validation dataset of patients for clinicians' scoring and Turing test

Evaluation Patient DSC 95HD

Clinicians' 
evaluation

1 0.91 9.51

2 0.89 8.13

3 0.89 9.02

4 0.93 5.94

5 0.93 7.05

6 0.93 5.97

7 0.88 11.68

8 0.89 10.46

9 0.93 7.60

10 0.90 10.50

Mean ± SD − 0.91 ± 0.02 8.59 ± 1.98

Turing test 11 0.88 9.62

12 0.84 10.08

13 0.89 8.46

14 0.88 9.79

15 0.92 5.02

16 0.91 5.47

17 0.89 8.11

18 0.90 6.98

19 0.90 7.09

20 0.91 5.76

Mean ± SD − 0.89 ± 0.02 8.97 ± 1.86

p value − 0.113 0.284

Abbreviations: 95HD, 95th percentile Hausdorff distance; DSC, Dice 
similarity coefficient.
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using the dataset of image slices from 135 rectal cancer 
patients receiving neoadjuvant radiotherapy. Generally, 
the most common evaluation parameters for the CNN 
model were DSC and 95HD. Another 20 patients for 
clinical validation were randomly divided for clinicians' 

scoring and Turing test. The values of DSC and 95HD 
indicated great contouring performance of the model 
(Table  1). However, the two parameters could only de-
scribe mathematical performance rather than values 
of clinical application, and thus clinicians' evaluation 

F I G U R E  5   (A, B) Mean score of 10 clinicians for each contour. (C, D) Mean score of 10 clinicians for each slice in Turing test. AI, 
artificial intelligence; GT, ground truth

T A B L E  3   Turing test

Clinician A B C D E F G H I J
Mean 
positive rate

Week 0

Positive 39 41 30 32 42 50 37 42 39 53 40.5%

Negative 61 59 70 68 58 50 63 58 61 47

Week 2

Positive 41 48 41 49 44 46 42 46 52 43 45.2%

Negative 59 52 59 51 56 54 58 54 48 57

p value 0.059 0.334 0.008 0.096 0.198 0.76 0.05 0.281 0.452 0.752 –
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is required. Here, we first designed a multicenter blind 
system with the involvement of clinicians' scoring and 
Turing test for further clinical assessment of our pro-
posed model. Ten experienced radiation oncologists from 
seven centers participated in examining the clinical scor-
ing. First, CT slices with AI or GT contours were anon-
ymously scored (Table  2), including 0 point (Rejected), 
1 point (Major revision), 2 points (Minor revision), and 
3 points (Totally accepted). To avoid intra-observer bias, 
another evaluation was also performed after 2  weeks 
with different randomized coding among these CT slices.

According to all clinicians, most of AI contours were 
acceptable (score  ≥  2; Table  2). Furthermore, the mean 
scores of AI group were higher than those of GT group, 
though there was no significance (2.59 vs. 2.52, p = 0.086), 
showing a great clinically delineating performance of our 
model. At the same time, our study also indicated the in-
tra-  and inter-observer variability of CTV contouring. In 
Week 0, the whole team of clinicians evaluated almost all 
contours acceptable except clinician C (inacceptable: AI 
16% vs. GT 24%) and H (inacceptable: AI 34% vs. GT 26%), 
but no significant difference between AI and GT groups 
was observed via their scoring. It could be inferred that 
the multi-evaluator design of multicenter could eliminate 
inter-observer variance as much as possible. In addition, 
the scoring of slices with contours is a subjective process 
and intra-observer variance or time heterogeneity cannot 
be ignored (the same evaluator may give different scores for 
the same contour). Thus, another evaluation with different 
randomization for slices was performed by each oncologist 
after 2 weeks. A similar result was obtained (mean score: 
AI, 2.55 vs. GT, 2.47, p = 0.115). The Kappa test was used to 
compare the consistency of these two evaluations. In spite 
of low-level consistency (Kappa value < 0.2) in accordance 
with some oncologists’ evaluation (clinician B, E, G, and 
H), AI group showed a greater mean score and even had 
significantly higher scores by clinician C’s and F’s than GT.

Besides, the mean score for each contour was obtained 
from clinicians' scoring (Figure  5). Most of slices had 
score ≥ 0.3, which means there were at least three clini-
cians thought the AI contour in this slice was better than 
GT. Nearly half of slices were scored ≥ 0.5, indicating cli-
nicians cannot distinguish between AI and GT contours 
in these slices. Meanwhile, these results also showed some 
objective inter-  and intra-clinician differences for CTV 
contouring. Above all, after eliminating the effects of in-
tra- and inter-observer variance by the blind randomized 
design for evaluation, our proposed model can be applied 
well in the clinical practice for automatic contouring.

Additionally, we also performed Turing test for assessing 
the intelligence of our model. The slice would be recorded 
as positive when its AI contour performed better than the 
GT contour. When positive rate ≥30%, the model can be 

regarded as intelligent. In our study, the positive rates of 
all clinicians were larger than 30%. The mean positive rates 
were 40.5% in Week 0 and 45.2% in Week 2 (Table 3). The 
mean score for each slice has been calculated (Figure 5C,D). 
Most of slices had score ≥0.3, which means there were at 
least three clinicians thought the AI contour in this slice 
was better than GT. Nearly half of slices were scored ≥0.5, 
indicating clinicians cannot distinguish between AI and 
GT contours in these slices. Meanwhile, though the consis-
tency test showed that most clinicians maintained insignif-
icant discrepancy between 2 weeks, the results also showed 
some objective inter-  and intra-clinician differences for 
CTV contouring. Therefore, after trying to eliminate bias, 
our proposed model can meet the criteria of AI and would 
provide intelligent assistance for automatic segmentation.

Beside great contouring performance, our CNN-based 
model takes superior advantages in time saving. Previously, 
manually delineating CTVs of one rectal cancer patients 
may require more than dozens of minutes. However, it only 
takes several seconds for the CNN model we developed to 
finish the work. With its assistance, the CTVs can be used 
clinically after examination and revision by radiation on-
cologists, which would decrease the consumed time to less 
than 10 min and thus greatly improve work efficiency.

Several limitations should be considered in our study. 
First, though clinical evaluation was conducted by multi-
center clinicians, the data of CT slices and patients origi-
nated from the single center and the trained model might 
not be suitable for all centers. Thus, we aim to develop uni-
versally applicable transfer learning-based models in the 
future studies, which can adjust segmentation performance 
based on individual clinician's or center's characteristics 
using a small set of trained samples.19 Second, the scoring 
evaluation by oncologists from seven centers is subjective 
and certain bias could not be totally avoided, and inter- and 
intra-observer variance cannot be completely eliminated.

5   |   CONCLUSIONS

In conclusion, our study demonstrates that accurate auto-
segmentation of CTVs can be realized by the CNN model 
in rectal cancer patients receiving neoadjuvant radiother-
apy. Clinicians' scoring and Turing test by 10 experienced 
radiation oncologists indicates that our model can be ap-
plied clinically to provide intelligent assistance for CTV 
contouring and improve efficiency. Our first proposed 
evaluation methods may provide references for AI models 
to assess clinical practice.
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