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ABSTRACT

Multiple sources contribute membrane and protein machineries to construct functional macroautopha-
gic/autophagic structures. However, the underlying molecular mechanisms remain elusive. Here, we
show that RAB2 connects the Golgi network to autophagy pathway by delivering membrane and by
sequentially engaging distinct autophagy machineries. In unstressed cells, RAB2 resides primarily in the
Golgi apparatus, as evidenced by its interaction and colocalization with GOLGA2/GM130. Importantly,
autophagy stimuli dissociate RAB2 from GOLGA2 to interact with ULK1 complex, which facilitates the
recruitment of ULK1 complex to form phagophores. Intriguingly, RAB2 appears to modulate ULK1 kinase
activity to propagate signals for autophagosome formation. Subsequently, RAB2 switches to interact
with autophagosomal RUBCNL/PACER and STX17 to further specify the recruitment of HOPS complex for
autolysosome formation. Together, our study reveals a multivalent pathway in bulk autophagy regula-
tion, and provides mechanistic insights into how the Golgi apparatus contributes to the formation of
different autophagic structures.

Abbreviations: ACTB: actin beta; ATG9: autophagy related 9A; ATG14: autophagy related 14; ATG16L1:
autophagy related 16 like 1; BCAP31: B cell receptor associated protein 31; BECN1: beclin 1; Ctrl: control;
CQ: chloroquine; CTSD: cathepsin D; DMSO: dimethyl sulfoxide; EBSS: Earle’s balanced salt solution;
EEA1: early endosome antigen 1; GDI: guanine nucleotide dissociation inhibitor; GFP: green fluorescent
protein; GOLGAZ2: golgin A2; HOPS: homotypic fusion and protein sorting complex; IP: immunoprecipita-
tion; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LC3: microtu-
bule-associated protein 1 light chain 3; OE: overexpression; PtdIns3K: class Ill phosphatidylinositol
3-kinase; SQSTM1/p62: sequestosome 1; RAB2: RAB2A, member RAS oncogene family; RAB7: RAB7A,
member RAS oncogene family; RAB11: RAB11A, member RAS oncogene family; RUBCNL/PACER: rubicon
like autophagy enhancer; STX17: syntaxin 17; TBC1D14: TBC1 domain family member 14; TFRC: trans-
ferrin receptor; TGOLN2: trans-golgi network protein 2; TUBB: tubulin beta class I; ULK1: unc-51 like
autophagy activating kinase 1; VPS41: VPS41, HOPS complex subunit; WB: western blot; WT: wild type;
YPT1: GTP-binding protein YPT1.
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Introduction to be the fundamental unresolved questions in autophagy
field.

Independent studies have shown that the biogenesis of
autophagosomes needs membranes from multiple sources,
including ER [10,11], Golgi network [12-15], mitochondria
[16], the plasma membrane [8], the endosomes [17-19] and
ER-Golgi intermediate [20-23]. It is unresolved that how the
membranes from different resources are directionally deliv-
ered for the formation and expansion of a phagophore, which
eventually seals to form an autophagosome. Due to its wide-
spread distribution and characteristic transmembrane

Macroautophagy (hereafter referred to as autophagy) is
a lysosomal degradative pathway, which is essential to devel-
opment and homeostasis [1-3]. The deregulation of autop-
hagy is tightly associated with a variety of human diseases
[4,5]. Morphologically, autophagy is initiated from phago-
phores in mammalian cells. After nucleation, the phagophore
membrane expands and ultimately seals to generate an autop-
hagosome, which then fuses with a lysosome or vacuole lead-
ing to the degradation of autophagy cargoes [6-9]. How
autophagosome forms and matures into autolysosome remain
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structure, ATG9A (hereafter referred to as ATG9) is consid-
ered to be the good candidate to deliver membranes from
different sources [7,8,17,24-37], but it remains unclear how
Golgi-derived ATGY9-positive (ATG9") vesicles are trans-
ported and integrated into early autophagic structures in
mammalian cells.

RAB small GTPases are critical molecular switches in traf-
ficking pathways [38,39]. Several RAB GTPases in autophagy
regulation have been identified [40,41], but how these RAB
GTPases relay signals sequentially to fulfill the entire autophagy
process remains poorly understood. It has been proposed that
endocytosis or phagocytosis involves a RAB-conversion
mechanism in which signals are seamlessly transduced to pro-
mote the maturation of endosomes or phagosomes [42,43], but
it is not known whether an analogous regulation also exists in
the autophagy pathway.

In previous study, we identified RUBCNL as a vertebrate-
specific autophagy regulator [44], and we showed that RUBCNL
antagonizes RUBCN/Rubicon to activate the class III phospha-
tidylinositol 3-kinase (PtdIns3K) during late steps of autophagy.
In addition, RUBCNL interacts with STX17 on autophagosomes
to promote autolysosome formation. Here, we reported that
RAB2A (hereafter referred to as RAB2), another RUBCNL-
interactor, unexpectedly regulated both autophagy initiation
and termination in mammalian cells. We observed that the
Golgi apparatus contributed to autophagy initiation by donating
RAB2, which participated in the formation of phagophores by
further recruiting and activating ULK1. Next, RAB2 switched to
interact with RUBCNL and STX17 to become an autophagoso-
mal GTPase, which further specified the recruitment of HOPS
(homotypic fusion and protein sorting) complex to autophago-
some to facilitate the fusion with lysosomes. Our study provides
mechanistic insights into the regulatory mechanisms underlying
the roles of the Golgi apparatus in autophagosome biogenesis
and maturation.

Results

Golgi-resident RAB2 relocates to autophagic membrane
structures through microtubule-based vesicular transport

In our previous study, Mass spectrometry (MS) analysis of the
proteins showed that co-immunoprecipitated (co-IP) with
RUBCNL resulted in the identification of RAB2 as another
potential RUBCNL-binding partner [44]. Therefore, RAB2
might be an autophagy regulator. To test this notion, we first
investigated its subcellular localization. Because the reliable
antibodies for imaging of endogenous RAB2 were not available,
we established stable cell lines expressing FLAG-RAB2 at a level
that was close to its endogenous counterpart (Figure 1(a)).
Next, we employed this stable cell line to optimize the imaging
conditions, which enabled transiently expressed GFP-RAB2 or
mCherry-RAB2  to  behave similarly to FLAG-RAB2
(Figure 1(b,c)). Subsequently, we applied these conditions for
following confocal microscopy analysis. In unstressed cells,
RAB2 predominantly resided on the Golgi apparatus, as exhib-
ited by extensive colocalization with GOLGA2 or TGOLN2/
TGN46 (Figure 1(d,e) and S1). In addition, the localization of
RAB2 on ER, late endosomal and autophagic membrane
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structures was apparent, albeit at relatively lower levels. In
contrast, the localization of RAB2 on early endosomes and
mitochondria was limited. Interestingly, autophagy stimulation
by Torinl treatment significantly enhanced the colocalization
of RAB2 with autophagic markers, except for ATG9
(Figure 1(d,e) and S1). Meanwhile, the overlay percentage of
RAB2 with Golgi markers was reduced. These results showed
that RAB2 is a Golgi-resident small GTPase, and implied that
RAB2, upon autophagy induction, may relocate from the Golgi
network to autophagic structures. To test this hypothesis, we
used nocodazole, a microtubule polymerization inhibitor in cell
culture and performed confocal microscopy analysis, knowing
that intracellular vesicular trafficking depends on microtubules.
Nocodazole treatment largely abolished the colocalization of
RAB2 with autophagic markers, except for ATGY, while the
overlay between RAB2 and Golgi markers remained largely
unaltered (Figure 1(d,e) and S1). These results demonstrated
that RAB2 largely co-existed with a portion of ATG9 on Golgi
apparatus-related membrane structures, and that Golgi-resided
RAB2 relocated to autophagic structures through microtubule-
based vesicle trafficking. These observations allowed us to out-
line the RAB2 trafficking routes in mammalian cells, as shown
in Figure 1(f).

RAB2 regulates autophagy initiation

The colocalization pattern of RAB2 suggested a potential func-
tion of RAB2 in autophagy. To test this idea, we generated
RAB2-knockout (KO) U20S cell lines (Figure 2(a)), and we
found that the levels of LC3-II were significantly reduced in
the absence of RAB2 in both autophagy-stimulated and -
unstimulated cells, indicating that RAB2 KO resulted in
a defect in LC3 lipidation. Consistently, RAB2 depletion signif-
icantly diminished cytosolic LC3 puncta (Figure 2(b,c)), and
this defect could be rescued by the re-expression of wild-type
(WT) RAB2 (Fig. S2A and S2B). LC3 lipidation is mainly
catalyzed by ATG12-ATG5-ATGI16L1 on the elongating pha-
gophore membrane [45]. Indeed, membrane recruitment of
endogenous ATGI16L1 was abolished in RAB2 KO cells
(Figure 2(d,e)). In addition, RAB2 knockdown (KD) in mouse
livers led to SQSTM1/p62 accumulation and the defects in the
biogenesis of autophagic membrane structures in vivo (Fig. S2C,
S2D and S2E). More importantly, RAB2 KO eliminated the
formation of the earliest autophagic structures labelled by endo-
genous ULK1 or GFP-ATGI13 (Figure 2(f,g), S2F and S2G).
Collectively, these data indicated that Golgi-derived RAB2"
vesicles participated in autophagy initiation. The observation
that autophagy stimuli decreased the colocalization of
GOLGA2/GM130 and RAB2 (Figure 1(e) and S1) led us to
hypothesize that there might be functional correlation between
GOLGA?2 and RAB2 in autophagy initiation. Indeed, RAB2 was
able to co-IP with GOLGA2, which was consistent with pre-
vious study [46], and their interaction was decreased in autop-
hagy-stimulated cells indicating that autophagy stimuli
dissociated RAB2 from GOLGA2 (Figure 2(h)). Consistently,
GOLGA2 depletion by either shRNA knockdown (KD) (Fig.
S2H, S2I and S2J) or Crispr-Cas9-mediated knockout (Figure 2
(i-1)) was able to elevate LC3 lipidation levels and to increase the
colocalization of RAB2 and LC3. Together, these data suggested
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Figure 1. Golgi-derived RAB2* vesicles fuse into autophagic membrane structures by vesicular trafficking. (a) Western-blot (WB) analysis of FLAG-RAB2 stable cell lines using anti-
RAB2 antibody. (b) WB analysis of GFP-RAB2 and endogenous RAB2 level using anti-RAB2 antibody. (v) The subcellular localization of mCherry-RAB2 was similar to the stably
expressed FLAG-RAB2. (d) Confocal microscopy analysis of GFP-RAB2 with TGOLN2 and LC3 as indicated under untreated, Torin1- or Torin1 plus nocodazole-treated conditions.
Scale bars: 10 pm. (e) Quantification of colocalization presented in Figure 1 (d) and S1. Data were shown as mean + SD, *p < 0.05, **p < 0.01; ‘ns’ indicates no statistical
significance. (f) Schematic representation of the trafficking routes of RAB2. Red arrow heads indicated the routes uncovered in this work.
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Figure 2. RAB2 is required for autophagy initiation in mammalian cells. (a) Measurement of LC3 lipidation. Control or clonal RAB2 KO U20S cell line were untreated
and treated with EBSS and/or bafilomycin A, (Baf A1) for 2 h, and then analyzed by WB. (b) Control and clonal RAB2 KO U20S (#39 and #40) were treated with Torin1
for 2 h, which was followed by fixation, anti-LC3 immunostaining and confocal microscopy analysis. Scale bars: 10 um. (c) Quantification of LC3 puncta described in
(B). Data are shown as mean =+ SD, ***p < 0.001. (d) Measurement of early autophagic membrane structures positive for endogenous ATG16L1, which was quantified
in (e). Scale bars: 10 ym. Data are shown as mean + SD, **p < 0.01. (f) Measurement of early autophagic membrane structures positive for endogenous ULK1, which
was quantified in (g). Scale bars: 10 pm. Data are shown as mean + SD, **p < 0.01. (h) Co-IP of HA-RAB2 and FLAG-GOLGA2 under uninduced and autophagy-
induced conditions. (I) Immunostaining analysis of endogenous GOLGA2 in GOLGA2 knockout (KO) and control HEK293 cells (j) Measurement of LC3 puncta and
RAB2-LC3 colocalization in GOLGA2 KO U20S cells, which was quantified in (k and 1). Scale bars: 10 pm. Data are shown as mean + SD, ***p < 0.001.

that autophagy stimuli liberate a population of RAB2* vesicles
from the Golgi network for autophagy initiation.

Autophagy stimuli trigger RAB2-mediated ULK1
acquisition and activation to facilitate the formation of
a phagophore

The fact that RAB2 KO abolished the formation of the earliest
autophagic structures marked by ULK1 implied that the
Golgi-derived RAB2'ATG9" vesicles participate in the

formation of phagophores. In yeast, both ATG9 and ATG1
are required for the formation of phagophore assembly site
[47,48]. Therefore, we envisioned that RAB2 might regulate
ULKI1 and ATG? to facilitate the formation of the phagophore
in mammalian cells. We optimized the conditions by inten-
tionally expressing GFP-ATG9 at very low levels which
enabled faithful resembling of endogenous ATG9 (Fig. S3A).
We observed that in unstimulated cells majority of
RAB2TATGY" vesicles were positive for GOLGA2 but not
for ULK1, however, this pattern was largely reversed when
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autophagy was stimulated (Figure 3(a,b) and S3B). Because
reliable antibodies for the immunoprecipitation of endogen-
ous RAB2 were lacking, we used the cell line that stably
expressed FLAG-RAB2 at a level close to its endogenous
counterpart (Figure 1(a,c)). Consistently, autophagy stimuli-
triggered dissociation of RAB2 from GOLGA2 was accompa-
nied by the increased interaction of RAB2 with ULKI1
(Figure 3(c)), and the colocalization of RAB2 and ULKl1
were enriched by wortmannin, which is capable of accumulat-
ing early autophagic structures (Fig. S3C and S3D). In addi-
tion, we did not detect the interaction between GOLGA2 and
ULK1 (data not shown), which indicated that they may bind
to RAB2 in a sequential manner. Furthermore, RAB2 inter-
acted with ATGY and facilitated the colocalization of ATG9
and ULK1 (Figure 3(d-f)). In contrast, RAB2 KO did not
affect the colocalization of ATG9 and TFRC (transferrin
receptor), and ATG9 depletion decreased the colocalization
of RAB2 and TFRC (Fig. S3E, S3F, S3G and S3H).
Importantly, RAB2 appeared to regulate ULK1 activation
(Figure 3(g,h)), which was further confirmed by the alteration
of ULK1-mediated phosphorylation of ATG14 and ATG9 in
the RAB2 KO, OE and RAB2 WT -rescued KO cells.
Biochemical dissection showed that RAB2 directly interacted
with the HORMA domain of ATG13 and the RIR (417-827aa,
RAB2-Interaction Region, which was named in this study) of
ULK1 (Figure 3(i-k), S31 and S3]), and RAB2 was required for
the integrity ULK1-ATG13 complex (Figure 3(k,1)). Since the
phosphorylation of various of autophagy machineries includ-
ing ATG9 and ATG14 by ATG1/ULK1 is critical for autop-
hagy initiation [25,49-51], these results indicated that RAB2
regulates ULK1 recruitment and activation to further propa-
gate signals for autophagy initiation.

RAB2 interacts with RUBCNL and STX17 to become an
autophagosomal GTPase

RAB?2 also colocalized with autophagosomal markers, includ-
ing RUBCNL and STX17 (Figure 1(e)), implying that RAB2
was probably retained on autophagosomes after the closure
step of autophagosome formation. Therefore, we further dis-
sected RAB2 subcellular localization after the disruption of
autophagosome maturation by silencing VPS41, the essential
functional subunit of HOPS complex, and we observed the
colocalization of LC3 and LAMP1 was significantly reduced
(Figure 4(a,b) and Fig. S4A), confirming that the loss of the
tethering function of HOPS led to a defect in autolysosome
formation. Similarly, RAB2 showed impaired colocalization
with RAB7 or LAMP1 in the absence of functional HOPS.
In contrast, HOPS inactivation did not affect colocalization of
RAB2 with STX17 and RUBCNL (Figure 4(a,b) and S4A),
indicating that RAB2 colocalized with RUBCNL and STX17
on autophagosomes rather than with LAMP1 or RAB7 on
lysosomes or late endosomes. Consistent with our previous
Mass spectrometry (MS) analysis, RUBCNL selectively inter-
acted with RAB2 (Figure 4(c)), and their interaction was
mapped to both the N- and C-termini of RUBCNL, which
partially overlapped with the HOPS-binding regions of
RUBCNL (Figure 4(d,f)) [44]. Further co-IP assays and
in vitro pulldown assay using purified recombinant proteins

showed that RUBCNL and STX17 directly interacted with
three forms of RAB2, with a preference for the GDP-bound
form (Figure 4(f-i)). It is well-established that membrane-
associated RAB GTPases are recycled constantly to the cyto-
plasm via GDI-mediated membrane extraction [38] and that
GDI2 is responsible for detachment of RAB2 from membrane
structures [52]. Therefore, we hypothesized that RUBCNL or
STX17 may inhibit GDI2-mediated membrane extraction of
RAB2. Indeed, the interaction between RAB2 and GDI2 was
largely disrupted in RUBCNL OE cells (Figure 4(j)).
Moreover, RUBCNL KD significantly reduced the colocaliza-
tion of RAB2 with STX17 and LC3 (Fig. S4B). Because autop-
hagosome-targeting of RUBCNL is partially dependent on
STX17 [44], we concluded that RUBCNL and STX17 prevent
GDI2-mediated membrane extraction to maintain RAB2 on
autophagosomes.

The autophagosomal trimeric complex containing RAB2,
RUBCNL and STX17 recruits HOPS complex for
autophagosome maturation

We then postulated that the autophagosomal trimeric com-
plex containing RAB2, STX17 and RUBCNL further specifies
the recruitment of HOPS complex to facilitate autophagosome
maturation. Indeed, RAB2 but not RABI interacted and colo-
calized with HOPS complex (Figure 5(a,b) and data not
shown). Next, we performed autophagosome maturation
assays using the tandem mCherry-GFP-LC3 construct
[53,54] (Figure 5(c-e)), and we observed that RAB2 KO sig-
nificantly reduced autophagosome maturation, as measured
by the percentage of mCherry” GFP™ puncta in U208 cells.
Furthermore, the colocalization of LC3 and LAMP1 puncta,
the indicator for autophagosome-lysosome fusion, was
reduced in RAB2 KO cells but increased in RAB2 OE cells
(Figure 5(f,g)). Notably, large vesicles positive for both
LAMP1 and LC3 only appeared in RAB2 OE cells, which
further demonstrated the accelerated autolysosome formation
driven by RAB2 OE (Figure 5(f,h)). Overexpression of RAB2
mutants was able to inhibits autophagy flux (Fig. S5A).
Furthermore, we monitored the delivery of autophagosomal
membranes to lysosomes by GFP-LC3 processing assays
[54,55]. The appearance of free GFP, the indicator of the
lysis of the inner autophagosomal membrane was blocked in
RAB2 KO cells (Fig. S5B and S5C). RAB2 appeared to regulate
endocytic pathway as well (Fig. S5D), which was consistent
with the observations by other groups [56,57]. However, its
dual role in both endocytosis and autophagy was not due to
a direct effect on lysosome biogenesis or maturation, because
cathepsin D maturation was not altered by RAB2 KO (Fig.
S5E). Overall, our data showed that the autophagosomal tri-
partite complex containing RAB2, STX17 and RUBCNL
recruited HOPS for autophagosome maturation (Fig. S5F).

Discussion

In this study, we suggest a model in which RAB2 links the
Golgi apparatus to autophagosome formation and maturation.
It should be noted that RAB2 interacts with several Golgins,
including GOLGAZ2, to maintain the homeostasis of the Golgi
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Figure 3. RAB2 regulates ULK1 recruitment and activation for autophagy initiation. (a) Confocal microscopy analysis of the colocalization of GFP-ATG9, mCherry-RAB2
and ULK1 or GOLGA?2, and quantification was shown in (b). Scale bars: 10 um. Data are shown as mean = SD, **p < 0.01; ‘ns’ indicates no significance. (c) Co-IP of
RAB2 and GOLGA2 or ULK1 under unstressed and starved conditions. (d) Co-IP of HA-RAB2 and FLAG-ATGY using HA-GFP as a negative control. (e) Confocal
microscopy analysis of the colocalization of GFP-ATG9 and ULK1 in RAB2 WT and KO U20S cells under Torin1 treatment, and quantification was shown in (f). Scale

bars: 10 pm. Data are shown as mean +

SD, **p < 0.01. (g) WB analysis of ULK1 phosphorylation at Serine555, ATG14 phosphorylation at Serine29 and ATG9

phosphorylation at Serine14 in RAB2 WT, KO or OE U20S cells cultured in complete medium. Long exposure (LE), short exposure (SE). (h) WB analysis of
phosphorylation of ULK1 and ATG14 in rescued RAB2 KO cells. (i) Dissection of RAB2 and ATG13 interaction by co-IP assay. (j) Dissection of RAB2 and ULK1
interaction by co-IP assay. (k) Co-IP of FLAG-ATG13 and ULK1 in RAB2 WT or KO cells. (I) Schematic representation of RAB2 interaction with the HORMA domain of
ATG13 and the RIR (RAB2-Interaction Region, named in this study) domain of ULK1.
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Figure 4. RAB2 directly interacts with RUBCNL and STX17 to become an autophagosomal GTPase. (a) Confocal microscopy analysis of the colocalization of the
organelle markers as indicated in VPS41 KD and control cells, and quantification was shown in (b). Scale bars: 10 um. Data are shown as mean + SD, **p < 0.01,
*p < 0.05. (c) Co-IP of FLAG-RUBCNL with GFP-tagged RAB GTPases, and co-IP of FLAG-RUBCN with GFP-WT RAB7 or GFP-RAB7%®" were applied as positive controls.
(d) Co-IP of FLAG-WT RUBCNL or mutants with HA-RAB2. (e) Summary of the interaction of RUBCNL with different binding partners. (f) Co-IP of HA-RUBCNL with
FLAG-WT RAB2, FLAG-RAB2%" or FLAG-RAB2V'™. (g) In vitro GST-pulldown assay using purified recombinant proteins for FLAG-RUBCNL and GST-WT RAB2,
RAB2%° or RAB2V'™ as indicated. (h) Co-IP of FLAG-STX17 with HA-RAB1, HA-RAB2 or HA-RAB?7. (i) Schematic representation of the trimeric complex of RUBCNL,
STX17 and RAB2 on autophagosome. (j) Co-IP of FLAG-GDI2 and HA-RAB2 in RUBCNL OE and control cells.

apparatus [58-61]. Whether other Golgins also have a similar
role in autophagy initiation requires further investigation. In
addition, it seems that GOLGA2 may inhibit autophagy
through other mechanisms [62]. Furthermore, it is not
known what are the upstream signals in dissociating RAB2
from GOLGA2 upon autophagy stimulation. We recently
noticed that starvation altered the phosphorylation pattern
of GOLGA2 (unpublished data), and the characterization of
the putative kinases involved is currently undertaken in
the lab.

RAB2 may regulate autophagy initiation through three
different mechanisms. First, RAB2 transports Golgi-derived
ATG9" vesicles to the phagophore assembly sites. Previous
works have shown that plasma membrane- and recycling
endosome-derived ATG9" vesicles contribute to autophago-
some biogenesis [17,18,28]. Our work indicates that the
Golgi-derived ATG9" vesicles are delivered by RAB2 for the
construction of early autophagic structures, because the colo-
calization of ULK1 and ATGY, but not that of ATG9 and
TFRC, was significantly reduced in RAB2 KO cells, and the
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Figure 5. The autophagosomal trimeric complex containing RAB2, RUBCNL and STX17 recruits HOPS complex to promote autophagosome maturation. (a) Co-IP of
FLAG-VPS41 with HA-RAB1 or HA-RAB2. (b) Confocal microscopy analysis of the colocalization of GFP-RAB2, FLAG-VPS41 and LAMP1 or LC3. (c) Confocal microscopy
analysis of mCherry-GFP-LC3 expressed in RAB2 WT or KO U20S cells in the presence of DMSO or Torin1. mCherry-positive GFP-negative (mCherry™ GFP™) puncta,
which indicate autolysosomes, were quantified and summarized in (d and e). Scale bars: 10 pm. Data are shown as mean * SD, *p < 0.05, **p < 0.01. (f) Confocal
microscopy analysis of the colocalization of LC3 and LAMP1 in RAB2 WT, KO or OE U20S cells, which was quantified and summarized in (G and H). Scale bars: 10 pm.
Data are shown as mean + SD, *p < 0.05, **p < 0.01.

translocation of RAB2, but not that of ATGY, to recycling
endosomes was abolished by nocodazole treatment. Second,
RAB2 recruits ULK1 to phagophore assembly sites, as ULK1
appears to be soluble and forms a diffused cytosolic pattern in
the absence of RAB2. Previous studies have demonstrated that
ULK1 may have a tethering function, which is independent of
its kinase activity [29,63-65]. It has been indicated that ATG9
is self-interacted [66], and it requires at least three ATG9
vesicles to mark a PAS in yeast [7]. Therefore, it is conceivable
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that RAB2-ULKI1 interactions may directly contribute to the
initial tethering of ATG9" vesicles prior to fusion, which
enables the small donating vesicles to mature into
a phagophore. Third, RAB2 facilitates ULKI activation to
propagate signals for autophagy initiation. The acquisition of
ULK1 to RAB2" vesicles may result in clustering of the ULK1
complex, which is essential for ULK1 activation [47,65,67,68].
Next, activated ULK1 phosphorylates ATG9 to enable the
ATGY" vesicles to fuse into phagophores [25,49,50,69], and
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phosphorylates ATG14 and BECNI1 to activate PtdIns3K for
nucleation [51,70].

Studies in yeast have shown that YPT1 is recruited and
activated by its GEF, TRAPIII, at PAS, which is followed by
YPT1-mediated ATG1 recruitment [35,71]. RAB1, the mamma-
lian orthologue of YPT1, also regulates autophagy [28,72-77]. In
addition, RABI, together with TRAPPIII and TBC1D14, main-
tains an ATG9 pool on the Golgi apparatus by acquiring the
vesicles from recycling endosomes [28]. Moreover, a circuit
involving TBC1D14, RABI11 and ULK1 on the recycling endo-
some also contributes to autophagy initiation [18]. Although
RAB2 homolog has not been detected in yeast [78], RAB2
appears to be conserved in model organisms ranging from
C. elegans and Drosophila to humans. We demonstrated here
that the Golgi network contributes membranes and protein
machineries including RAB2 and ATG9 to autophagy, which is
different from RAB1- or RABll-mediated pathways linking
recycling endosomes to autophagy in mammalian cells.

A series of studies have shown that RAB2 is essential for
endocytic pathways [79-81] in which C. elegans GOP1 and its
mammalian homolog CLEC16A activates RAB2 as GDF (GDI
displacement factor) [38,81]. RUBCNL appears to have a similar
GDF function, because RUBCNL preferentially interacts with
the GDP-bound form of RAB2, and RUBCNL inhibits RAB2-
GD]I2 interactions. In addition, because both STX17 and RAB2
localize on different compartments [82,83], to avoid disadvanta-
geous mistargeting of HOPS complex, it might be necessary to
form a tripartite complex with RUBCNL on autophagosomes to
further specify the recruitment of HOPS complex for autopha-
gosome maturation. Whether the complex containing RUBCNL,
STX17 and RAB2 also functions in endocytic pathway is cur-
rently not known. During the preparation of this manuscript,
two groups reported that the Drosophila RAB2 regulates autop-
hagosome maturation by recruiting HOPS complex [57,84],
which is in accordance with second part of our findings in this
work. However, this work provides further insights into the
mechanisms of how RAB2 recruits HOPS to promote autopha-
gosome maturation by introducing RUBCNL and STX17 as the
cofactors. In addition, a possible function of RAB2 in autophagy
initiation in Drosophila was not addressed, which may worth
further investigation.

In conclusion, this study not only identifies RAB2 as a unique
GTPase participating in the formation of both autophagosome
and autolysosome in mammalian cells, but also provides further
mechanistic insights into the mechanisms of how the Golgi
apparatus contributes to bulk autophagy pathway.

Materials and methods
Antibodies

Anti-SQSTM1 (MBL, PM045), anti-ATG16L1 (MBL, PM040),
anti-GOLGA2 (MBL, PM179-3), anti-LC3 (MBL, PM036), anti-
ATFM2 (Cell Signaling Technology, 5318), anti-CTSD (Santa
Cruz Biotechnology, sc-6486), anti-EGFR (Santa Cruz
Biotechnology, sc-120), anti-RAB2 (BBI Life Sciences,
D122959-0200), anti-RAB1A (Protein tech, 11671-1-AP), anti-
VPS41 (Santa Cruz Biotechnology, sc-377118), anti-ULK1
(Santa Cruz Biotechnology, sc-390904), anti-LAMPI1 (Santa

Cruz  Biotechnology,  sc-20011), anti-TFRC  (Santa
Cruz Biotechnology, sc-32272), anti-BCAP31 (Santa Cruz
Biotechnology, sc-393810), anti-TOMM20 (Santa Cruz
Biotechnology, sc-17764), anti-SQSTM1 (pSer403) (Genetex,
GTX128171), anti-ATG14 (Cell Signaling Technology, 5504),
anti-LAMP1 (Cell Signaling Technology, D2D11), anti-EEA1
(Cell Signaling Technology, C45B10), anti-p-ATG14 (529)
(Cell Signaling Technology, 13155S), anti-LC3 (Sigma, 1L8918),
anti-RAB2 (Abcam, GR188995-4), anti-HA-Tag-HRP (MBL,
M180-7), anti-FLAG-Tag-HRP (MBL, M185-7), anti-HA
(Biolegend, 16B12), anti-GFP (Santa Cruz Biotechnology,
M048-3), anti-MYC (Santa Cruz Biotechnology, 9E10), anti-
ubiquitin (Cell Signaling Technology, 3936T), anti-LAMP1
(D2D11) (Cell Signaling Technology, 9091S) anti-ULKI
(D8H5) (Cell Signaling Technology, 8054S), anti-p-ULKI
(S555) (Cell Signaling Technology, 5869S), anti-ATG9 (Cell
Signaling Technology, 13509S), anti-p-ATG9 (S14) (Donated
by Prof. Chen Quan), Alexa Fluor 488 (Abcam, GR238847-1),
Alexa Fluor 546 (Thermo Fisher Scientific, A11003), Alexa Fluor
546 (Thermo Fisher Scientific, A11010), Alexa Fluor 405
(Thermo Fisher Scientific, A31556), Alexa Fluor 405 (Thermo
Fisher Scientific, A81553), Alexa Fluor 488 (Thermo Fisher
Scientific, A11008), Alexa Fluor 488 (Thermo Fisher Scientific,
A11001).

Chemicals and reagents

Torinl (Selleck Chemicals, S2827), bafilomycin A; (Selleck
Chemicals, S1413), chloroquine (Sigma, C6628), EGF
(PeproTech incorporated, AF-100-15), nocodazole (Sigma,
M1404), puromycin (Sigma, P7255), Lipofectamine 3000
(Thermo Fisher Scientific, L3000015), Earle’s basic salt solu-
tion (Thermo Fisher Scientific, 1816327), restriction enzymes
(Thermo Fisher Scientific), GST agarose (Probegene, PC014),
2x Taq Master Mix (Probegene, ME013), 2 x Ultra-Pfu
Master Mix (Probegene, ME026), ClonExpress II One Step
Cloning Kit (Vazyme Biotech, C112-01), 2 x Phanta Master
Mix (Vazyme Biotech, P511).

Cell lines

U20S (ATCC), HEK293T (ATCC), HeLa (ATCC), HEK293
(ATCC), RAB2™" U20S (constructed in our lab), FLAG-RAB
2 U20S (Constructed in our lab), FLAG-RAB2 HEK293T
(constructed in our lab), HA-RUBCNL HEK293T (con-
structed in our lab), MYC-RUBCNL HEK293T (constructed
in our lab).

Oligonucleotides

VPS41 shRNA (GCTTTGACAGTCAGAGGCTTT), GOLGA2
shRNA 1 (CGAGAATGATGAGGTGAAGAT), GOLGA2
shRNA 2 (GCGGATTTGTAAAGCTGACTA), ATG9 shRNA
(GTGGACTATGACATCCTATTT).

Recombinant DNA

pEGFP-C1 (Clonetech, PT32595), pEGFP-N1 (Clonetech,
PT3027-5), pmCherry-N1 (Clonetech, PT3974-5),



pCDNA5-FRT-TO-3 x FLAG (Invitrogen, V6010-20),
pcDNA3.1-HA (Invitrogen, V709-20), pmCherry-EGFP
(Addgene, 86639; Ivan Yudushkin lab), pOG44
(Stratagene, 1141), pMRX-IP-GFP-LC3-RFP-LC3AG
(Addgene, 84572; Noboru Mizushima lab).

Software and algorithms

LSM 800 Browser (ZEISS), DNA STAR sequence assay, SPSS
17 Measurement data analysis (IBM).

Cell culture

U20S, HEK293 and HEK293T cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum, 2 mM L-glutamine, 1% penicil-
lin-streptomycin.

Stable cell lines construction

FLAG-RAB2/293T and FLAG-RAB2/U20S were obtained by
Flp-In™ System. The pOG44 plasmid and the pcDNA5-FRT-
RAB2 vector were co-transfected into the Flp-In™ 293T and
Flp-In™ U20S cells. Cells were passed into 2 to 4 10-cm plates
48 h after transfection. Hygromycin was added one day after
re-plating. Replace medium every other day, always adding
hygromycin. Colonies were visible after approximately
15 days and should be picked. Transfer colonies to 12-well
plates and grow in presence of hygromycin. WB was per-
formed to verify FLAG-tagged protein expression.

Generation knockout cell lines for GOLGA2 and RAB2

pLKO-cas9-RAB2 and pLKO-cas9-GOLGA2 sgRNA vectors
with designed gDNA sequence 5'GCTCGAATGATAAC
TATTGA3' and 5TGCTGATATTCTCTCAACTG3' were
cloned. U20S or HEK293 cells were seeded in a 6-well plate
with 50% confluency one day before transfection. Cells were
transfected with 2 pg pLKO-cas9-RAB2 sgRNA or pLKO-cas
9-GOLGA2 sgRNA vector by Lipofectamine 3000. Twenty-
four h later, regular medium was replaced with medium
containing 1 pug/ml puromycin. After 2 days incubation, cells
were diluted and seeded into 15cm dishes. Two weeks later,
single cell clones were trypsinized and seeded into 96-well
plates. WB was performed to screen single cell clones with
anti-RAB2 or anti-GOLGA2 antibodies. Then, WB verified
KO cell clones were sent for sequencing verification.

Immunoprecipitation and western blot

Cell pellets were homogenized in TAP buffer (20 mM Tris-
HCl, pH 7.4, 150 mM NaCl, 0.5% NP-40 [Sigma, 56741],
1 mM NaF, 1 mM Na3VO4, 1 mM EDTA, 10 nM MGI132
[Selleck Chemicals, S2619], protease inhibitor cocktail
[Bimake, B14001], phosphatase inhibitor cocktail [Bimake,
B15001]) and incubated on ice for 30 min. The cell lysate
was cleared by centrifugation at 16,873 g for 30 min. The
supernatant was incubated with antibody-conjugated beads
(Bimake, B23102) and rotated for 2 h at 4°C. After incubation,
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the beads were washed 3 times with TAP buffer. WB was
performed following standard procedures.

Immunofluorescence

Cells grown on coverslips were transfected with different
plasmids, then fixed in 4% paraformaldehyde in PBS
(Thermo Fisher Scientific, 10010023) for 20 min at room
temperature and permeabilized with 0.1% Triton X-100
(Sangon Biotech, T0694) in PBS for 20 min. Following per-
meabilization, cells were treated with block buffer (1% BSA
(BBI Life Sciences, A600332), 0.1% Triton X-100 in PBS) for
1 h at room temperature. Cells were incubated with primary
antibodies diluted in block buffer overnight at 4°C. Cells were
washed 3 times with PBS, each for 10 min, followed by
incubation with Alexa Fluor-conjugated secondary antibody
(Life Technologies) in block buffer for 1 h at room tempera-
ture. Slides were examined by using a laser scanning confocal
microscope (Zeiss LSM 800).

EGFR degradation assay

Cells cultured in 12-well plates were grown to approximately
80% confluency. Cells were serum-starved overnight
(12-18 h). EGFR endocytosis was stimulated by adding of
200ng/ml EGF (peprotech, AF-100-15) in DMEM containing
20 mM HEPES and 0.2% BSA. Four different time lapse after
EGF stimulation, the cells were boiled in 100 pl 1x SDS
loading buffer. Samples were analyzed by WB of EGFR.

RAB2 knockdown in mouse liver by AAV-mediated shRNA
expression in vivo

All animal experiments were performed under the guidelines
of the institutional Animal Care and Use Committee at
Zhejiang University. Mice were maintained in a barrier facil-
ity, at normal room temperatures, on a regular 12 h light and
12 h dark cycle. For Rab2 KD in mouse liver, eight-week-old
male C57BL/6] were applied for studies. shRNA-Rab2
sequence: GCCTATCTCTTCAAGTACATCTTCAAGAGA
GATGTACTTGAAGAGATAGGCTTTTTT. pAV-U6-GFP
inserted with nonsense sequence were used as control. Male
mice were used for the AAV gene transfer studies. The mice
in each experiment were randomized. pAV-U6-shRNA-Rab2-
GFP and pAV-U6-GFP AAV particles were injected with
5 x 10! vg into each mouse. Four weeks later, protein sam-
ples isolated from mouse liver, which were equalized with
BCA kit, were performed with WB using anti-SQSTM1 anti-
body. The other group of mice, which were injected with
pAV-U6-shRNA-Rab2-GFP and pAV-U6-GFP AAV parti-
cles, were starved for two days. Livers from normal feeding
and starved mice were prepared for transmission electron
microscopy (TEM).

Protein extraction from tissue

Liver samples (200 mg) were homogenized in 1 ml TAP buffer
(20 mM Tris-HCI, pH 7.4, 150 mM NaCl, 0.5% NP-40, 1 mM
NaF, 1 mM Na3VO4, 1 mM EDTA, 10 nM MGI32,
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supplemented with protease, phosphatase inhibitors and dea-
cetylase inhibitors (Selleck Chemicals, S1045)) using
a homogenizer at 4°C for 45 s, and the homogenates were
cleared by centrifugation at 16,873 g for 20 min and 200,000 g
for 60 min, respectively. The supernatants were used for WB
analysis or immunoprecipitation.

Autophagy analysis

For LC3-II degradation assay, U20S cells with RAB2 KO or
WT were treated with 250 nM Torinl or vehicle at different
time points, and whole cells lysates were briefly sonicated in
1x SDS loading buffer, and incubated at 100°C for 5 min, then
subjected to WB analysis with antibodies against LC3. For
autophagosome maturation assays, U20S with RAB2 KO or
WT were transfected with GFP-mCherry-LC3, 16 h post-
transfection, the cells were treated with EBSS at 37°C for 1 h,
and analyzed by fluorescence microscopy. To determine how
RAB2 mutants affect autophagic flux, stable cell lines of flag-
tagged WT RAB2, RAB2?°*" and RAB2N'"" were treated with
Torinl treatment for different times. Cell lysates were analyzed
by WB using SQSTM1 and LC3 antibodies. For GFP-LC3-RFP-
LC3AG cleavage assay, RAB2 KO or WT U20S cells were
seeded in 12-well plates. When reaching 70% confluency, cells
were transfected with GFP-LC3-RFP-LC3AG. Twenty-four
h later, cells were treated with Torinl for inducing autophagy
for different times. Cells were boiled in 100 pl 1x SDS loading
buffer. Samples were analyzed by WB using GFP, RFP and LC3
antibodies. For Electron microscopy, RAB2 KO and WT cells
were treated with 250 nM Torinl or vehicle (DMSO) for 2 h.
The cells were harvested and washed with PBS at room tem-
perature. The cell pellets were fixed in 0.1 M PBS buffer con-
taining 2.5% (w:v) glutaraldehyde at 4°C for 24 h. The cells were
washed with 0.1 M PBS three times for 15 min each time. The
cells were post-fixed in 0.1 M PBS buffer containing 1%
osmium tetroxide for 1 h at 4°C and then washed with water
three times for 15 min each time. When processing resumed,
the cells were dehydrated in graded alcohols, embedded in
Epon 812 (SPI, 660-AB), sectioned with ultramicrotome
(Leica, Germany), and then stained with uranyl acetate and
lead citrate. The sections were examined with a transmission
electron microscope (JEOL-1230, Japan). For each representa-
tive figure which was shown, and at least three different experi-
ments were performed.

Quantification and statistical analysis

Statistical analyses were performed using the Student’s t test
in SPSS 17.0 software. Values are expressed as mean + SD of
at least three independent experiments, unless otherwise
noted. A P value < 0.05 was considered statistically significant.
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