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A Direct Mapping of Max k-SAT 
and High Order Parity Checks to a 
Chimera Graph
N. Chancellor1,*, S. Zohren2,3,*, P. A. Warburton4,5, S. C. Benjamin2 & S. Roberts3

We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera 
graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further 
show that this mapping can be used to map a similar class of maximum satisfiability problems where 
the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific 
interest for applications in decoding for communication. We discuss an example in which the decoding 
of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a 
Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so 
our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera 
graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore 
may also be used for maximum entropy inference.

Many interesting computer science problems have been shown to be directly mappable to finding the ground state 
of a Ising spin model on the hardware graph of the devices by D-Wave systems Inc.1, the Chimera graph (see Fig. 1).  
Examples include Maximum-Weight Independent Set, Exact Cover, and 3-SAT Problems2. Technically, by virtue 
of being NP-complete, an efficient mapping of any one of these problems implies that any other NP-complete 
problem can also be mapped to finding the ground state of a spin model on the Chimera graph. In practice how-
ever, such an indirect mapping is likely to be impractical given the current limitations of size and energy scales 
on real devices. It is for this reason that we are interested in direct mappings of interesting problems onto the 
Chimera graph, and why a direct mapping of a very general problem such as max k-SAT is of interest.

The ultimate reason why we are interested in mapping to the Chimera graph is to more efficiently map the 
2-body Ising models which implement these problems to the hardware graph of the D-Wave annealers, although 
modifications to the ideas given here may be useful for mapping to other graphs which are made of tilings of 
locally non-planar graphs. Much of the attention in developing minor embeddings for the Chimera graph has 
been on increasing connectivity. In particular, a fully connected graph can always be mapped to a Chimera graph 
using minor embedding3. Recently, this focus has also included purpose-built architectures different from the 
Chimera graph4 (see also refs 5 and 6 for related work). Here our focus is on higher order terms which are neces-
sary to implement clauses and parity terms which involve more than two variables. However, as we will see later 
we will be using some of the minor embedding techniques for fully connected graphs to construct the embed-
dings of such terms.

There have been many promising advances in quantum annealing, since the idea that quantum fluctuations 
could help explore rough energy landscapes7, through the algorithm first being explicitly proposed8, further 
refined9, and the basic concepts demonstrated experimentally in a condensed matter system10. Recently both 
entanglement11 and tunneling12,13 have been experimentally demonstrated on programmable annealing proces-
sors. Given these encouraging results, it is desirable to propose new problem types for these machines to solve. 
This is interesting both from the viewpoint of possible eventual commercial applications, as well as providing 
access to new problems sets for benchmarking. For an overview of some aspects of quantum annealing, please 
see ref. 14.
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Another method of mapping problems onto the Chimera graph, is the one employed by ref. 15. This method 
uses numerical algorithms, often heuristic ones in practice, to map the problems. For reasons which we will 
discuss later, the low density parity check code (LDPC) decoding done in ref. 15 can be thought of as a mapping 
of a weighted SAT problem into the Chimera graph. One crucial difference however, is that this LDPC decoding 
cannot be thought of as mapping a max-SAT problem, as our method does. For other examples of problem map-
pings see refs 16 and 17.

Also unlike this mapping, our technique can not only be used for optimization tasks but also for sampling. 
This is important considering that recently there has been much interest in using D-wave for sampling applica-
tions, especially in the context of training Boltzmann machines18–20, but also in the context of message decoding21. 
There are also many other examples in which maximum entropy inference, which relies on sampling approximate 
thermal distributions can be applied in fields as varied as finance22, ecology23, and computational linguistics24. 
Even more powerful problem embeddings can probably be created by combining the ideas presented here with 
the powerful numerical techniques used in ref. 15.

We should also compare our paper to other recent work on using quantum annealing to solve satisfiability 
problems25. This work examines the use of quantum annealers to build SAT filters, which require a relatively 
large number of disparate solutions of a SAT problem to construct. This work finds that quantum annealing 
is not a suitable method compared to classical methods. Building a SAT solver is significantly different than 
solving such a problem directly, as we discuss in this paper, and is most appropriately classified as a variant of 
#SAT. Furthermore, SAT filters are not directly applicable to max-SAT problems as we study here, and so should 
be regarded as related, but very much distinct. It is worth remarking that the methods we give here could still 
potentially be useful for #SAT type problems such as SAT filter construction if the annealer were used to perform 
a hybrid algorithm as suggested in refs 26–28 rather than the standard quantum annealing algorithm.

For a review on boolean satisfiability, we point the reader to ref. 29, and for max-SAT in particular to ref. 30.

Implementing Clauses
Basic Operations.  Any Boolean clause can always be written out as logical AND operations performed on 
strings of logical OR operators performed on bit values or the logical negation of bit values, e.g. (a1 OR a2...) AND 
(NOT a1 OR a5...). In the following we denote AND by ∧​, OR by ∨​ and negation by ¬​. A general clause is thus of 
the form

∨ ... ∧ ∨ ... ∧ ...a a a a( ) ( ) , (1)1
(1)

2
(1)

1
(2)

2
(2)

where ∪∈  ... ¬ ¬ ¬  ...a a a a a a a{ , , , } { , , , }i
l( )

1 2 2 1 2 3  All that is needed to implement arbitrary Boolean clauses is 
therefore the ability to implement clauses of the form = ∨ ...a a a: ( )l l l( )

1
( )

2
( ) . To implement a SAT problem in 

terms of energy computation, we could construct such a term by enforcing a penalty of the form,





≥ = ∀
= .

Pen a g a i({ }) 0,
0 otherwise (2)

l i
l( ) ( )

One can then construct a SAT problem by summing many such penalties and obtaining an energy E =​ ∑​l 
Pen({a(l)}). If one or more bit-strings exist where E =​ 0 then a set of clauses is satisfiable, but otherwise it is not. In 
the case where the clauses are satisfiable, the bit-strings which yield E =​ 0 are the ones which satisfy the clauses. 
However, because the penalties are unknown and are set to simply be an arbitrary value greater than or equal to 
g, the energies of states with E >​ 0 are meaningless. If no bit-string can satisfy all clauses, the lowest E state is not 
necessarily the one which satisfies the most clauses, and this is therefore not a valid construction of a max-SAT 
problem.

However, if we consider terms which give all violated clauses the same energy penalty,

Figure 1.  A region of a Chimera graph containing 3 × 2 unit cells. Each vertex corresponds to a spin variable. 
One can adjust the magnetic fields hi at each spin as well as the pair-wise couplings Jij between spins which are 
adjacent to each other in the graph.
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0 otherwise, (3)
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l

( )
( )

and similarly construct a total energy E =​ ∑​lSpec({a(l)}), then for g >​ 0 the minimum energy bit-string will always 
be the one which satisfies the most clauses, regardless of whether all clauses can be simultaneously satisfied. An 
energy penalty of this form therefore is a valid expression of a max-SAT problem. In this letter we show not only 
a natural way to express such penalties in terms of the Ising model, but also how such terms may be efficiently 
embedded into the D-Wave Chimera graph. It is worth pointing out that this can easily be even further general-
ized to a weighted version of the max k-SAT problem if a different value of g is chosen for different clauses a(l) in 
a controlled rather than arbitrary way.

To move from logical values to spin variables, we map each logical variable ai =​ 0 to a spin variable with value 
σ = −1i

z  and each logical variable ai =​ 1 to a spin variable with value σ = +1i
z . Negation of the logical variables 

is then implemented through gauges on the spin variables. More precisely, we map ai to σc i( ) i
z with c(i) =​ 1 and  

¬​ai to σc i( ) i
z with c(i) =​ −​1. Formally, we thus identify σ= +a c i(1 ( ) )i i

z1
2

 with c(i) =​ 1 and σ¬ = +a c i(1 ( ) )i i
z1

2
 

with c(i) =​ −​1.
We now consider how to implement a single SAT clause using an Ising spin Hamiltonian which might be 

implemented on an annealing machine like those of D-Wave systems Inc. Consider a Hamiltonian for spin var-
iables of the form
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in which up to the gauge choice c(i) ∈​ {−​1, 1}, k logical spin variables σi
z are coupled to k ancilla spin variables – 

ancillae for short. The Hamiltonian above is similar to the Hamiltonian presented in ref. 31 and in fact both are 
special cases of a more general construction presented below. To implement a single clause, we set J =​ Ja, h =​ −​Ja, 
as well as = − − +h J i k q(2 )i

a a
i with

=





=q g i/2 1,
0 otherwise, (5)i

where g/2 ≪​ Ja. By the symmetry of this Hamiltonian, the effective energy penalty on the ancillae from the logical 
spin variables for being up or down will depend only on the total number of logical spin variables which are in 
agreement with the gauges, and not the specific arrangement. With this choice of qi, all bit-strings will have the 
same energy unless σ = − ∀c i i( ) 1,i

z  in which case the energy will be greater by g. Thus, up to an irrelevant total 
energy shift, (4) generates a single penalty term of the form of (3). Table 1 illustrates an example for four bits with 
all gauge values set to 1. Figure 2 shows the connectivity of the corresponding abstract spin graph. Shown are the 
four logical spin variables in green and the ancillae in red.

We have demonstrated above how to implement a single clause of the form = ∨ ...a a a( )l l l( )
1
( )

2
( ) . Using this 

construction we can now implement clauses of the form ∨ ... ∧ ∨ ... ∧ .. .a a a a( ) ( )1
(1)

2
(1)

1
(2)

2
(2) . by superimpos-

ing the construction of the individual clauses a(l) on a common set of logical spin variables. To do so, we include 
the gauge variables in the coupling constants, i.e. associated with the clause a(l) the fields are =h c i h( )i

l l l( ) ( ) ( ) and 
the couplings are =J c i c j J( ) ( )ij

l l l l( ) ( ) ( ) ( ). The total fields applied to a spin variable σi
z are then the sum of the field 

contribution from each clause, i.e. = ∑h hi l i
l( ) and similarly for the couplings = ∑J Jij l ij

l( ). Note that the ancillae 
cannot be superimposed.

XOR Clauses and Parity Checks.  We now describe another construction where instead of OR we have 
clauses constructed out of XOR relations. Such clauses are important in many message decoding applications. 
Furthermore, they provide an alternative method for implementing the above clauses. In particular, instead of 
implementing clauses of the form = ∨ ...a a a: ( )j j j( )

1
( )

2
( )  and superimposing those to construct the bigger prob-

lem ∨ ... ∧ ∨ ... ∧ .. .a a a a( ) ( )1
(1)

2
(1)

1
(2)

2
(2) . , one can also implement bigger clauses directly. To do so, note that a 

logical AND operation can be expressed as a product of two such operators ai ∧​ aj =​ aiaj and the OR operation can 

Logical bit values Ancilla values E

1111 0000 0

0111, 1011, 1101, 1110 0001 0

0011, 0101, 0110, 1001, 1010, 1100 0011 0

1000, 0100, 0010, 0001 0111 0

0000 1111 g

Table 1.   Summary of the possible configuration of bit-strings for the OR clause a1 ∨ a2 ∨ a3 ∨ a4 together 
with the corresponding ancilla value and the energy (up to a constant offset).
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be written as ai ∨​ aj =​ ai +​ aj −​ 2aiaj. Inserting the mapping to spin variables, σ→ +a ( 1)i i
z1

2
, we see that any 

Boolean clause can be rewritten in terms of spin variables, and the penalty Hamiltonians can alternatively be 
constructed using the methods given in ref. 31 in terms of multi-body terms. A product of spins corresponds to a 
parity term or parity checking clause, which is represented by an XOR relation in the Boolean language, i.e. a term 
of the form ⊕ ⊕ ...a a a( )l l l

1
( )

2
( )

3
( ) , where ⊕​ denotes bitwise addition. Thus we have the mapping,

σ σ σ⊕ ⊕ ... ⊕ ↔ ...a a a c c c k(1) (2) ( ) (6)l l
k

l z z
k
z

1
( )

2
( ) ( )

1 2

The spectrum ⊕ ... ⊕Spec a a({ })l
k

l
1
( ) ( )  is mapped to the spectrum of the Hamiltonian

 σ σ= ... .
g c c k
2

(1) ( ) (7)k
z

k
z

1

The abstract connectivity graph of this Hamiltonian is shown in Fig. 2 for k =​ 4. We can use the Hamiltonian 
(4) to reproduce the (low-energy) spectrum of k  where, as before J =​ Ja, h =​ q0 −​ Ja, as well as 

= − − +h J i N q(2 )i
a a

i, but qi is instead chosen as

=






+ −

− − .
q

q g i
q g i

/2 N is odd,
/2 N is even (8)

i
0

0

with g/2 <​ q0 ≪​ Ja. This assignment of coupling constants is the same as used in ref. 31.
It is also worth briefly pointing out that the mapping between logical and spin variables discussed above 

is completely invertible. Any problems which can be expressed as a sum over products of spin operators can 
therefore be written as a weighted sum over Boolean clauses plus a constant. Problems expressed as sums of 
parity checking clauses which are each weighted equally can therefore be regarded as a version of max k-SAT. 
In an upcoming work32 we analyze the potential of using this way of implementing parity checking terms in 
terms of these weighted max-SAT implementations for inference in message decoding problems, in particular 
when applied to Low Density Parity Check (LDPC) codes and turbo codes. The advantage of our construction in 
comparison to an earlier construction of LDPC codes15 is that it not only reproduces correctly the ground state 
but also the low-energy spectrum, thus permitting us to do sampling applications, such as the maximum entropy 
inference discussed in ref. 21. While we leave the extensive analysis of various message decoding problems to the 
upcoming work32, later in this manuscript we give a brief description of how to implement turbo codes.

Other Clauses.  We have already demonstrated that a simple clause can be expressed as an energy penalty by 
using k ancillae. This therefore allows a natural construction of any complex k bit clause by simply examining 
every possible bit string and penalizing it if it violates the clause. For large k this method is rather inefficient for 
arbitrary clauses, however, as the number of bit-strings which must be examined potentially grows as k2k. For 
example, expressing a parity checking clauses using individual SAT clauses would require ⌊ ⌋k 2 k/2  ancillae.

It is therefore worthwhile to briefly address how one might go about constructing methods for implementing 
clauses which cannot be easily expressed using the methods previously discussed and more efficiently. Firstly we 
note that the previously constructed can be generalized by choosing qi in (5) and (8) differently. By doing this we 
can implement any clause which is symmetric under permutation of any of the bits. Such a clause will be defined 
by a vector fi ∈​ {0, g/2} with i =​ 0, ..., k which is 0 if the set of bit-strings with i bits equal to 1 satisfies the clause and 
g/2 otherwise. We now define

Figure 2.  Illustration of the spin graph corresponding to the implementation of the clause 
σ1 ∨ σ2 ∨ σ3 ∨ σ4, as well as the parity checking clause σ1 ⊕ σ2 ⊕ σ3 ⊕ σ4. Logical spin variables are shown as 
green vertices, ancillae as red vertices, non-zero couplings are shown as black edges and magnetic fields are not 
shown. Both clauses for OR and XOR only differ in the value of their fields.
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= + − =  ...−q q f f i k, 1, , (9)i i i0 1

with g/2 <​ q0 ≪​ Ja. We further observe that the gauges c(i) ∈​ {−​1, 1} in (4) allow us to define such clauses which 
are symmetric in any gauge, and potentially to combine more than one of this type of clause constructed in 
multiple different gauges. These more complicated constructions should allow many different clauses involving 
relatively large numbers of bits to be implemented more efficiently than the method given earlier. In practice one 
would probably want to construct numerical algorithms to find more optimal implementations of arbitrary high 
k clauses, but this is beyond the scope of the current letter.

Special Cases.  It is worth briefly mentioning a couple of special cases, in which clauses can be expressed 
more efficiently than the ways discussed earlier in this section. Because the fields and couplers already act as one 
and two bit parity checking clauses (a field, which gives a different energy for a 1 and 0 state is nothing more than 
a single bit parity check), all that is needed to construct an arbitrary three bit clause is a three bit parity checking 
clause. Using the construction given previously for such clauses requires three ancillae. This can however be 
reduced to a single ancilla by choosing h =​ g, Ja =​ 2J >​ |h|, and ha =​ 2h. Any 3 bit clause can therefore be con-
structed using only a single ancilla. The corresponding abstract spin graph is shown in Fig. 3(a).

Furthermore, clauses of the form ∧ ... ∧a a( )l
k

l
1
( ) ( )  can be expressed using only a single ancilla per sub-clause, 

regardless of k. Consider the simpler Hamiltonian of the form

 ∑ ∑σ σ σ σ= + +
= =

h c i J c i h( ) ( ) ,
(10)i

k

i
z a

i

k

i
z

a
z a

a
z

simple
(2)

1 1

in which up to the gauge choice c(i) ∈​ {−​1, 1}, k logical spin variables σi
z are coupled with equal strength Ja to the 

same ancilla spin variable σa
z. The connectivity of the corresponding spin graph is shown in Fig. 3(b) for the case 

k =​ 4. We choose ha so that if all of the logical bits σi
z match c(i), the ancilla bit will be down. This can be achieved 

as follows: Consider choosing ha =​ Jak +​ q. The ground state of the ancilla will be the upward orientation unless all 
logical bits cooperate to counteract the field in which case it will be downward. We can further choose the cou-
plers between the logical bits such that the energy of the ancilla-logical couplers exactly cancels the energy from 
the couplers between the logical qubits. We now further set Ja =​ −​h and q =​ −​g/2, leading to

= − − = −h hk g J h/2, (11)a
a

which (up to a constant offset) yields a total energy of zero iff σ = + ∀c i i( ) 1,i
z  and g otherwise, which is exactly 

the spectrum of a clause of the form ∧ ... ∧a a( )l
k

l
1
( ) ( ) .

Embedding in the Chimera Graph
Let us start by considering how to embed both simple clauses and parity checks represented by the connectivity 
graph shown in Fig. 2 into a patch of a Chimera graph. This embedding is shown in Fig. 4. The abstract graph 
shown in Fig. 2 is already reduced to have only standard two-body interactions between neighboring spins as is 
the case for the Chimera graph. The only difficulty in embedding this abstract graph is the fact that its connectiv-
ity is higher than that of the Chimera graph. In particular, the embedding of the clauses of order k involves a fully 
connected graph of the k logical spin variables. Higher connectivity can be achieved at the price of an overhead 
in the number of spin variables by ‘identifying’ different spin variables through a very strong link. In other words, 
two spins are coupled through a ferro-magnetic link of strength |J∞| which is much larger than all the other cou-
plings, ensuring that both spins always have the same value. This can be seen in the embedding of the clauses in 
Fig. 4, where the strong links identifying logical spin variables are shown as thick green edges.

To generalize the above embedding for a larger number of variables and clauses one can employ the minor 
embedding of a fully connected graph which was introduced in ref. 3. Since clauses can be superimposed, it suf-
fices to have a single minor embedding of all logical spin variables. While one could also include all ancillae in a 
single fully connected graph and then set unused edges to zero, this would not be very efficient. A more efficient 
way to do this is to extend each of the logical spin variables as a string of physical spin variables coming out of one 
side of the fully connected embedding of all logical spin variables, with each of the ancillae as an embedding chain 
crossing all of them. This is illustrated in Fig. 5. In the lower three rows of unit cells we see a minor embedding 

Figure 3.  (a) Illustration of the abstract spin graph corresponding to the implementation of the clause 
σ1 ⊕​ σ2 ⊕​ σ3 using only a single ancilla. (b) Illustration of the abstract spin graph for the clause σ1 ∧​ σ2 ∧​ σ3 ∧​ σ4.
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of a fully connected graph between 12 logical spin variables. In the upper part of the figure, each of the 12 spin 
variables has outgoing chains of ‘identified’ spins which are then connected to the ancillae. This plot illustrates a 
specific example of an embedding to perform some of the parity checks for the turbo code example given previ-
ously which is explained in detail in that section.

The method proposed in the previous paragraph works well for embedding any number of arbitrary overlap-
ping subgraphs of the form shown in Fig. 2. For problems requiring a large number of ancillae however, embed-
dings with this method will only occupy a long relatively thin strip of the Chimera graph. In practice, real devices 
tend to be designed with an aspect ratio close to 1:1, which maximizes the tree-width for given number of qubits. 
Because of this, the way to embed into a real device will be to use a serpentine pattern, which uses fully connected 
graphs as ‘corners’ at the end of each row and allow the embedding to efficiently fill the graph.

Scaling
Let us now consider the scaling of the total number of physical qubits, Nphys required to embed an instance of 
a max k-SAT problem using penalty terms of the form (3) only. We shall first assume that the long stretches of 
linear embedding chains which cross the ancillae will dominate. In this case the total number of physical qubits 
will scale as,

∝N N k c (12)phys log

where Nlog is the number of logical qubits, c is the number of clauses, and 〈​k〉​ is the mean number of bits per 
clause. It has been demonstrated, for instance with max 2-SAT33,34 that the typical hardness of a problem is deter-
mined by the ratio r =​ c/Nlog. If clauses are too sparse, then it will typically be easy to satisfy them all simultane-
ously, however if clauses are too dense, the problem again becomes easy because no solution will be able to satisfy 
very many of the clauses and almost any random bit string will be a good solution. Based on this reasoning, the 
value of r which gives the hardest typical problems should not vary too much from r ≈​ O(1) and therefore if we 
want scaling for the hardest problems r can be treated as roughly independent of 〈​k〉​, the mean number of bits in 
a clause.

If we are interested in using annealers to solve problems drawn from a typically hard set of problems, the 
number of physical qubits required should scale roughly as,

∝N N k r (13)phys log
2

which, is the same scaling as the minor embedding for a fully connected graph proposed in ref. 3.
This scaling only applies for those clauses which can be expressed as terms of the form (3). In general one can 

imagine much more complicated clauses. Using the more naive method of constructing a clause piecewise by 
penalizing each bitstring a clause on k bits can at most require 2k −​ 1 subclauses to implement. Each of these sub-
clauses will require an ancilla to implement. For this reason the average number of ancillae to implement naively 
is 〈​Nanc(k)〉​ ≤​ 2k −​ 1. The actual value of 〈​Nanc(k)〉​ is likely to be highly dependent on both the specific max-SAT 
problem and the algorithm to implement the clauses as discussed previously.

For arbitrary clauses, involving a maximum of k bits, the worst case scenario scaling for typically hard prob-
lems is therefore,

∝N N r N k( ) , (14)phys anclog
2

which scales exponentially with the clause length k, but still only scales quadratically with Nlog, given a fixed value 
of k. This scaling still assumes we are in the typically hard regime. However, we can further calculate the abso-
lutely worst case, which one clause needs to be constructed on every subset of k or fewer bits. Assuming that c ≫​ k, 
then the leading order scaling in the number of ancilla required will be N k

log , and the overall scaling will be, 
assuming k ≥​ 3,

∝ +N N , (15)phys
k
log

1

Figure 4.  Illustration of the spin graph corresponding to the minor embedding of the clause 
σ1 ∨ σ2 ∨ σ3 ∨ σ4 as well as the parity checking clause σ1 ⊕ σ2 ⊕ σ3 ⊕ σ4 in the Chimera graph. The unit 
cell on the left implements the fully connected graph amongst the for logical variables, while the unit cell on the 
right implements the ancillae. Strong coupling edges between vertices (shown as thick green edges) are used to 
“identify” spin variables.
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which is still polynomial in Nlog for fixed k, however the rapidly growing power will place limits on practical 
realizations of such pathological problems. It worth pointing out here that while such problems can be mathemat-
ically constructed, it is not clear that any problems whose embedding scales like (15) are actually of any practical 
interest, or indeed even that hard problems which scale like this exist.

It is worth noting that while it is possible to implement 3 bit clauses with only a single ancilla, as discussed 
previously, this technique does not have a meaningful effect on the overall scaling.

Application to Turbo Codes
As a practical example of scaling, let us consider decoding a turbo code. We restrict ourself to the basic construc-
tion and leave a detailed analysis to a forthcoming work32. While this problem is most naturally stated in terms 
of Ising spins, we have already shown that this problem maps to a max k-SAT. Turbo codes are a class of so-called 
convolutional code which have many real life applications in communications due to the ability to achieve near 

Figure 5.  Embedding of a few clauses of a 12 bit problem in a Chimera graph. The actual problem is part of 
a turbo code involving 12 message bits and 12 parity bits (of which eight are omitted in the figure). The bottom 
3 rows implement a fully connected graph amongst the 12 message variables, which allows for arbitrary 2 bit 
clauses. The upper 4 rows illustrate how the ancillae can be embedded. To implement a clause using our method, 
the number of ancillae needs to be equal to the number of logical bits in the clause and each row of Chimera 
unit cells provides 4 ancillae.
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Shannon limit performance35–37. The Hamiltonian for decoding of a general turbo code can be written in the 
following way,

 ∑ ∑ ∏ ∏ρ ρ σ ρ σ σ= +





+




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+

= =
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( )

where p(j) is a random permutation, and ρi ∈​ {−​1, 1}, with i =​ 1, ..., 2K the list of received values of the message 
and the corresponding parity checks. Furthermore, f is related to the noise model; in the case of a binary symmet-
ric channel which corrupts a value with probability p, one has

= −





− 



.f p

p
1
2

log 1
(17)

The values ρi, with i =​ 1, ..., K represent the received values corresponding to the original message, while ρi, with 
i =​ K +​ 1, ..., 2K are the received values corresponding to the parity checks. The parity checks are performed in a 
nested structure, firstly one transmits parity checks on odd numbers of variables with respect to the original 
ordering of the spin variables, i.e. σ z

1 , σ σ σz z z
1 2 3 , σ σ σ σ σz z z z z

1 2 3 4 5 , etc. and secondly one transmits parity checks of 
even number of variables on the permuted variables, i.e. σ σp

z
p
z

(1) (2), σ σ σ σp
z

p
z

p
z

p
z

(1) (2) (3) (4), etc.
The number of ancillae required for each parity checking clause scales like the length of the clause, and there 

is one clause for every possible clause length in (16). The number of ancilla required to decode the turbo code 
therefore scales as ∝N Nanc log

2 . The total number of physical bits will therefore scale as ∝N Nphys log
3  for turbo 

code decoding.
To give an explicit example, Fig. 5 shows part of the embedding of a turbo code. We have K =​ 12 message var-

iables and an equal number of parity checks. The message variables are represented by the logical spin variables 
(green) which are fully connected. On the outgoing chains we couple the ancillae corresponding to the parity 
checks. Note that parity checks of order 1 and 2 can be directly implemented on the fully connected graph. The 
next highest order is the parity check of order three on the variables 1, 2 and 3 which is implemented using the 
efficient embedding using a single ancilla. Next we have a parity check on the four variables p(1), p(2), p(3), p(4), 
where for concreteness we chose p(1) =​ 7, p(2) =​ 4, p(3) =​ 5, p(4) =​ 9. The figure also shows the next two parity 
checks of order 5, involving variables 1, 2, 3, 4, 5, and of order 6, involving p(1), p(2), p(3), p(4), p(5), p(6), where 
in the example we chose p(5) =​ 12, p(6) =​ 8.

Conclusion
We have demonstrated a method to embed max k-SAT (and weighted max k-SAT), including the problem of find-
ing a bit-string which satisfies a maximum number of parity checks, which can be expressed in terms of clauses 
involving XOR. We further demonstrate a very efficient way to implement such clauses, which have important 
applications in communications, we discuss the specific example of turbo code decoding.

The weighted max k-SAT problem is the most general satisfiability problem, so we have therefore demon-
strated how any satisfiability problem can be directly mapped into a Chimera graph. One particularly inter-
esting application of this is parity checking, which could lead to important applications in communications. 
Furthermore, the methods given here reproduce the low energy spectrum of the problem, with energies cor-
responding to the number of clauses which are unsatisfied. This means that as well as finding the lowest energy 
solution, these techniques are compatible with maximum entropy inference applications.

Our method gives a direct construction of the problem Hamiltonians without the need for numerically expen-
sive classical calculations. However the methods given here could probably be made more powerful if integrated 
into the already powerful and growing numerical toolset which is currently used to map problems into a Chimera 
for real calculations, for example in ref. 15. The embedding illustrated here was chosen for its generality, but for 
specific problems it is unlikely that every ancilla will have to couple to every logical qubit, or that 2-qubit couplers 
between every logical qubit will be necessary. Therefore, embedding efficiency gains are likely to be possible 
through numerical optimization. Furthermore it would be interesting to explore how these methods can be gen-
eralized to more sparse graphs and more general clause types.
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