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Objectives: To develop a radiomics model based on contrast-enhanced CT (CECT) to
predict the lymphovascular invasion (LVI) in esophageal squamous cell carcinoma (ESCC)
and provide decision-making support for clinicians.

Patients and Methods: This retrospective study enrolled 334 patients with surgically
resected and pathologically confirmed ESCC, including 96 patients with LVI and 238
patients without LVI. All enrolled patients were randomly divided into a training cohort and
a testing cohort at a ratio of 7:3, with the training cohort containing 234 patients (68
patients with LVI and 166 without LVI) and the testing cohort containing 100 patients (28
patients with LVI and 72 without LVI). All patients underwent preoperative CECT scans
within 2 weeks before operation. Quantitative radiomics features were extracted from
CECT images, and the least absolute shrinkage and selection operator (LASSO) method
was applied to select radiomics features. Logistic regression (Logistic), support vector
machine (SVM), and decision tree (Tree) methods were separately used to establish
radiomics models to predict the LVI status in ESCC, and the best model was selected to
calculate Radscore, which combined with two clinical CT predictors to build a combined
model. The clinical model was also developed by using logistic regression. The receiver
characteristic curve (ROC) and decision curve (DCA) analysis were used to evaluate the
model performance in predicting the LVI status in ESCC.

Results: In the radiomics model, Sphericity and gray-level non-uniformity (GLNU) were
the most significant radiomics features for predicting LVI. In the clinical model, the
maximum tumor thickness based on CECT (cThick) in patients with LVI was
significantly greater than that in patients without LVI (P<0.001). Patients with LVI had
higher clinical N stage based on CECT (cN stage) than patients without LVI (P<0.001). The
ROC analysis showed that both the radiomics model (AUC values were 0.847 and 0.826
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in the training and testing cohort, respectively) and the combined model (0.876 and 0.867,
respectively) performed better than the clinical model (0.775 and 0.798, respectively), with
the combined model exhibiting the best performance.

Conclusions: The combined model incorporating radiomics features and clinical CT
predictors may potentially predict the LVI status in ESCC and provide support for clinical
treatment decisions.
Keywords: lymphovascular invasion, radiomics, contrast-enhanced CT, nomogram, esophageal squamous
cell carcinoma
INTRODUCTION

Esophageal cancer (EC) is the seventh most common cancer and
the sixth most leading cause of cancer death worldwide, with an
estimated 572,000 new cases and 509,000 deaths in 2018 (1).
Esophageal squamous cell carcinoma (ESCC) is the primary
histologic subtype of esophageal cancer, especially in high-
incidence areas, such as China (2). Surgical resection of the
tumor is the primary approach to treat esophageal cancer (3).

In recent years, despite improvements in staging,
comprehensive treatment, and perioperative care, esophageal
cancer remains a devastating disease, with a 5-year overall
survival rate approximately ranging from 10–25% (4, 5). The
main reasons for treatment failure are esophageal cancer
recurrence and distant metastasis (5). Lymphovascular
invasion (LVI) is a histopathological feature, usually defined as
the presence of tumor cells within an endothelium-lined space,
which is often referred to as lymph-vessel and blood-vessel (6, 7).
The presence of LVI can only be identified if cancer cell clusters
are found in the vascular-like endothelial lining structures (8, 9).
LVI plays an important role in cancer cells spreading and lymph
node metastasis, and it is associated with an increased risk of
micrometastasis (10). Previous studies have reported that LVI is
an indicator of poor prognosis in patients with esophageal cancer
and is associated with early recurrence (6, 11).

In various situations for ESCC, LVI can serve as an indicator
of highly aggressive behavior (12). Patients with LVI have a high
risk of recurrence, so they must be treated with effective systemic
therapy and intensive care (13). Therefore, identifying
esophageal cancer with a high risk of recurrence, especially in
patients with early recurrence, is crucial for an individualized
treatment approach (3).

Currently, LVI can be diagnosed only by postoperative
histopathology, and preoperative prediction is extremely
difficult (14, 15). Compared with conventional CT, CECT can
better distinguish normal tissues from tumors, and perform
better in detecting tumors, showing tumor extent and staging
(16, 17). Yin et al. (18) explored the correlation of triple-phase
multi-slice CT scan with intratumor LVI of progressive gastric
cancer. Ma et al. (14) found that multiphase dynamic CT could
provide a non-invasive method for predicting LVI in gastric
cancer through quantitative enhancement measurements.
Conventional CT images are primarily used to extract
morphological information from tumor tissues, but recent
2

researches have shown that quantitative CT texture features
can provide additional information (19, 20). Different from
conventional CT image features, radiomics features can
objectively reflect the heterogeneity of the tumor and allow
more invisible information to be obtained (21, 22). Increasing
studies have demonstrated the incremental value of texture
analysis and radiomics approaches in predicting tumor
grading, staging, response to treatment, and survival for
gastrointestinal carcinoma (23–26). Through an in-depth
analysis of image feature data, radiomics can quantitatively
reveal predictive and prognostic associations between images
and medical outcomes (27).

Recently, radiomics has been proven to be potential clinical
value in predicting intra-tumoral LVI. Nie et al. (28) developed a
radiomics nomogram incorporating Rad-score, clinical and PET/
CT parameters to predict LVI in lung adenocarcinoma, which
showed good predictive performance. Chen et al. (15) found that
radiomics features based on CECT could serve as potential
markers for predicting LVI and PFS in gastric cancer. The
model established by radiomics features combined with clinical
features has high diagnostic efficiency. Zhang et al. (29) revealed
that multimodal radionics models based on MRI and CECT
could be a useful tool for predicting LVI in rectal cancer.

Therefore, the aim of this retrospective study was to assess the
feasibility of radiomics based on CECT to predict LVI in ESCC.
PATIENTS AND METHODS

Patients
This retrospective study was performed following the Helsinki
Declaration and approved by the Ethics Committee of our
hospital to exempt patients from signing a written informed
consent form. This study analyzed 726 patients with esophageal
squamous cell carcinoma who underwent radical esophagectomy
and confirmed by pathology in our hospital from August 2016 to
October 2019. The inclusion criteria were as follows:
1) postoperative histopathology confirmed squamous cell
carcinoma and the LVI status of the tumor tissue was explicit; 2)
cases with completed clinicopathological data; 3) CECT performed
before surgery within two weeks, with thin-section CECT images
(1–2 mm) satisfying the diagnosis; 4) the region of interest could be
measured on CECT images (tumor lesions larger than 5 mm); 5) no
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history of treatment for ESCC before operation. The exclusion
criteria were as follows: 1) no precise pathological data or LVI status
(n = 33); 2) other pathological types of esophageal cancer (n = 41);
3) no thin-section CECT images (n = 34); 4) any preoperative local
or systemic treatment (n = 152); 5) no perceptible lesion on CECT
images (n = 47); 6) poor image quality or noticeable artifacts
affecting the assessment(n = 27); 7) with dual-source mode or
gemstone spectral imaging mode (n = 58).

Finally, 334 patients were enrolled in the study. All enrolled
patients were randomly divided into a training cohort and a
testing cohort at a ratio of 7:3. Figure 1 depicts the patient
selection process.

Clinical and Pathological Data
All enrolled patients were treated with surgical resection within two
weeks after undergoing a CECT scan. Baseline clinicopathological
data includes age, gender, carcinoembryonic antigen (CEA),
squamous cell carcinoma antigen (SCCA), tumor differentiation,
tumor infiltration depth, pathological T stage (pT stage),
Frontiers in Oncology | www.frontiersin.org 3
pathological N stage (pN stage), pathological AJCC stage (pAJCC
stage), perineural invasion (PNI), and LVI status of the tumor.

The demographic information was retrieved from the HIS
system. CEA and SCCA results were obtained by routine blood
tests within two weeks before surgery. All histopathological
parameters were obtained by analysis of all resected specimens
by two pathologists. The pathological TNM stage was reclassified
according to the American Joint Committee on Cancer (AJCC)/
International Union Against Cancer International (UICC) 8th
edition of the Cancer Staging Manual.

CT Image Acquisition
All enrolled patients were requested to sign an informed consent
form before undergoing a CECT examination. All patients
underwent breathing training and were required to fast for 4
to 6 h prior to the CECT scan. To clean and dilate the esophageal
and gastric lumen, patients were required to drink 500 to 1000 ml
of purified water 1 to 5 min prior to the examination. No
anticholinergic drugs were used in this study.
FIGURE 1 | Flow chart illustrating the patient selection and exclusion criteria.
May 2021 | Volume 11 | Article 644165
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All CECT images were acquired on two commercial CT
scanners. Scanner 1: a second-generation dual-source CT
(SOMATOM Definit ion Flash, Siemens Healthcare,
Forchheim, Germany) in the standard single-tube CT mode.
The scanning parameters were as follows: tube voltage 120 kVp,
automatic mA, slice thickness 5.0 mm, increment 5.0 mm,
rotation time 0.5 s, pitch 1.2, reconstruction algorithm b20–
40f, and reconstruction section thickness 1–2 mm. Scanner 2: a
256-slice CT (Revolution CT, GE Healthcare, Milwaukee, USA)
in the standard single-energy CT mode. The scanning
parameters were as follows: tube voltage 120 kVp, automatic
mA, slice thickness 5.0 mm, increment 5.0 mm, rotation time
0.5 s, pitch 0.992:1, reconstruction algorithm standard, and
reconstruction section thickness 1.25 mm.

All patients were in the supine position, and the scan covered
the chest or chest plus abdomen. After intravenous injection of
contrast agent (3.0–4.0 ml/s, 1.5 ml/kg, Iohexol,300 mg I/ml) via
a syringe pump, an arterial phase scan was performed after a 30s
delay, followed by a 20 ml saline flush.

The thin-section CECT images were exported from the PACS
workstation in the DICOM format. The thin-section CECT
images of each patient were imported into the Radiant
software (V 4.6.9 https://www.radiantviewer.com/) for analysis
separately. The tumor tissue appeared on CECT images as a
thickened esophageal wall or a mass-like lesion with marked
enhancement. The focal thickening of the esophageal wall of at
least 5 mm or greater than the adjacent esophageal wall was
identified as an abnormal thickening or tumor tissue (30). The
thin-section CECT images were used for clinical TNM stage (31).

The maximum tumor thickness, as a potential predictive
feature, was obtained by measuring on the maximum axial
images. The measurement was performed using mediastinal
window images (width, 400 HU; level, 40 HU), which can be
adjusted appropriately for optimal display of the tumor tissue.
The measuring and restaging procedure was performed by two
radiologists with 10 years of experience in the diagnosis of
esophageal cancer. When opinions differed in the measuring
and restaging procedure, divergences were resolved by
mutual consultation.

Image Processing and
Tumor Segmentation
The thin-section CECT images of each patient were uploaded to
the open-source software 3D Slicer (version 4.10.2, https://
www.slicer.org/). In order to eliminate the influence of
different scanners, layer thicknesses and algorithms on the
radiomic features, the following steps were carried out.

First, linear interpolation was adopted to 1 mm × 1 mm ×
1 mm. Second, the images were discretized in grayscale with
bandwidth set to 25, and the image filtering was processed
applying Laplace of Gaussian (LoG, s:3, 5, 7) and Wavelet
(wavelet conversion, LLL, LLH, LHL, LHL, LHH, HLH, HHL,
HHH) filter. The region of interest (ROI) was obtained by
manually sketching layer by layer along the tumor edge to
achieve segmentation. Considering the importance of tumor
heterogeneity, the three-dimensional (3D) ROI encompassed
Frontiers in Oncology | www.frontiersin.org 4
the entire lesion, including internal areas of necrosis, but
avoided including fatty tissues surrounding the lesion, lymph
nodes, cardiac and lung tissues, blood vessels, bone tissues,
intraluminal gas and fluid. After the sketching was finished,
the ROI was modified with reference to the MPR images.

Radiologist 1 performed tumor segmentation on all 334 patients
and radiologist 2 randomly selected 30 patients from the entire
cohort for independent segmentation to assess inter-class
agreement. Two weeks later, radiologist 1 repeated the
independent segmentation of the previous 30 patients and
evaluated the intra-class agreement with his own previous
segmentation. Intra-and inter-class correlation coefficients (ICCs)
was used to assess the intra-observer (radiologist 1 vs. radiologist 1)
and inter-observer (radiologist 1 vs. radiologist 2) reproducibility of
feature extraction.

Radiomics Feature Extraction
and Model Development
The radiomics feature extraction was performed using
PyRadiomics software (32). A total of 1130 radiomics features
were extracted including 18 classes of histogram features, 14
classes of shape factor feature, 24 classes of grayscale
co-occurrence matrices (GLCM), 16 classes of grayscale
travel matrices (GLRLM), 16 classes of grayscale region matrices
(GLSZM), 14 classes of grayscale dependency matrices (GLDM),
and five classes of adjacency domain matrices (NGTDM).

We performed three sequential steps for feature selection.
First, we evaluated the inter-observer and intra-observer
agreement of radiomic features and selected features with
ICC values greater than 0.75 (15, 33–35). Second, Wilcoxon
rank sum test (36, 37) was used to select features with
P value less than 0.05. Third, the least absolute shrinkage
and selection operator (LASSO) method was utilized to
select the most useful predictive features in the training
cohort. The lasso procedure is presented in Figure S1 in the
Supplementary Material.

Radiomics prediction models were developed based on three
machine learning methods, namely logistic regression (Logistic),
support vector machine (SVM) and decision tree (Tree),
respectively. The best performing model was retained for
adoption and radiomics score (Radscore) was then computed.

Clinical Model Development
The clinical features analysis included gender, age, tumor
location, CEA, SCCA, maximum tumor thickness based on
CECT (cThick), clinical T stage base on CECT (cT stage),
clinical N stage based on CECT (cN stage), and clinical AJCC
stage based on CECT (cAJCC stage). The cT stage was performed
according to the classification of CT staging standard suggested
by Botet et al. (38) and Griffin Y et al. (30). The judgment of
metastatic lymph nodes was based on the shortest diameter of
enlarged lymph nodes in different regions (39), combined with
lymph node axial ratio (40). The cN stage and cAJCC stage were
restaged by the American Joint Committee on Cancer (AJCC)/
Union Against Cancer International (UICC) eighth edition
cancer staging manual.
May 2021 | Volume 11 | Article 644165
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First, univariate analysis of clinical features was performed to
identify potential predictors associated with LVI. Second,
multivariate analysis was performed with logistic regression, using
statistically significant factors (P < 0.05) identified by univariate
analysis, to screen out the independent predictive factors of LVI.

Combined Model Development
The independent predictive radiomics features generated from
best performance machine learning model and the independent
predictive clinical features were combined to develop a combined
prediction model by logistic regression. Furthermore, a
nomogram was also created in the training cohort and
validated in the testing cohort. Figure 2 illustrates the
flowchart of the proposed analysis pipeline described above.

Statistical Analysis
All statistical analysis was performed on R software (Version:
3.6.3, https://www.rproject.org/) in this study. The continuous
variables were expressed as M±SD, and the categorical variables
were reported as counts. For the analysis of clinical and
pathological data, the Pearson’s Chi-squared test was used for
categorical variables, and the Mann-Whitney U test was used for
continuous variables with non-normal distribution. Trend test
was used for ordinal variables. The reported statistical
significance level was all two-sided, and the statistical
significance level was set to 0.05.
Frontiers in Oncology | www.frontiersin.org 5
The receiving operation characteristics (ROC) curves of each
model were analyzed, and the area under the curve (AUC),
accuracy, sensitivity, specificity, positive predictive value (PPV),
and the negative predictive value (NPV) were calculated. The
non-parametric Delong method was adopted to compare the
statistical difference between AUC values. Calibration curves
were plotted to determine the goodness-of-fit of the three
models. The Hosmer-Lemeshow test was performed to test the
reliability of calibration curves (41). Decision curve analysis
(DCA) was used to calculate the clinical impact of the
three models by quantifying the net benefit at different
threshold probabilities.
RESULTS

Patient Characteristics
Clinical and pathological data analysis of the 334 enrolled
patients is summarized in Table 1. There were 96 patients
(28.74%) with LVI and 238 patients (71.26%) without LVI.
Patients with LVI had higher tumor differentiation, pT stage,
pN stage, pAJCC stage, SCCA level, cN stage, cAJCC stage, and
cThick than patients without LVI (P < 0.05). The differences in
gender, age, tumor location, CEA level and cT stage between the
two groups were not statistically significant (P > 0.05).
FIGURE 2 | Radiomics prediction pipeline for LVI.
May 2021 | Volume 11 | Article 644165
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Radiomics Model Construction
and Validation
To eliminate redundant features, highly correlated features with
ICC values less than 0.75 would be excluded, with 233 features
eliminated and 897 features retained. After screening out the
Frontiers in Oncology | www.frontiersin.org 6
redundant features by Wilcoxon analysis and LASSO, two most
robust radiomics features (Sphericity and GLNU) were retained.

Logistic regression, SVM and Tree methods were separately
used to establish the radiomics model. The model established by
Logistic method yield the best performance, and the AUC values in
TABLE 1 | Clinical and pathological characteristics of the patients.

Variables LVI－ (n=238) LVI+ (n=96) Total (n=334) P

Gender 0.6521

female 83 (34.87) 31 (32.29) 114 (34.13) 　

male 155 (65.13) 65 (67.71) 220 (65.87) 　

Age 63.18±7.10 62.64±7.55 63.02 ±7.23 0.4572

pT stage 0.0383

T1 19 (7.98) 6 (6.25) 25 (7.48) 　

T2 56 (23.53) 11 (11.46) 67 (20.06) 　

T3 161 (67.65) 78 (81.25) 239 (71.56) 　

T4 2 (0.84) 1 (1.04) 3 (0.90) 　

pN stage <0.0013

N0 142 (59.66) 20 (20.83) 162 (48.50) 　

N1 64 (26.89) 36 (37.50) 100 (29.94) 　

N2 25 (10.51) 24 (25.00) 49 (14.67) 　

N3 7 (2.94) 16 (16.67) 23 (6.89) 　

pAJCC stage 　 　 　 <0.0013

I 10 (4.21) 2 (2.08) 12 (3.59) 　

II 136 (57.14) 20 (20.83) 156 (46.71) 　

III 84 (35.29) 56 (58.34) 140 (41.92) 　

IV 8 (3.36) 18 (18.75) 26 (7.78) 　

Tumor differentiation 0.0093

well 2 (0.84) 0 2 (0.60) 　

moderate 174 (73.11) 55 (57.29) 229 (68.56) 　

poor 62 (26.05) 41 (42.71) 103 (30.84) 　

Tumor location 0.0711

up 20 (8.40) 2 (2.08) 22 (6.59) 　

medium 166 (69.75) 67 (69.79) 233 (69.76) 　

low 52 (21.85) 27 (28.13) 79 (23.65) 　

PNI 0.0271

positive 171 (71.85) 57 (59.37) 228 (68.26) 　

negative 67 (28.15) 39 (40.63) 106 (31.74) 　

CEA (ng/ml) 2.95±1.41 2.99 ±1.24 2.96±1.36 0.9592

SCCA (ng/ml) 1.25±0.74 1.60 (1.62) 1.35±1.08 0.0072

cT stage 0.1943

T1 0 2(2.08) 2(0.60) 　

T2 50(21.01) 10(10.42) 60(17.96) 　

T3 188(78.99) 84(87.50) 272(81.44) 　

T4 0 0 0 　

cN stage <0.0013

N0 130 (54.62) 27 (28.13) 157 (47.01) 　

N1 90 (37.82) 33 (34.37) 123 (36.83) 　

N2 15 (6.30) 30 (31.25) 45 (13.47) 　

N3 3 (1.26) 6 (6.25) 9 (2.69) 　

cAJCC stage <0.0013

I 0 0 0 　

II 140(58.82) 32(33.33) 172(51.50) 　

III 95(39.92) 62(64.59) 157(47.00) 　

IV 3(1.26) 2(2.08) 5(1.50) 　

cThick (cm) 1.37 ±0.43 1.63 ±0.52 1.44±0.47 <0.0012

Sphericity 0.68±0.08 0.57±0.09 0.65±0.10 <0.0012

GLNU 58.81±42.91 99.54±95.20 70.52±65.10 <0.0012

Radscore 0.20±0.19 0.52±0.27 0.29±0.26 <0.0012

Maximum3DDiameter(cm) 4.21±1.54 5.78±1.97 4.66±18.19 <0.0012

Mesh Volume (cm3) 10.19±7.84 17.55±17.41 12.30±11.90 <0.0012
M
ay 2021 | Volume 11 | Article
Unless otherwise indicated, data in parentheses are percentages. 1Pearson’s Chi-squared test; 2Mann-Whitney U test; 3Trend test for ordinal variables. LVI, lymphovascular invasion; pT
stage, pathological T stage; pN stage, pathological N stage; pAJCC, pathological AJCC; cT stage, clinical T stage based on CECT; cN stage, clinical N stage based on CECT; cAJCC,
clinical AJCC stage based on CECT; PNI, perineural invasion; CEA, Carcinoembryonic antigen; SCCA, Squamous Cell Carcinoma Antigen; cThick, maximum tumor thickness based on
CECT; GLNU, Gray-Level Non-Uniformity.
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the training and testing cohort were 0.847 and 0.826, respectively
(Table 3 and Figure 3). The Radscore for each patient was then
calculated by a linear combination of the selected features weighted
by their respective coefficients in the predictive model, which can
be expressed as follows: Radscore = −1.2811–1.4584*Sphericity
+0.4868* GLNU. Radscore for each patient in the training cohort
and testing cohort is shown in Figure 4.

Clinical Model Construction and Validation
Univariate analysis of clinical features revealed that cThick, cN
stage, and SCCA level were significant association with LVI
(Table 2). Multivariate analysis of significant variables revealed
that cThick and cN stage were independent predictors of LVI
Frontiers in Oncology | www.frontiersin.org 7
(Table 2). The clinical prediction model, including the two
clinical CT features, was established by logistic regression, with
AUC values were 0.775 and 0.798 in the training and testing
cohort, respectively (Table 3 and Figure 3). Delong test shows
that the AUC values of the clinical model were significantly lower
than the AUC values of the radiomics model established by
Logistic method in the training and testing cohort (P = 0.013,
0.030, Table S1).

Combined Model Construction
and Validation
Logistic regression was performed to establish a combined model
incorporating the two radiomics independent predictors
A B

FIGURE 3 | ROC curves of the radiomics, clinical and combined models for predicting LVI in the training cohort (A) and testing cohort (B).
A B

FIGURE 4 | Bar charts of Radscore for each patient in the training cohort (A) and testing cohort (B). The X-axis represents each patient, each bar represents one
patient. Pink bars indicate the Radscore for patients without LVI, while light blue bars indicate the Radscore for patients with LVI. Pink bars above zero-line or light
blue bars below the zero-line mean misclassification.
May 2021 | Volume 11 | Article 644165
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(Sphericity and GLNU) and two clinical independent predictors
(cThick, cN stage), yielding AUC values of 0.876 and 0.867 in the
training and testing cohort, respectively (Table 3 and Figure 3).
Based on this model in training cohort, a nomogram incorporated
the four predictive factors was constructed to predict the
individual probability of LVI (Figure 5). The Delong test
revealed that the combined model and radiomics model were
superior to the clinical model. In the training and testing cohort,
calibration curves graphically showed good agreement between
prediction and actual observation for the three models (Figure 6).
The Hosmer-Lemeshow test yielded a nonsignificant statistic both
in the training and testing cohort, which implied that there was no
departure from perfect fit (training cohort: Radiomics 0.244,
Clinical 0.535, Comb 0.356; testing cohort: Radiomics 0.285,
Clinical 0.055, Comb 0.097).

The decision curve analysis (DCA) showed that the combined
model yielded a higher net benefit of LVI than the clinical model
Frontiers in Oncology | www.frontiersin.org 8
and the radiomics model within a probability range from 0 to
0.720 in the training cohort and range from 0 to 0.728 in the
testing cohort (Figure 7). The decision curve analysis indicated
that the combined model had better performance with higher
overall benefits.
DISCUSSION

As a routine examination, CECT is a useful tool for differential
diagnosis, preoperative evaluation, treatment, and prognosis of
patients with esophageal cancer (30, 31, 42–45). The significance
of the present study is that it proposes a novel method for
predicting LVI in ESCC for the first time. It can be concluded
that Radscore, a quantitative parameter based on CECT
radiomics feature, could serve as an independent predictor of
LVI in ESCC, and that the radiomics model combined with
clinical features based on CECT can improve the predictive
ability. This novel approach is expected to provide risk
stratification and support decision-making in clinical treatment
for patients with ESCC.

Currently, the AJCC/UICC guidelines have not incorporated
LVI as an independent prognostic indicator for esophageal
cancer in the TNM staging system. Pathological studies have
now incorporated LVI into the TNM staging system for multiple
cancers (46, 47). Many studies have revealed that LVI is an
independent risk factor for survival in patients with ESCC (44,
48). Preoperative prediction of LVI status is necessary for
patients to implement an aggressive treatment plan (49).
Patients with suspected tumor microvascular invasion require
more advanced treatment, such as more extensive surgery or
preoperative adjuvant therapy (50).

In the clinical model we established, the univariable analysis
identified that cThick, cN stage, and SCCA level were associated
with LVI. According to multivariate analysis, cThick and cN
stage were independent predictors of LVI. The maximum tumor
thickness reflects the tumor infiltration depth, which correlates
with the development of LVI (51). The incidence of LVI
increases with the tumor infiltration depth (8, 52). On CECT
images, identification tumor region usually depended on the
TABLE 3 | Diagnostic performance of individualized prediction models.

AUC (95% CI) ACC SEN SPE PPV NPV Cutoff

Training cohort (n=234)
Radiomics Logistic 0.847(0.796-0.898) 0.791 0.809 0.783 0.604 0.909 0.287

Tree 0.798(0.737-0.858) 0.786 0.765 0.795 0.605 0.892 0.210
SVM 0.847(0.796-0.898) 0.791 0.809 0.783 0.604 0.909 0.282

Clinical 0.775(0.709-0.841) 0.752 0.691 0.777 0.560 0.860 0.309
Comb 0.876(0.828-0.924) 0.816 0.779 0.831 0.654 0.902 0.275

Testing cohort (n=100)
Radiomics Logistic 0.826(0.733-0.919) 0.760 0.679 0.792 0.559 0.864 0.284

Tree 0.696(0.591-0.801) 0.730 0.643 0.764 0.514 0.846 0.200
SVM 0.826(0.733-0.919) 0.760 0.679 0.792 0.559 0.864 0.281

Clinical 0.798(0.707-0.890) 0.650 0.607 0.667 0.415 0.814 0.300
Comb 0.867(0.792-0.941) 0.810 0.714 0.847 0.645 0.884 0.277
Ma
y 2021 | Volum
e 11 | Article 6
Logistic, logistic regression; Tree, decision tree; SVM, support vector machine; AUC, area under the curve; CI, confidence interval; ACC, Accuracy; SEN, Sensitivity; SPE, specificity; PPV,
positive predictive value; NPV, negative predictive value. Radiomics, radiomics model; Clinical, clinical model; Comb, combined model.
TABLE 2 | Univariate and Multivariate analysis to identify significant factors for LVI.

Univariate Multivariate

OR (95% CI) P OR (95% Cl) P

Gender 0.747* – –

female Reference – –

male 1.12(0.68-1.87) 0.658 – –

Age 0.99(0.96-1.02) 0.548 – –

Location 0.071* – –

up Reference – –

middle 3.77(1.05-26.10) 0.040 – –

low 4.83(1.26-34.60) 0.019 – –

CEA 1.02(0.86-1.21) 0.811 – –

SCCA 1.39(1.05-1.81) 0.043 – –

cT stage NA NA – –

cN stage <0.001* <0.001*
N0 Reference Reference
N1 1.76(0.99-3.16) 0.054 2.58(1.27-5.37) <0.001
N2 9.43(4.54-20.50) <0.001 10.49(4.39-26.55) <0.001
N3 9.22(2.21-48.70) 0.002 12.44(1.71-114.79) 0.014

cAJCC NA NA – –

cThick 3.30 (1.92-5.68) <0.001 4.00(1.92-8.81) <0.001
*Overall P value; OR, odds ratio; CI, confidence interval; cT stage, clinical T stage based on
CECT; cN stage, clinical N stage based on CECT; cAJCC, clinical AJCC stage based on
CECT; NA, not available. cThick, maximum tumor thickness based on CECT.
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extent of invasion by the thickness of esophageal wall, and it was
generally considered that thickness > 5 mm was abnormal. The
CECT has exhibited significant advantages in measuring tumor
thickness (43), which allows for initial preoperative T staging.
The multivariate analysis showed that cThick was an
independent predictor of LVI. This indicated that the cThick
could reflect the degree of tumor invasion more robustly and
thus better predict the status of LVI than the cT stage. In the
Frontiers in Oncology | www.frontiersin.org 9
clinical model, cN stage was another independent predictor of
LVI. In general, CT has low sensitivity in detecting metastases
according to conventional criteria (53). New diagnostic criterion
for MDCT improves the sensitivity of detection of
lymphatic metastasis (40), so that the utilization of CECT for
cN stage is more consistent with the clinical practice. The
clinicopathological data revealed that patients with LVI had
higher pN stage than patients without LVI, which was
FIGURE 5 | Nomogram for predicting LVI in ESCC. The nomogram was built in the training cohort with the independent predictors from radiomics model and
clinical model.
A B

FIGURE 6 | Calibration curves of the 3 models in the training cohort (A) and testing cohort (B). The 45° gray line indicates perfect prediction and the colored lines
the predictive performance of the different models. The closer the line fit to the ideal line, the better the predictive accuracy of the model.
May 2021 | Volume 11 | Article 644165
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consistent with the cN stage results. Clinically, LVI may be an
upgrade factor for all N stages (54), particularly in patients with
negative lymph node metastases, for it is the only factor that
affects the prognosis (55). In our study, the radiomics model
achieved AUCs of 0.847 and 0.826 in the training and testing
cohort, which were better than the AUCs of the clinical model
(0.775 and 0.798, respectively).

In a prior study, Chen et al. (15) used arterial-venous phase
CECT images to build radiomics models to predict the LVI status
in gastric cancer. The results showed that the combined model
based on arterial-venous phase radiomics combining with
clinical risk factors had the best performance with AUC values
of 0.856 and 0.792 in the training and test groups. The
performance of this combined model was similar to ours. But
the difference lied in that our radiomics model was based on the
single arterial phase CECT images and did not include
postoperative pathological factors. However, for esophageal
cancer, plain and venous phase CECT scans were not the
routine sequences, while a single arterial phase is more in line
with clinical practice. Zhang et al. (29) established multimodal
imaging radiomics model using MRI (T2WI, DWI) and venous
phase CECT images to predict LVI status in rectal cancer,
yielding the best performance compared with every single
model. This implies that incorporating MRI or PET/CT images
into our model to develop a multimodal radiomics model may
improve the predictive performance. Nie et al. (28) found that
the prediction model developed using CT morphology, 2D-RS
and SUV values (AUCs,0.851 and 0.838, in training and testing
cohort) performed better than the model without SUV values
(0.796,0.822), reflecting the incremental value of metabolic
parameters in the prediction of LVI in LAC patients. The
difference from our study was that the authors adopted 2D-
ROI (CT) for radiomics feature extraction and model building.
As for esophageal cancer, the tumor tissue has a variable length.
Frontiers in Oncology | www.frontiersin.org 10
The selection of largest cross-sectional area is elusive and is hard
to achieve agreements among different performers. Theoretically,
3D-ROI(CT) which we adopted can better reflect the
heterogeneity of the whole tumor than 2D-ROI. However, our
study did not compare the performance of the two prediction
models built on 2D-ROI and 3D-ROI.

However, incorporating radiomics into predictive studies
requires a multi-step process that includes reliable statistical
analyses such as feature selection and classification to reduce
over-fitting and to build robust predictive or prognostic models
(56). Although several machine learning methods (alone or in
combination) have been used in radiomics analysis for feature
selection and classification, there is no “one-size-fits-all”
approach since the performance of the workflow of various
machine learning methods is application and/or data type
dependent (57). Isaac et al. (57) provided a cross-sectional
combination of 6 feature choices and 12 classifiers for
multimodal imaging radiomics-based prediction of EGFR and
KRAS mutation status in NSCLC patients, and the results
showed that different combinations of features, classifiers and
image settings had different diagnostic performance (AUCs
ranged from 0.5 to 0.82). Similarly, Rastegar et al. (58)
compared 4 feature selection methods and 4 classification
methods, founding that different combinations of screening
methods with different classifiers had different and variable
performance in predicting bone mineral loss at different sites.
In another previous study, Ghasem et al. (59) compared seven
different feature selection methods and 12 classifiers, in which
heatmaps were adopted to show their cross-combinations.
However, our study did not analyze so many different feature
extraction methods and classification methods, as well as their
combinations. In the model building process, we selected only
three machine learning algorithms, namely Logistic, SVM and
Tree, to select the best radiomics model. Our results showed that
A B

FIGURE 7 | Decision curve analysis of the 3 models in the training cohort (A) and testing cohort (B). The decision curve analysis (DCA) showed that the combined
model yielded higher net benefit than the clinical model and the radiomics model, when the score is within a probability range from 0 to 0.720 in the training cohort
and range from 0 to 0.728 in the testing cohort.
May 2021 | Volume 11 | Article 644165

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Li et al. Radiomics to Predict LVI in ESCC
the radiomics model built by Logistic method was the best, and
the difference between Logistic method and SVM method was
not statistically significant, but the difference between Logistic
method and Tree method was statistically significant (Table S1
in Supplementary Material). Furthermore, whether filter
models or classifiers have a greater impact on model
performance has been inconsistently reported in various
studies. Parmar et al. (60) evaluated the performance and
stability of 13 feature selection methods and 11 machine
learning classification methods in predicting overall survival of
patients with head and neck cancer. They concluded that the
classification method had the greatest impact on performance
and should be chosen with careful consideration. Stefan Leger
et al. (61) assessed the performance of 11 machine learning
algorithms combined with 12 feature selection methods by the
concordance index (C-Index), to predict loco-regional tumor
control (LRC) and overall survival for patients with head and
neck squamous cell carcinoma. They reported that the
performance differences between the learning algorithms were
smaller than the differences between the feature selection
methods. In summary, determining the appropriate feature
selection method and learning algorithm is a key step in
building an accurate radiomics model, which needs to be
compared and selected according to the specific type of study.

In our radiomics model, among 1130 radiomics features,
Sphericity and GLNU were the most significant components
for predicting histological LVI status. The detailed descriptions
and equations of all relevant radiomics features are presented in
Table S2 in the Supplementary Material. Sphericity is a
radiomics shape feature that describes how close a given
volume is to a perfect sphere (62). The value range is 0 <
Sphericity ≤ 1, where a value of 1 indicates a perfect sphere
(63). As a dimensionless measure, Sphericity is independent of
scale and orientation. Compared with other radiomics features,
Sphericity is characterized by high reproducibility (64). The
Sphericity is independent of the segmentation method but
related to the corresponding tumor volume, while larger
volumes exhibit lower Sphericity (65). The Sphericity should
be prioritized as these have minimal variations with volume
changes, slice thickness and resampling (63). Perhaps due to our
adoption of two types of CT scanners with different thickness
and reconstruction algorithms, Sphericity was retained as a
robust radiomics feature. Clinically, Sphericity can predict
tumor grade, local failure, and OS in patients with
meningioma, and low Sphericity is a predictor of poor
preoperative imaging outcome (66). As for breast cancer,
Sphericity can predict the expression of Ki-67, which correlates
with the malignancy of the tumor (67). Sphericity also can serve
as an noninvasive imaging biomarker to identify cancer subtype
(68–70) and predict the pathological response (71). Our study
showed that tumors with LVI had lower Sphericity values than
tumors without LVI, indicating that tumors with low Sphericity
were more likely to develop LVI. This also explored the high
invasiveness of tumors with LVI from another aspect.

In our study, GLNU was another independent predictor for
LVI. Gray-level non-uniformity (GLNU) is a measure of the
Frontiers in Oncology | www.frontiersin.org 11
similarity of gray-level values throughout the image (72). Many
radiomics features are unstable in different reconstruction
algorithms, while GLNU is one of the most repetitive radiomics
features showing good stability (73). The GLNU is less sensitive to
reconstructed convolutional kernels and thus has higher stability
under different image reconstruction algorithms (74). However,
GLNU is sensitive to both voxel size and number of gray levels,
therefore, it requires normalization by voxel size and number of
gray levels (75). The GLNU increases with the tumor heterogeneity,
which is related to tumor invasion, treatment response and
prognosis (76). As an independent risk factor for poor prognosis,
high GLNU is associated with worse survival in patients with
pancreatic cancer who have undergone surgery (72). Our study
showed that tumors with LVI had higher GLNU values than those
without LVI, while the presence of LVI implies an increase in
tumor heterogeneity. The GLNU can be used precisely as a
predictor of LVI, reflecting the heterogeneity and aggressiveness.
This finding was consistent with the results of previous studies of
renal cell carcinoma, which indicated that higher GLNU values had
greater heterogeneity and invasiveness (76).

In addition, two additional radiomics features were specifically
extracted, namely the maximum 3D diameter and the Mesh
Volume (Table 1), even though the two radiomics features were
not independent predictors. The result showed that patients with
LVI-positive had greater maximum 3D diameter andMesh Volume
than patients without LVI (p < 0.001), which was consistent with
previous studies on the prediction of LVI in gastric and
hepatocellular carcinoma (15, 25). Since there was no reliable
individual factor to predict LVI, a predictive model combining
radiomics and clinical features would be viable. By incorporating
cThick and cN stage into the radiomics model, the AUCs of the
combined model in the training and testing cohort were improved
to 0.876 and 0.867, respectively.

However, our study had several limitations. Firstly, this was a
single-center retrospective study, and the enrolled patients
included only those who had undergone surgery, which may
introduce a selection bias. Secondly, the sample size was
relatively small, and the resulting sample error causes the
performance of the prediction model in the testing cohort to
be slightly lower than that in the training cohort. Thirdly, as this
study was a retrospective study without plain and venous phase
scanning, more meaningful qualitative and quantitative
parameters were not included. Fourthly, we did not evaluate
the robustness of the radiomics features between the two CT
scanners. Finally, this study did not evaluate the value of
radiomics based on CECT in predicting the prognosis of ESCC
patients with LVI, which may be the next step in our research.
CONCLUSION

The radiomics features based on CECT can serve as potential
indicators to predict LVI in ESCC. The combined model
incorporating both radiomics and clinical features yielded
better predictive performance for LVI in ESCC. Considering
that it is a single-center study based on arterial phase CECT
May 2021 | Volume 11 | Article 644165
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images, future validation studies with multiple phases and
multiple centers are needed to verify its clinical feasibility.
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