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Abstract

Predicting the quaternary structure of protein complex is an important problem. Inter-

chain residue-residue contact prediction can provide useful information to guide the

ab initio reconstruction of quaternary structures. However, few methods have been

developed to build quaternary structures from predicted inter-chain contacts. Here, we

develop the first method based on gradient descent optimization (GD) to build quater-

nary structures of protein dimers utilizing inter-chain contacts as distance restraints. We

evaluate GD on several datasets of homodimers and heterodimers using true/predicted

contacts and monomer structures as input. GD consistently performs better than both

simulated annealing and Markov Chain Monte Carlo simulation. Starting from an arbi-

trarily quaternary structure randomly initialized from the tertiary structures of protein

chains and using true inter-chain contacts as input, GD can reconstruct high-quality

structural models for homodimers and heterodimers with average TM-score ranging

from 0.92 to 0.99 and average interface root mean square distance from 0.72 Å to

1.64 Å. On a dataset of 115 homodimers, using predicted inter-chain contacts as

restraints, the average TM-score of the structural models built by GD is 0.76. For 46%

of the homodimers, high-quality structural models with TM-score ≥ 0.9 are

reconstructed from predicted contacts. There is a strong correlation between the quality

of the reconstructed models and the precision and recall of predicted contacts. Only a

moderate precision or recall of inter-chain contact prediction is needed to build good

structural models for most homodimers. Moreover, GD improves the quality of quater-

nary structures predicted by AlphaFold2 on a Critical Assessment of Techniques for Pro-

tein Structure Prediction–Critical Assessments of Predictions of Interactions dataset.
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1 | INTRODUCTION

Determination of interactions between protein chains in a protein

complex is important for understanding protein function and cellular

processes and can play significant roles in designing and discovering

new drugs.1 Detailed protein–protein interactions are represented by

the three-dimensional shape of a complex consisting of interacting

proteins (i.e., quaternary structure). Experimental techniques such as
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X-ray crystallography and nuclear magnetic resonance (NMR) can

determine the quaternary structure of protein complexes with high

accuracy. However, these experimental approaches are costly and

time-consuming, and therefore cannot be applied to most protein

complexes. Therefore, computational modeling approaches, which

provide a faster and inexpensive way to predict quaternary structures,

have become increasingly popular and important.2

Computational protein docking, currently the most widely used

approach for modeling complex structures, takes the tertiary struc-

tures of individual proteins as input to build the quaternary structure

of the complex as output.3–9 Docking methods can be largely divided

into two categories including template-based modeling, in which

known protein complex structures in the Protein Data Bank (PDB) are

used as templates10–17 to guide modeling, and template-free modeling

(ab initio docking), which does not use any known structure as tem-

plate, and instead searches through a large conformation space for rel-

ative orientations of protein chains with minimum binding energy. The

binding energy is often roughly approximated by geometric and elec-

trostatic complementarity, inter-chain hydrogen binding, hydrophobic

interactions, and residue–residue contact potentials.18–23

Although template-based docking works well if a good struc-

tural template is available, it cannot be applied to most protein com-

plexes that lack suitable templates.2,24 Ab initio docking methods

can predict the quaternary structure of acceptable quality for some

protein complexes, but according to several rounds of Critical

Assessments of Predictions of Interactions (CAPRI), they still cannot

achieve adequate accuracy for most protein complexes.24,25 One

main reason for the low accuracy is that the ab initio docking

methods need to search through a huge conformation space, which

is usually not feasible with limited time and computing resources.

To reduce the search space, several methods started to use the

interface contacts between proteins to constrain conformation sea-

rch26–30 and were able to enhance docking accuracy,30 showing

inter-chain (inter-protein) contacts can provide valuable information

to build protein quaternary structures as what had happened in pro-

tein tertiary structure prediction.

The major advances of ab initio tertiary structure prediction of a

single protein chain have been largely driven by accurate prediction of

intra-chain residue–residue contact prediction and the development

of methods of reconstructing tertiary structures from the contacts.31–

36 However, there are still very few methods available to reconstruct

protein quaternary structures from predicted inter-chain residue–

residue contacts. With the emergency of inter-chain contact predic-

tion enhanced by residue–residue co-evolutionary analysis and deep

learning,37–41 it is crucial to create robust methods to efficiently and

effectively use inter-chain contacts to directly reconstruct protein

quaternary structures. Despite both reconstructing protein tertiary

structures from intra-chain contacts and reconstructing quaternary

structures from inter-chain contacts use contacts as distance

restraints to build three-dimensional (3D) structures, they have some

significant difference. On one hand, the quaternary structure recon-

struction depends on the quality of the tertiary structure input as well

as the accuracy of inter-chain contact prediction because it keeps the

tertiary structure of monomers largely unchanged in the modeling

process. Therefore, the accuracy of the quaternary structure recon-

struction is low if the quality of tertiary structures is low, but the

reconstruction of tertiary structure from intra-chain contact predic-

tion only depends on the accuracy of intra-chain contact prediction.

On the other hand, the reconstruction of quaternary structure mostly

needs to orient the tertiary structures of a limited number of mono-

mers (e.g., two for dimer) correctly, which has much less degree of

freedom and likely requires fewer accurate distance restraints than

the reconstruction of tertiary structures that needs to accurately posi-

tion many (e.g., hundreds of) amino acids. Finally, a unique challenge

for the quaternary structure reconstruction is to account for the

potential change of tertiary structures of monomers upon protein–

protein interaction.

Gradient descent optimization has become a popular method to

build the tertiary structure of proteins using intra-protein (intra-

chain) residue–residue contacts or distances. AlphaFold,31 which

was ranked first in 13th Critical Assessment of Techniques for Pro-

tein Structure Prediction (CASP13), developed a gradient descent-

based folding method to generate protein tertiary structure from

intra-chain distances. trRosetta,32 a powerful tool for protein tertiary

structure modeling, uses a gradient descent-like method (MinMover

from pyRosetta) to build the structure of individual proteins from

predicted residue-residue distances. A recent protein folding frame-

work based on gradient descent, GDFOLD,42 uses intra-chain con-

tacts as input constraints to directly optimize the positions of Cα

atoms of a protein.

Motivated by the recent success of applying gradient descent

to protein tertiary structure prediction, in this study, we develop

an ab initio gradient descent optimization-based method (GD) to

construct quaternary structures of protein dimers from inter-chain

contacts. We first test if the proposed method can generate high

quality structures of protein dimers using true contacts. Then, we

apply it to construct quaternary structures of homodimers from

predicted, noisy, and incomplete contacts. To rigorously bench-

mark its performance, we also implement a Markov Chain simula-

tion method (MC) based on RosettaDock43 and apply a simulated

annealing method based on Crystallography and NMR System

(CNS)41 to reconstruct protein complex structures from inter-

protein contacts and compare them with GD. We evaluate the

three methods on several in-house datasets consisting of

233 homodimers and heterodimers in total as well as on a stan-

dard dataset of 32 heterodimers40,44 with true or predicted con-

tacts. GD consistently performs better than MC and CNS on all

the datasets. It can reconstruct high-quality structures from true

inter-chain contacts and good structures for most homodimers

when predicted contacts are only moderately accurate. Finally, we

also apply GD to 28 homodimers used in the several recent

CASP–CAPRI experiments and seven homomeric targets of the lat-

est 2020 CASP14–CAPRI experiment to investigate how the qual-

ity of input (i.e., tertiary structure of monomers predicted by

AlphaFold2 and inter-chain contact prediction) influences its

performance.
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2 | RESULTS AND DISCUSSIONS

2.1 | Reconstruction of quaternary structure from
native (true) contacts and true tertiary structures of
monomers in the bound state

To check if the methods can work well when the perfect input is

provided, we first apply GD, MC and CNS to generate quaternary

structures for 44 homodimers in the Homo44 dataset using true

inter-chain contacts as constraints and true tertiary structures of

monomers in homodimers (i.e., in the bound state) as input. The

models reconstructed by the methods are evaluated by five comple-

mentary metrics against known experimental structures of the

homodimers: root-mean-square deviation (RMSD), TM-score, the per-

centage of native contacts existing in predicted models (f_nat), inter-

face RMSD (I_RMSD), and ligand RMSD (L_RMSD) widely used in the

field. The TM-score between the reconstructed complex structure

and the native complex structure is computed using TM-align.45

RMSD is calculated using CA-RMSD in PyRosetta. I_RMSD, L_RMSD,

and f_nat are calculated using Dock-Q46 and our in-house programs.

The detailed results of GD on the Homo44 dataset in terms of

TM-score, RMSD, f_nat, I_RMSD, and L_RMSD) and the length and

number of contacts of the homodimers are reported in Table S1. GD

is able to generate high-quality structural models for all the dimers

when true inter-chain contacts are provided as constraints. For

instance, TM-score of the models ranges from 0.936 to 0.999 and

I_RMSD from 0.204 Å to 1.85 Å. The average of RMSD, TM-score,

f_nat, I_RMSD, and L_RMSD of GD, MC and CNS is compared in

Table 1 (see the per-dimer comparison of the three methods in terms

of each metric in Figures S1–S5). GD performs best in terms of all the

metrics, while MC performs better than CNS. The average RMSD of

GD is 0.63 Å, which is lower than 0.76 Å of MC and 1.16 Å of CNS.

The average TM-score of GD is 0.99—an almost perfect score, which

is higher than 0.98 of MC and 0.91 of CNS. Moreover, GD realizes

92.19% of native contacts (f_nat = 92.19%), higher than 91.39% of

MC and 82.49% of CNS. The average I_RMSD and L_RMSD of GD

are 0.77 Å and 1.38 Å, lower than those of the other two methods.

Figure 1 illustrates high-quality structural models reconstructed by

GD, MC, and CNS that are superimposed with the true structure of a

dimer (PDB code: 1XDI) in Homo44.

We then evaluate GD with MC and CNS on 73 heterodimers in

the Hetero73 dataset using true inter-chain contacts as constraints

and true tertiary structures of monomers in homodimers (i.e., in the

bound state) as input. The detailed per-dimer results of GD are shown

in Table S2. A comparison of the three methods is shown in Table 2.

The average RMSD, I_RMSD, and L_RMSD of GD are lower than the

other two methods, while its average TM_score and f_nat are higher

than the other two methods, indicating that GD performs best, while

MC works better than CNS. A per-dimer comparison of RMSD and

TM-score of the models reconstructed by the three methods is

depicted in Figures S6 and S7, respectively. The models reconstructed

by GD for the heterodimers have high quality on average (e.g., mean

RMSD = 1.23 Å and TM-score = 0.92). However, in comparison with

the results on homodimers in Table 1, the average accuracy on

heterodimers is lower than that on homodimers. A main reason is that

heterodimers tend to have lower inter-chain contact density (i.e., # of

inter-chain contacts/sum of the sequence lengths of two chains in a

dimer)41,47 on average, leading to fewer distance restraints available

for structure reconstruction.

Moreover, we evaluate the three methods on 32 heterodimers in

the Std32 dataset. The detailed results of GD are presented in

Table S3. The average TM-score, RMSD, f_nat, I_RMSD, and L_RMSD

of the models reconstructed by GD, MC, and CNS are reported in

Table 3. Similar to the results on the other datasets, GD generates

high-quality models on average and performs best in terms of all the

metrics, while MC performs substantially better than CNS.

2.2 | Analysis of two key factors impacting the
quality of models reconstructed by GD from native
contacts

We have observed that the quality of the generated structures is

affected by two factors: initial structure in the optimization and inter-

chain contact density in a dimer.

Figure 2 compares TM-score and I_RMSD of 20 models

reconstructed by GD with the corresponding 20 different start models

for a dimer 1Z3A in Homo115 using noisy predicted inter-chain con-

tacts and the true tertiary structure of the monomer in the bound

state as input. The quality of the initial models is generally poor (TM-

score ranging from 0.5 to 0.61 and I_RMSD ranging from 12 Å to

26 Å). In 19 out of 20 cases, GD improves TM-score of the models

and in all 20 cases, it reduces I-RMSD. The quality of the models

reconstructed by GD varies a lot (e.g., TM-score ranging between 0.5

TABLE 1 Mean and SD of root mean
square distance (RMSD), TM-score, f_nat,
I_RMSD, and L_RMSD of the three
methods on 44 homodimers in Homo44

Evaluation metric GD MC CNS

RMSD (mean, SD) 0.63 ± 0.3788 0.76 ± 0.361 1.16 ± 1.0043

TM-score (mean, SD) 0.99 ± 0.0132 0.98 ± 0.014 0.91 ± 0.0102

f_nat (mean, SD) 92.19 ± 8.64 91.39 ± 9.08 82.49 ± 22.02

I_RMSD (mean, SD) 0.77 ± 1.05 1.35 ± 3.98 12.46 ± 8.46

L_RMSD (mean, SD) 1.38 ± 0.8 1.7 ± 0.9 11.18 ± 14.51
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and 0.88 and I_RMSD between 2.5 Å and 20 Å). Given a reasonable

initial structure, GD converges to a high-quality local minimum. But

starting from a poor initial model, the algorithm can get stuck in a bad

local minimum, producing a low-quality model. However, the correla-

tion between the quality of the randomly initialized models and the

reconstructed models is low. Therefore, it is useful to run GD multiple

times with different start models.

Based on the experiment on Homo44 and Hetero73 datasets,

using 20 different start models to run GD 20 times can build almost

perfect quaternary structural models with TM-score = 0.99 and an

RMSD less than 1 Å from true inter-chain contacts and true tertiary

structures in the bound state for most dimers (see Tables S1 and S2

for details).

In addition to initial models, the contact density of a dimer

strongly influences the quality of the models reconstructed from

native contacts. Figure 3 illustrates how TM-score and RMSD of the

models reconstructed for 73 heterodimers change with respect to the

density of true contacts. When the contact density is above �0.25,

almost all the models have a very low RMSD (< 1 Å) and a very high

TM-score (close to 1). When contact density is lower than �0.25,

F IGURE 1 The superposition of the native structure of 1XDI and the models reconstructed by three methods (i.e., green and orange denoting
the true dimer structure and blue and red the reconstructed dimer structure): (A) GD, (B) MC, and (C) CNS. TM-score, RMSD, f_nat, I_RMSD,
L_RMSD of the model predicted by GD are 0.99, 0.56 Å, 94.52%, 0.24 Å, and 0.74 Å, respectively. TM-score, RMSD, f_nat, I_RMSD, L_RMSD of
the model predicted by MC are 0.99, 0.61 Å, 93.15%, 0.45 Å, and 1.29 Å, respectively. TM-score, RMSD, f_nat, I_RMSD, L_RMSD of the model
predicted by CNS are 0.88, 2.25 Å, 74.79%, 1.49 Å, and 5.18 Å, respectively. CNS, crystallography and NMR system; GD, gradient descent
optimization; MC, Markov chain; RMSD, root mean square distance

TABLE 2 Mean and SD of RMSD, TM-score, f_nat, I_RMSD, and
L_RMSD results of the three methods on 73 heterodimers in the
Hetero73 dataset

Evaluation

metric GD MC CNS

RMSD

(mean, SD)

1.23 ± 1.91 4.76 ± 8.01 7.7 ± 12.99

TM-score

(mean, SD)

0.92 ± 0.12 0.85 ± 0.16 0.79 ± 0.23

F_nat

(mean, SD)

90.31 ± 16.77 82.59 ± 26.68 84.43 ± 23

I_RMSD

(mean, SD)

0.72 ± 1.02 1.58 ± 1.7 1.65 ± 4.51

L_RMSD

(mean, SD)

3.75 ± 6.15 7.78 ± 11.8 9.21 ± 14.05

Abbreviations: CNS, crystallography and NMR system; GD, gradient

descent optimization; MC, Markov chain; RMSD, root mean square

distance.

TABLE 3 Average RMSD, TM-score, f_nat, I_RMSD, and L_RMSD
of GD, MC and CNS on 32 dimers in the Std32 dataset

Evaluation metric GD MC CNS

TM-score 0.96 0.95 0.82

RMSD 1.95 2.9 10.04

f_nat 92.78 92.43 69.13

I_RMSD 1.64 1.99 3.71

L_RMSD 4.65 7.16 �14.99

Abbreviations: CNS, crystallography and NMR system; GD, gradient

descent optimization; MC, Markov chain; RMSD, root mean square

distance.
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there are both good-quality and low-quality models. Overall, with an

increase of the contact density, the quality of the reconstructed struc-

ture increases in terms of all the metrics: RMSD, TM-score, f_nat,

I_RMSD, and L_RMSD (results for f_nat, I_RMSD, and L_RMSD not

shown).

We also investigate if the number of residues of the heterodimers

affects the quality of the generated models. According to the plot of

TM-score versus the dimer length in Figure S8, there is no direct rela-

tionship between the length of complexes and the quality of models

(the correlation between the two = �0.013).

2.3 | Reconstruction of quaternary structures of
homodimers from predicted inter-chain contacts and
true tertiary structures of monomers in the bound
state

We evaluate the performance of the three optimization methods on

homodimers using predicted inter-chain contacts because the newly

developed deep learning methods such as ResCon can make inter-

chain contact prediction with reasonable accuracy for a large portion

of homodimers. The three methods are compared on three subsets

F IGURE 2 TM-score and I_RMSD of quaternary structure models for a homodimer 1Z3A before applying GD and after applying GD during
20 runs. The 20 start models are initialized from the true tertiary structure of the monomer in the dimer before GD is applied. GD is then used to
reconstruct the quaternary structures from predicted inter-chain contacts. The x-axis denotes the quality (TM-score or I_RMSD) of 20 initial
quaternary structure models and y-axis the quality of 20 final models built by GD from the initial models. In 19 out of 20 cases, GD improves the
TM-score of the models. In all 20 cases, GD reduces the I_RMSD of the models. GD, gradient descent optimization; RMSD, root mean square
distance

F IGURE 3 TM-scores and root mean square distance (RMSD) of the models versus the inter-chain contact density of 73 heterodimers
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(Set A, Set B, and Set C) of homodimers in the Homo115 dataset. Set

A consists of 40 dimers with small interaction interfaces. Set B has

37 dimers with medium interaction interfaces. Set C contains 38 com-

plexes with large interaction interfaces. The detailed results of GD

(average TM-score, RMSD, f_nat, I_RMSD, and L_RMSD) as well as

the precision and recall of the predicted contacts for sets A, B, and C

are shown in supplemental Tables S4–S6, respectively. The precision

of predicted inter-chain contacts is measured by

#correctly predicted contacts with probability≥ cut�off probability
#predicted contacts with probability≥ cut�off probability , and the recall of

predicted inter-chain contacts by
#correctly predicted contacts with probability≥ cut�off probability

#native contacts , where cut�
off probability of selected contacts is set to 0.5. The predicted inter-

chain contacts and the true tertiary structures of the monomers in the

dimers in the bound state are used as input.

The average performance of GD, MC, and CNS on Sets A, B, and

C is compared in Tables 4–6, respectively. Similar as observed on

models reconstructed from true inter-chain contacts, GD performs

best here, MC second, and CNS third in terms of almost all the evalua-

tion metrics. Moreover, the average accuracy generally increases with

the increase of the size of the interaction interfaces (i.e., accuracy of

Set C > accuracy of Set B > accuracy of Set A), showing that it is eas-

ier to reconstruct quaternary structures with larger interaction inter-

faces. The average TM-score of the structural models built for the

three datasets by GD is 0.68, 0.80, and 0.81, respectively, higher than

the models predicted by MC and CNS. GD generates models with

higher TM-score for most dimers. The average TM-score of the

models reconstructed by GD for all 115 homodimers in Set A, Set B,

and Set C is 0.76. Moreover, for 53 out of 115 (46%) homodimers, the

models reconstructed by GD have high TM-scores (≥0.9) (see

Tables S4–S6), suggesting that GD is able to reconstruct high-quality

models for a large portion of dimers using only predicted inter-chain

contacts as input. Figure 4 illustrates a high-quality model

reconstructed for dimer 1C6X (precision of contact predic-

tion = 40.24% and recall of contact prediction = 49.28%, TM-

score = 0.99, f_nat = 84.61%).

We investigate the relationship between the quality of the

models generated by GD and the precision and recall of predicted

contacts. Figure 5A plots the TM-score of the models constructed for

the dimers in Homo115 against the precision of contacts predicted

for them. The correlation between the two is 0.78, indicating that the

quality of the structural models increases with respect to the precision

of predicted contacts. It is worth noting that if the precision is >20%,

most reconstructed models have good quality (e.g., with TM-scor-

e > 0.8 or even close to 1). If the precision is >40%, all the models

have good quality (TM-score > 0.8). The results demonstrate that

there is no need to get a very high accuracy of contact prediction for

GD to obtain high-quality structural models for homodimers as long

as its accuracy reaches a specific threshold. GD is robust against the

noise in predicted contacts. This result is encouraging news for the

community to develop more methods to predict inter-chain contacts

in protein complexes. Figure 5B also reveals the strong positive corre-

lation between the percent of true contacts existing in the

reconstructed structural models (f_nat) and the precision of predicted

contacts. Pearson's correlation between the two is 0.94. Moreover,

when the precision of predicted contacts is >40%, a higher percent

(>50%) of native contacts are realized in the models.

Furthermore, there is a strong correlation between the quality of

reconstructed models (e.g., TM-score and f_nat) and the recall of the

predicted inter-chain contacts as shown in Figure 6. Pearson's correla-

tion between TM-score and recall is 0.78 and between f_nat and

recall is 0.93, showing that a higher recall of predicted contacts leads

TABLE 4 Average RMSD, TM-score, f_nat, I_RMSD, and L_RMSD
of the best models reconstructed by the three methods for the
homodimers in Set A using predicted contacts as input

Evaluation metrics GD MC CNS

TM-score 0.68 0.66 0.58

RMSD 10.81 11 17.48

f_nat 22.47 18.38 14.67

I_RMSD 9.93 10.03 12.37

L_RMSD 25.46 27.81 �30.35

Abbreviations: CNS, crystallography and NMR system; GD, gradient

descent optimization; MC, Markov chain; RMSD, root mean square

distance.

TABLE 5 Average RMSD, TM-score, f_nat, I_RMSD, and L_RMSD
of the best models reconstructed by the three methods for Set B with
predicted inter-chain contacts as input

Evaluation metrics GD MC CNS

TM-score 0.8 0.77 0.64

RMSD 6.78 8.3 12.89

f_nat 32.18 28.66 22.19

I_RMSD 6 7.6 13.3

L_RMSD 14.87 18.46 �20.69

Abbreviations: CNS, crystallography and NMR system; GD, gradient

descent optimization; MC, Markov chain; RMSD, root mean square

distance.

TABLE 6 Average RMSD, TM-score, f_nat, I_RMSD, and L_RMSD
of the best models reconstructed by the three methods for Set C with
predicted contacts as input

Evaluation metrics GD MC CNS

TM-score 0.81 0.80 0.76

RMSD 6.26 6.77 9.5

f_nat 37.43 35.07 42.3

I_RMSD 5.01 5.46 7.41

L_RMSD 12.73 13.96 �16.3

Note: The highest average TM-score, f_nat, and lowest mean RMSD,

I_RMSD and L_RMSD are marked in bold.

Abbreviations: CNS, crystallography and NMR system; GD, gradient

descent optimization; MC, Markov chain; RMSD, root mean square

distance.
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to better reconstructed models. As shown in Figure 6A, when the

recall of predicted contacts is >20%, all the reconstructed models

except a few cases have good quality, that is, their TM-score is >0.8

and even close to 1, indicating only a small portion of true contacts

are needed to build good quaternary structural models for most

homodimers. Even if the recall of predicted contacts is <20%, good

models (TM-score > 0.8) can still be reconstructed for some dimers.

Moreover, as shown in Figure 6B, when the recall of predicted con-

tacts is >20%, the percent of true contacts (f_nat) in the models

reconstructed for all but a few dimers is higher than the recall of

F IGURE 4 The superposition of the native structure of 1C6X and the models generated by three methods (i.e., green and orange

representing the true dimer structure, blue, and red the generated models): (A) GD, (B) MC, and (C) CNS. TM-score, RMSD, f_nat, I_RMSD,
L_RMSD of the model predicted by GD are 0.99, 0.4 Å, 84.61%, 0.4 Å, and 0.91 Å, respectively. TM-score, RMSD, f_nat, I_RMSD, L_RMSD of the
model predicted by MC are 0.98, 0.6 Å, 78.84%, 0.6 Å, and 1.6 Å, respectively. TM-score, RMSD, f_nat, I_RMSD, L_RMSD of the model predicted
by CNS are 0.86, 2.02 Å, 41.6%, 2.14 Å, and 5.68 Å, respectively. CNS, crystallography and NMR system; GD, gradient descent optimization; MC,
Markov chain; RMSD, root mean square distance

F IGURE 5 The plot of TM-score and percent of native contacts of the models (f_nat) against the precision of predicted contacts on
Homo115 dataset. (A) Pearson's correlation between TM-score and precision is 0.78. (B) Pearson's correlation between f_nat and precision is .94
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predicted contacts that are used as input, indicating that the optimiza-

tion process of GD can realize (recall) more true contacts than what is

provided in the predicted input contacts.

Moreover, we investigate how the cut-off probability of

selecting predicted inter-chain contacts as input affects the quality

of reconstructed structural models. To determine good cut-off prob-

abilities for selecting predicted contacts, we test different cut-off

values in the range [0.3, 0.9], with a step size of 0.1. Figure 7 shows

how the average TM-score and RMSD of reconstructed models

change with respect to the cut-off probabilities on the Homo115

dataset. The best model quality (lowest RMSD and highest TM-

score) is reached at the cut-off probability of 0.5 on the dataset.

We imagine that the best cut-off probability can be data- and

method-dependent. Therefore, it can be useful to try different cut-

off probabilities to reconstruct models and then select good ones

from them on different datasets.

2.4 | Performance of GD on CASP and CAPRI
targets using predicted inter-chain contacts and true/
predicted tertiary structures of monomers as input

We have further validated the performance of our method on the

CASP–CAPRI dataset of 28 homodimers48 used by DeepHomo (called

CASP–CAPRI dataset) and the most recent CASP14–CAPRI test

dataset of seven homodimers (called CASP14–CAPRI dataset). The

average precision of top L/5 contact predictions (L: the length of

monomer in homodimer) made by a deep learning method49 for

CASP14–CAPRI and CASP–CAPRI datasets is 24.82% and 32.29%,

respectively. Using the true tertiary structures of monomers in the

bound state and predicted interchain-contacts as input, the average

TM-score of the quaternary structures of homodimers reconstructed

by GD is 0.75 and 0.74 on the CASP14–CAPRI and CASP–CAPRI

datasets, respectively (see the detailed results in Tables S7 and S8).

Using the tertiary structures of monomers predicted by

AlphaFold250 in the unbound state and the same predicted inter-chain

contacts as input, the average TM-score of quaternary structures

reconstructed by GD for CASP–CAPRI dataset is slightly decreased to

score 0.69, but the average TM-score for the CASP14–CAPRI dataset

is decreased more to 0.63. The results indicate that the quality of ter-

tiary structure input is important for the quality of the reconstructed

quaternary structures. One reason for the substantial decrease on the

CASP14–CAPRI dataset is a few tertiary structures of the monomers

predicted by AlphaFold2 are not of high quality (see the relatively low

TM-score of predicted tertiary structures for T1070, T1052, T1032 in

Table S9). The detailed results of GD (TM-score of quaternary struc-

tures, RMSD, f_nat, I_RMSD, L_RMSD, the precision of top L/5 inter-

chain contact predictions, and TM-score of the monomer structures

predicted by AlphaFold2) on CASP14–CAPRI and CASP–CAPRI

datasets are shown in Tables S9 and S10.

F IGURE 6 TM-score and percent of native contacts of the predicted models (f_nat) reconstructed by GD versus the recall of the predicted
inter-chain contacts on the Homo115 dataset. (A) Pearson's correlation between TM-score and recall is 0.78. (B) Pearson's correlation between
f_nat and recall is 0.93. GD, gradient descent optimization

F IGURE 7 The average root mean square distance (RMSD) and
TM-score of models reconstructed for homodimers in the Homo115
dataset versus the cut-off probability of selecting predicted inter-
chain contacts as restraints
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2.5 | Comparison of GD with AlphaFold2 on
CASP–CAPRI dataset

AlphaFold2 was developed to predict tertiary structures of proteins.

However, it can be used to predict structures of protein complex by

joining the sequences of multiple chains into one sequence and

adding a linker sequence (e.g., 20 glycines) to separate the sequences

of two adjacent chains. Adding a sufficiently long linker is necessary

to account for the possible large distance between the last amino acid

of a chain and the first amino acid of the following chain. We apply

this approach to use AlphaFold2 to predict quaternary structures for

the 28 homodimers in the CASP–CAPRI dataset. Unlike AlphaFold2,

GD is not a fully fledged quaternary structure predictor and needs

inter-chain contacts and tertiary structures of monomers as input to

build quaternary structure. Therefore, we can only compare GD with

the final step of quaternary structure model of AlphaFold2. To fairly

compare them, we use the inter-chain contacts extracted from the

quaternary structure models predicted by AlphaFold2 and the tertiary

structures of monomers predicted by AlphaFold2 in the unbound

state as input for GD to reconstruct quaternary structures. The results

of AlphaFold2 and our approach of using GD with AlphaFold2

(AlphaFold2 + GD) are reported in Table S11. AlphaFold2 achieves a

high average TM-score of 0.82 on this dataset, while AlphaFold2

+ GD obtains an even higher TM-score of 0.84. The results shows

that GD can build better quaternary structures models than

AlphaFold2 if the quality of the input (inter-chain contacts and tertiary

structure models of monomers) is similar, demonstrating that GD can

add value on top of the current most sophisticated protein structure

prediction tool—AlphaFold2 for quaternary structure prediction. Using

AlphaFold2 predictions as input for GD generates better quaternary

structures on this dataset (i.e., TM-score = 0.84) than using the inter-

chain contact prediction of the deep learning predictor as input for

GD in the previous experiment (i.e., TM-score = 0.69) is because the

inter-chain contact predictions in the quaternary structure models

built by AlphaFold2 are more accurate than the deep learning predic-

tor on the dataset.

2.6 | Limitation and future development

The experiments in this work use true or predicted inter-chain con-

tacts as input. However, contact is a coarse description of the dis-

tance between residues. The more accurate quantification of the

inter-chain residue–residue distances such as the fine-grained or real-

value distance between residues will likely further improve the perfor-

mance of the distance-based reconstruction of quaternary structures

as the intra-chain residue–residue distance prediction improved ter-

tiary structure prediction in the last several years.31,51 The GD

method can be readily adapted to take in inter-chain residue–residue

distances to reconstruct quaternary structures. As deep learning

methods for predicting inter-chain residue-residue distances are

developed and available in the field, we will assess how well GD may

reconstruct quaternary structures from predicted inter-chain

distances in the future. Moreover, a major trend in tertiary structure

prediction exemplified by AlphaFold2 is to use the end-to-end deep

learning model to directly predict tertiary structure from sequence

input without intermediate steps. We envision that the similar end-to-

end model will be developed for quaternary structure prediction soon.

The distance-based reconstruction of protein quaternary structure in

this work is complementary to the upcoming end-to-end deep learn-

ing model. It can be used to further refine the quaternary structure

predicted by the end-to-end model as shown in our study that GD

improves the quality of the quaternary structures of dimers predicted

by AlphaFold2.

3 | CONCLUSION

We design and develop the first gradient descent distance optimiza-

tion (GD)-based method to reconstruct quaternary structure of pro-

tein dimers from inter-protein contacts and compare it with the

Markov Chain Monte Carlo and simulated annealing optimization

methods adapted to address the problem. GD performs consistently

better than the other two methods in reconstructing quaternary

structures of dimers from either true or predicted inter-chain con-

tacts. GD can reconstruct high-quality structures for almost all

homodimers and heterodimers from true inter-chain contacts and

can build good structural models for many homodimers from only

predicted inter-chain contacts, demonstrating distance-based opti-

mizations are useful tools for predicting the quaternary structures.

Moreover, we show that the contact density, size of interaction

interface, precision and recall of predicted contacts, and threshold of

selecting contacts as restraints influence the accuracy of

reconstructed models. Particularly, when the precision and recall of

predicted contacts reach a moderate level (e.g., >20%), GD can con-

struct good models for most homodimers, demonstrating that

predicting inter-chain contacts or even distances and distance-based

optimization are a promising ab initio approach to predicting the

quaternary structures of protein complexes.

4 | MATERIALS AND METHODS

4.1 | Inter-chain contacts and dimer datasets

Two residues from two protein chains in a dimer are considered an

inter-chain contact if any two heavy atoms from the two residues

have a distance less than or equal to 6 Å.41,47 True contacts of a dimer

with the known quaternary structure in the PDB are identified

according to the coordinates of atoms in the PDB file of the dimer.

We use several in-house datasets of protein homodimers and

heterodimers with true and/or predicted inter-protein contacts as well

as a standard datasets consisting of 32 heterodimers (Std32)52 to

evaluate the methods. The first in-house dataset has 44 homodimers

randomly selected from the Homo_Std41 curated from the 3D Com-

plex database,53 each of which have 39–621 true contacts (called
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Homo44). The second in-house data includes 115 homodimers (called

Homo115) selected from Homo_Std, each of which has at least

21 predicted inter-chain contacts with a probability of ≥0.5. Our in-

house deep learning method—ResCon52 is applied to predict inter-

chain contacts for the dimers in Homo115. Homo115 is divided into

three subsets (Set A, Set B, and Set C) according to the size of inter-

faces. Set A has 40 protein complexes with small interaction inter-

faces consisting of 14–68 true inter-chain contacts. Set B consists of

37 complexes having medium interaction interfaces with 69–129 true

contacts. Set C consists of 38 complexes having large interaction

interfaces with 131–280 true contacts. The third in-house dataset

contains 73 heterodimers (called Hetero73)52 curated from the PDB,

in which the sum of the lengths of the two chains is less than or equal

to 400. The heterodimers in Hetero73 have 2 to 255 true inter-

protein contacts.

Moreover, GD is also tested on 28 homodimers from the recent

CASP–CAPRI joint experiment used in DeepHomo48 (called CASP–

CAPRI dataset), and seven homodimers from the latest CASP14–

CAPRI experiment collected from five homodimeric targets (T1054,

T1078, T1032, T1083, T1087) and two homotrimers (T1050, and

T1070; called CASP14-CAPRI dataset).

4.2 | Gradient descent cost function and
optimization

The inter-chain contacts are used as distance restraints for the gradi-

ent descent method to build the structures of protein dimers. The cost

function to measure the satisfaction of the distance between any two

residues in contact to guide the structural modeling is defined as

follows:

f xð Þ¼

x�lb
sd

� �2
x< lb

0 lb≤ x≤ ub
x�ub
sd

� �2
ub< x< ubþ sd

1
sd

x� ubþ sdð Þð Þ x> ubþ sd

8>>>>><
>>>>>:

Here, lb and ub represent the lower bound and upper bound of

the distance (x) between two residues that are assumed to be in con-

tact. As mentioned earlier, two residues are considered in contact if

the distance between their heavy atoms is less than 6 Å. However, to

simplify the process of restraint preparation, two residues are consid-

ered in contact if the distance between their Cβ atoms (Cα for glycine)

is less than 6 Å. The lower bound (lb) is empirically set to 0 and the

upper bound (ub) to 6 Å. sd is the standard deviation, which is set to

0.1. Based on this cost function, if the distance between two residues

in contact is ≤6 Å, that is, the contact restraint is satisfied, and the

cost is 0.

The complete contact cost function for a structural model of a

dimer to be minimized is the sum of the costs for all contacts used in

modeling (called contact energy). For simplicity, all restraints have

equal weights and play equally important roles in modeling. The con-

tact energy function is differentiable with respect to the distances

between residues and coordinates of atoms of the residues, and

therefore it can be minimized by a gradient descent iterative algorithm

(GD), that is, Limited-memory Broyden–Fletcher–Goldfarb–Shanno

algorithm (L-BFGS)31,54) used in this study.

We implement GD on top of pyRosetta. The total energy function

for the structural optimization is the combination of the contact

energy and the talaris2013 potentials,31 which works better than the

contact energy alone in our experiments. The input to the algorithm

includes inter-chain contacts and an initial random conformation of a

dimer initialized from the tertiary structures of individual protein

chains (monomers) of the dimer. The tertiary structure of monomer

can be either in the bound state or unbound state. It can be either an

experimentally determined true structure or a predicted structure. A

predicted structures is considered in the unbound state because the

existing methods generally predicts the tertiary structure of a chain

without considering its partner. An initial conformation of a protein

dimer is generated by making 40 random, rigid rotations and transla-

tions ranging from 1 ∘ �360 ∘ and 1Å�20Å of the tertiary structures

of the two chains in a dimer after putting them in the same coordinate

system. Specifically, the tertiary structure of each protein chain is

rotated and translated arbitrarily along the line connecting the centers

of the two chains, aiming to make the two protein chains facing each

other.

Then, 6000 iterations of the gradient descent optimization (i.e., L-

BFGS) are carried out to generate new structural models. In most

cases tested, it converged after only 1000 iterations. Since the quality

of the final structure is influenced by the initial structure, the optimi-

zation process is carried out 20 times, each with a random structure

as the start point. The optimized structure with the lowest energy is

selected as the final predicted structure of a dimer. For 20 runs, the

total number of iterations of the gradient descent optimization

is 1:2�105.

4.3 | Markov chain Monte Carlo optimization

We apply a Rosetta protocol in pyRosetta based on Metropolis–

Hasting sampling55 to implement a Markov chain Monte Carlo

(MC) optimization to reconstruct complex structures according to

the Boltzmann distribution. An initial conformation of a dimer is

generated in the same way as in the GD algorithm. Starting from

the initial conformation, a low-resolution rigid-body search is

employed to rotate and translate one chain around the surface of

the other chain to generate new structures in the MC optimization.

Five hundred Monte Carlo moves are attempted. Each move is

accepted or rejected based on the standard Metropolis acceptance

criterion.56

After the low-resolution search, back-bone and side-chain confor-

mations are further optimized with the Newton minimization method

in a high-resolution refinement process, in which the gradient of the
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scoring function dictates the direction of the starting point in the

rigid-body translation/rotation space. This minimization process is

repeated 50 times to detect the local minimum of the energy function

that may have similar performance as the global minimum.6

We implement the MC method above using high-resolution and

low-resolution docking protocols in RosettaDock to optimize the

same energy function used in the GD method. Low-resolution docking

is performed using the DockingLowRes protocol, whereas Dock-

MCMProtocol is used to perform high-resolution docking. For a

dimer, 105 to 107 rounds of MC optimization with different initial

conformations are executed to generate structural models. At the

end, 105 to 107 models are generated, among which the model with

the lowest energy is selected as the final prediction.

4.4 | Simulated annealing optimization based on
crystallography and NMR system

This structure optimization method, Con_Complex41 in the

DeepComplex package, is implemented on top of the CNS57,58 that

uses a simulated annealing protocol to search for quaternary struc-

tures that satisfy inter-chain contacts.52 This method takes the PDB

files of monomers (protein chains) in a protein multimer

(e.g., homodimer) and the true or predicted inter-protein contacts as

input to reconstruct the structure of the multimer without altering the

shape of the structure of the monomer. The inter-protein contacts are

converted into distance restraints used by CNS. This process gener-

ates 100 structural models and then picks five models with lowest

CNS energy. It is worth noting that this method can handle the recon-

struction of the quaternary structure of any multimer consisting of

multiple identical or different chains. Because inter-chain contacts are

the main restraints to guide structure modeling, the performance of

this method mostly depends on the quality of the inter-protein con-

tact predictions.
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