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ABSTRACT: We present a general scheme for converting coarse-
grained models into Dissipative Particle Dynamics (DPD) models.
We build the corresponding DPD models by analogy with the de
novo DPD coarse-graining scheme suggested by Groot and Warren
(J. Chem. Phys., 1997). Electrostatic interactions between charged
DPD particles are represented though the addition of a long-range
Slater Coulomb potential as suggested by Gonzaĺez-Melchor et al.
(J. Chem. Phys., 2006). The construction is illustrated by
converting MARTINI models for various proteins into a DPD
representation, but it not restricted to the usual potential form in
the MARTINI model�viz., Lennard-Jones potentials. We further
extended the DPD scheme away from the typical use of
homogeneous particle sizes, therefore faithfully representing the
variations in the particle sizes seen in the underlying MARTINI model. The accuracy of the resulting construction of our generalized
DPD models with respect to several structural observables has been benchmarked favorably against all-atom and MARTINI models
for a selected set of peptides and proteins, and variations in the scales of the coarse-graining of the water solvent.

1. INTRODUCTION
Force fields for all-atom models (e.g., CHARMM361) and for
coarse-grained models (e.g., MARTINI2,3) have been widely
used to reveal the structure and dynamics of molecular and
biomolecular systems.4−6 While the all-atom force fields
provide highly accurate descriptions of protein structures,
their use requires large amounts of computational resources
limiting the size of systems that are accessible.4,7,8 On the other
hand, coarse-grained models reduce computational costs, while
hopefully retaining acceptable accuracies.9 The MARTINI
force field2 is among the most widely used coarse-graining
model,10 but it lacks a general description for non-
biomolecular systems and omits, for example, interactions
with and between arbitrary engineered nanoparticles. While
coarse-graining schemes in Dissipative Particle Dynamics
(DPD)11 have accounted for such nanoparticles,12 they have
generally lacked an accurate representation of protein
interactions.
In this paper, a generalized scheme for building a DPD

model from existing finer-grained�but still sufficiently coarse-
grained�force fields is shown to be useful for incorporating
biomolecules. Our aim is not to make a better model for
proteins but rather a model for proteins that we can use within
a larger material framework. This is needed because, at the so-
called nano-bio interface, we see interactions between
engineered nanoparticles (including metals and other non-
biological components), lipids (of varying complexity),
proteins, and other large biomolecules.13−16 These complex

mixtures become sufficiently large that they are often out of
reach for all-atom models.14−16 A challenge to the
implementation of a coarse-grained model at the DPD scale(s)
in describing the interaction of a nanoparticle with a bilayer in
the presence of a membrane binding protein,17,18 for example,
is that we do not have a clear path for including proteins using
a representation comparable in accuracy to the MARTINI
representation. This is the challenge that we address through
the scheme presented here. Moreover, we illustrate the scheme
by coarse-graining several proteins at the DPD level through a
construction based on an underlying MARTINI representa-
tion.3

Coarse-graining in DPD projects atoms and molecules into
soft particles that interact through quadratic potentials at
short-range and not at all after a specified cutoff distance.11,19

There are at least three DPD protein models now available in
the literature20−22 making such an identification in ways
relevant to this work: they will be referred to as the Pivkin,20

Neimark,21 and Gao22 models throughout. Among these three
models, the Neimark model does not have a complete
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representation for all naturally occurring amino acids in
proteins. The Pivkin model uses a severe approximation in
which the pressure is assumed to be linear in the number
density [refer to Figure 3]. While this works reasonably well
for DPD liquids at very small number densities, it turns out not
to be generally appropriate because many cases of interest are
outside the circle of convergence of the underlying linear
approximation. Instead, we can include a quadratic equation to
fully characterize the inverse compressibility of DPD water
particles while suffering only a modest computational cost in
its implementation.
The present scheme is inspired by the Gao model22�which

was developed to describe lipids�for the DPD parametriza-
tion of MARTINI particles.22 As in the Gao construction, we
first employ the coarse-graining approach suggested by
Groot23 to construct an initial working DPD model. To
overcome the absence of charges in their model, we then
introduce a Slater Coulomb potential.24 We also introduce
variations in the size of the particles in the revised DPD
potential (commensurate with such variations in the higher
fidelity MARTINI model).
In developing the model, we also need to account for the

coarse-graining of the water solvent. As per the usual DPD
construction,23 we have coarse-grained water into beads (or
particles)�referred to as W4 throughout�corresponding to 4
water molecules at a length scale that is consistent with the
coarse-graining of the protein. In so doing, we also found that
further coarse-graining of the water solvent into ever larger
particles can lead to modest errors while reducing the cost of
the simulations. The limit of such an inconsistent coarse-
graining would be to introduce a uniform or implicit solvent
which is not an uncommon practice.22 Coarse-graining 20
water molecules into a W20 particle, for example, allows for
some heterogeneity in the solvent that would not be available
from the implicit solvent. Herein, we also demonstrate the use
of the W20 water solvent, not as a better water model (which it
is not) but rather as a tool for solvating the target system which
is immersed within it. It is accessible within the proposed
scheme because the construction of the coarse-grained (CG)
particles from one model to another also allows the connection
of subsets of CG particles to be coarse-grained at a different
scale.
The present scheme provides a direct construction of the

DPD model based on arbitrary forms of the underlying
potential. Notably, it is not limited to the Lennard-Jones forms
of the potentials available in MARTINI. One part of the
challenge in building a DPD model is the need for obtaining
the complete interaction matrix. Flory−Huggins theory
addresses this challenge well through a mean-field description
of polymer solvation. We find that a corresponding approach
can be used to formally convert any finer-grained coarse-
grained model to a coarser-grained coarse-grained model, as
represented in eq 17. We tested our DPD parametrization
scheme for several small peptides and proteins building on the
underlying MARTINI force field. The results on several
benchmarking observables�viz., figures of merit related to the
protein structure�suggest that the DPD models constructed
in this way have a comparable accuracy to that resulting from
MARTINI. We further tested the efficacy of this scheme to
generate a DPD model for solvated proteins in a water
solvent�e.g., W20 water particles�that is coarse-grained on a
larger scale. The structure of the proteins in this W20 solvent
differs from that in W4 solvent, but the differences are not

significant for features larger than the length scale of the
coarse-graining of W20.

2. METHODS
In the following section, we illustrate the process of
constructing a coarse-grained model and specifically the
DPD model as the chosen paradigm. This DPD model is
designed to be equivalent to another coarse-grained model,
namely, MARTINI, up to the extent of information loss in the
second round of coarse-graining. It is notable that the
parameters in the DPD model depend on the MARTINI
parameters, and the accuracy of the former is subject to that of
the latter model.
In addition, we report the further coarse-graining from 4 to

20 waters in the CG particles, aiming to reduce the
computational costs associated with the solvent when solvent
effects are indirect relative to the structure and motion of the
solutes. A justification of the accuracy of this model is provided
in the following section where DPD models are benchmarked
against the all-atom and MARTINI models for several peptides
and proteins.
2.1. Introduction to DPD Forces. DPD relies on the

coarse-grained force field suggested by Groot and Warren.11 It
is widely used in the simulation of fluids.25 The forces between
DPD particles are short-ranged and linearly repulsive. The
DPD interaction is soft, allowing particles to have partial
overlap within their effective radii. The net forces include
Langevin terms, accounting for the apparent fluctuations
resulting from the fine-grained variables that are omitted. That
is, for each particle, the force is a sum

= + +f F F F( )i
j i

ij ij ij
C D R
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where

=w r r R( ) 1 /ij ij c (5)

is the weighting function. Rc in the weighting function
represents the cutoff distance. It is useful to define different
Rc to accommodate differences in the sizes of the particles
represented in the model.
The dissipation and random forces are correlated through

the fluctuation−dissipation theorem (σ2 = 2γkBT). Con-
sequently, the only parameters needed to specify the force
field are the repulsion parameter aij and the friction γ in units
consistent with the rescaling. Notably, this dissipation
parameter in the DPD force field is not the total dissipation
γt that the system experiences. Instead, assuming linear
response, it represents the contribution from the coarse-
graining of the fine-grained variables, and it adds to the friction
γ0 from the solvent. The total effective friction γt is thus the
sum, γ0 + γ, as shown in ref 26, for the case of two additive
random forces acting on a particle through a Langevin
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equation. For example, we will see in Figure 4(a) that, while
the plot exhibiting the ratio of terms in the fluctuation
dissipation relation is linear in γ, it has a non-zero intercept due
to γ0.
2.2. Coarse-Graining All-Atom Models to DPD

Particles. The particle mapping of DPD proteins imple-
mented here is based on the previous work of Gao and co-
workers.22 They represent particles similarly to the coarse-
grained particles in the MARTINI force field, except for
additional contractions of different sets of particles represented
by a corresponding common representative particle.
In both force fields, particles are categorized according to 5

main types: water (W), polar (P), non-polar (N), a-polar (C),
and charged (Q). The degree of coarse-graining of water into a
DPD particle is denoted throughout as WN particles where N
denotes the number of water molecules in the effective DPD
particle. The polar type is divided into 5 subtypes with
different polarities: P1 with weakest polarity and P5 with
highest polarity. It should be noted that a water particle is the
same as a P4 particle. Type N and Q can have various
hydrogen bonding designations, including donor (d), acceptor
(a), both (da), and none (0). There are thus 8 possible
combinations: Q0, Qd, Qa, Qda, N0, Nd, Na, and Nda. The mass
of each of these DPD particle types is 1.0 in reduced units. A
mesh of a coarse-grained MARTINI Cytochrome-C (CytC)
equipotential is overlaid on the fine-grained all-atom structure
in Figure 1.

The MARTINI 2.2 force field has two types of particle sizes:
large particles that are the size of 4 water molecules (Nm = 4)
and small particles on aromatic rings that are the size of
approximately 3 water molecules (Nm = 3), which are the
particles denoted with a starting letter “S” in the MARTINI
force field. Though Gao’s work neglected the size difference
between the particles, our simulations show that the stability of
the DPD protein structure is improved by restoring this hybrid
particle size in the DPD protein model. As a result, in the
following sections, the regular sized Nm = 4 particles with mass
1.0 are labeled as L particles and the smaller Nm = 3 particles
with mass 0.625 are labeled as S particles. The latter mass is
not 0.75, as one might expect from the ratio 3:4 of particle

sizes S:L, because the S coarse-grained particles modeled here
represent fine-grained particles on aromatic rings that have
smaller densities. We still use a mass of 0.75 in the process of
calculating parameters for S particles because these particles
represent water during the parameter calibration process. The
detailed calibration of the underlying parameters is discussed
in Section 2.3 and Section 2.5.
In addition to the L and S particles, there are also charged Q

and C1/C2 particles in MARTINI which are characterized by
“IX” interactions. The latter are characterized by σ = 0.62 nm
in the Lennard-Jones potential, while L and S particles have σ
= 0.47 nm and σ = 0.43 nm, respectively. This is a correction in
distance, instead of size, as the ϵ is unchanged in the L particle
and IX interactions. The IX interaction allows for the insertion
of a particle between the interacting particles as is seen in the
fined-grained models.
Such insertions are possible for particles experiencing

Lennard-Jones interactions within the MARTINI force field
because all the forces between three particles are mildly
attractive or repulsive. Unfortunately, they are rarely
accommodated in DPD force field models because the force
between any two particles is typically a large repulsion.
Likewise, in the present work, we ignore the IX interaction in
the DPD model by treating all IX interactions as those from
regular L particles.
The MARTINI force-field representation is converted to

DPD through a mapping from most of the all-atom protein
structure to a coarse-grained structure performed by the
MARTINI-maker module in CHARMM-GUI.27 The excep-
tion is the heme in CytC which is not available from
CHARMM-GUI but can be built by hand following a scheme
analogous to that employed in CHARMM-GUI. The
interactions between particles are characterized by two types
of pair interactions: the Slater Coulomb potential between
charged particles and the DPD potential between all particles.
These potentials are implemented within the hybrid/overlay
package in Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) and retained in input files.
Though only two particle sizes are included in the

MARTINI model, larger particles can also be introduced in
the converted DPD model to support larger-scale heteroge-
neous simulations. The possibility of such a multiscale DPD
model by further coarse-graining water from W4 particles into
W20 particles is reported in Section 3.3.
2.3. DPD Unit Length. In the present model, the majority

of the particles represent a volume of 4 water molecules (Nm =
4). The mass of each such DPD water particle is set to 1, and
all other masses are ratioed to this effective mass�that is, 72
g/mol for four water molecules or 1.20 × 10−23 g per particle.
The DPD unit length is determined by matching the volume of
the water molecules and the volume of a DPD particle. We can
estimate the volume of a water molecule as 29.9 Å3 because the
molar density of water at SATP is 18.0151 cc/mol. Initially, we
take the number density of the DPD liquid as ρ = 3 in keeping
with the earlier work of Groot.11,23 As each unit DPD cube
thereby contains 3 DPD water particles this amounts to setting
the effective DPD length scale as11

* = × × = × × =R N 30 Å 3 4 30 Å 7.11 Åc m
3 33 3

(6)

Recall that the diameter of water is around 2.75 Å. Thus, 7.11
Å is a length equal to that spanned by 2.59 water molecules in

Figure 1. The structure of CytC (in yellow) is the same in both the
coarse-grained MARTINI and DPD models and shown here relative
to its cartoon representation (in green).
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line. Consequently, this corresponds to about 3 DPD L
particles. The natural unit length, Rc*, is distinguished from the
DPD cutoff parameter Rc because the latter is in reduced units;
i.e., distances are converted to DPD units by dividing them by
Rc*. For a DPD model with a single particle size, the cutoff
parameter Rc can be set to 1 for all particles, while for the
multiscale DPD model with different particle sizes, we can
represent particles with different sizes by setting a different
cutoff parameter for each particle, all ratioed to a common Rc*.
In this work, we choose the coarse-grained water particle with
Nm = 4 as the reference DPD particle with a cutoff distance Rc
= 1.
In what follows, we take a default non-water DPD particle to

be of the same size at the water DPD particle and call them L
particles. Smaller S particles correspond to Nm = 3, and their
cutoff parameter Rc decreases to 0.909. Instead of matching
different particle sizes by their compressibility, Kacar et al.28

suggested that the pressure across a multiscale model would be
a more appropriate choice for matching. That is, particles with
different sizes should exhibit the same pressures rather than the
same compressibilities. Indeed, we found that this choice leads
to better agreement with the continuum behavior in the limit
of coexistence of particles with large size differences.
Meanwhile, the cross-term interactions between L and S
DPD particles are treated in the same way as the interactions
between two L DPD particles. This follows the approach used
in the MARTINI force field in treating the cross term
interactions.3 Our attempts to treat the L−S cross-term
interactions by representing them as originating from two
middle-sized particles led to an unacceptably large radius of
gyration and a Root Mean Square Deviation (RMSD) that was
too broad.
The effective equations of motion are those shown above in

eq 1. The effective length scale leads to a way of mapping the
coordinates of atoms in an all-atom model to the DPD model
as described in Section 2.2. It is also used in converting the
bonded interaction parameters in Section 2.8. The integration
of this model leads to a scaling of time, though the resulting
trajectories sample the space correctly.
2.4. Electrostatic Interactions. In modeling the inter-

actions between lipids, Gao and co-workers accounted for the
simulated electrostatic interactions by assigning larger
repulsion parameters to the DPD particles containing repulsive
charges.22 Here, we avoid making this reassignment of the
DPD parameters by adding instead Slater−Coulomb potentials
to the bare DPD potential between all charged beads.
As the DPD potential allows particles to overlap with each

other, the electrostatic interactions between charged particles
should also be modified to allow overlap. Groot29 suggested a
linearly smeared charge to allow overlap, while Gonzaĺez-
Melchor et al.24 simplified the expression by changing it to
Slater potentials�viz., exponential smeared charges

=r
q

r
r( ) exp( 2 )

2

(7)

where the potential and force acting on the particles are (see
also Figure 2)24

= [ + ]
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The parameter β is an auxiliary number chosen such that the
smeared potential generates neither ion pairing nor dissociated
electrolytes.29 For the case of a model with Nm = 3 and Rc =
6.46 Å, Gonzaĺez-Melchor et al.24 set βN dm

= β3 = 0.929 in units
of inverse DPD lengths. Assuming linearity in the coarse-
grained scales, the auxiliary parameter for the present model is

=
×

= × ==

=

R

R
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c, 4
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The unit of charge is also converted to DPD units through the
relation30

=
*

=q
q

R k T4
8.86DPD

0 c B (10)

for each unit of electric charge. The dielectric constant of the
Slater potential is set to ϵr = 78.3, which is consistent with
typical continuum water models and was also employed in
DPD by Gonzaĺez-Melchor et al.24 and Groot.29 The potential
is available using the “coul/slater/long” pair style command in
versions of LAMMPS which include bug fixes as of July 2022.
2.5. Determination of the DPD Water Repulsion

Parameter. The repulsion parameter aww between two DPD
water particles is determined by matching the inverse
compressibility of the DPD water with real water. The inverse
compressibility of DPD water is measured by the slope of
pressure vs number density ρ at a given ρ, from the equation
suggested by Groot23

= = ×
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jjjj

y
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zzzzk T

P N
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N

1

B simulation

m

B experiment
m

1

(11)

where κ−1 = 15.9835 is the experimental value of the
dimensionless inverse compressibility of water. The resulting
inverse compressibilities and parameters are shown in Figure 3.
2.6. Determination of the Dissipative Parameter γ.

The dissipative parameter of an L particle is γ = 4.5, as

Figure 2. Slater potential (black) of eq 8 and the Coulomb potential
(blue) 1/r using the parameters implemented in this work shown as
solid curves corresponding to the left axis labels. The underlying
Slater potential is shown as a dashed curve corresponding to the right
axis labels. All three are in agreement with the corresponding curves in
Figure 1 of ref 24.
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suggested by Groot.29 Meanwhile, the parameter γ for S
particles needs to be determined. We assume the diffusion
coefficient as a function of γ obeys a Stokes−Einstein relation

= =
+

D
k T k T

( )
B B

0 (12)

where γ′ [≡ α(γ + γ0) = 6πRμv] is the effective dissipation
constant. This dissipation includes a sum of the naive (or
internal) dissipation�viz., γ0�arising from the coarse-
graining of the degrees of freedom within the dissipative
particle, and the dissipation�viz., γ�arising from the solvent
and the other dissipative particles. The sum is rescaled by α to
account for the corresponding renormalization of time due to
coarse-graining. The observed dynamics in the simulations
follows the Stokes−Einstein relation of eq 12, as shown in
Figure 4(b). See also the discussion in Figure 4(a) regarding
the role of γ′ in Stokes law.
It is notable that MARTINI water has been seen to exhibit

an erroneous freezing point and gives rise to incorrect
diffusion.31 On the contrary, by inducing a dissipative term,
the DPD potential prevents freezing during the simulation.
The time scale is also carefully calibrated in DPD by
benchmarking the diffusion rate to the appropriate limits, as
shown in Figure 4(a). This is a possible advantage for the use
of DPD over MARTINI.
2.7. Interaction Parameters for Non-Water Particles.

The parameter matrix aAB represents the repulsion between
arbitrary types of beads, A and B, and extends the character
beyond the interaction between water beads, aww. It can be
written relative to the water−water interaction as11

+a a aAB ABww (13)

The relative interaction ΔaAB can be obtained from the Flory−
Huggins parameter using the following linear relation11

= aAB AB (14)

where χAB is the Flory−Huggins parameter between beads A
and B and λ is a fitting parameter independent of the nature of
the interacting beads. In the present case, we further constrain
the self-interactions of the coarse-grained beads A such that
aAA = aww�viz., ΔaAA = 0�in correspondence with the
analogous choice in the MARTINI model in which the
effective Lennard-Jones radius σAA is set to σww for all such A.
According to Groot and Rabone, χ is linearly dependent on

particle size.23 This suggests that for different coarse-grained
sizes�viz., volumes which are linear in the number of
particles�the values in χ are in correspondence according to

= NAB AB m (15)

where χ̅ is independent of particle size.
The parameter λ in eq 14 is determined by simulating the

volume fraction of two types of DPD particles in a box, as
reported in Figure 5(a). That is, we determine the values of χ
given an initial Δa and then infer λ from the linear fit of eq 14
between them. We need only consider the special case in
which there are only two types particles, say A1 and A2, that
initially occupy the upper and lower halves of the simulation
box, respectively, because that is enough to fix λ. The self-
interacting parameters are the same within particle A1 and
particle A2�that is, a11 = a22�yet the interacting parameter
between them differs by Δa which we sample to obtain a series
of resulting data pairs with χ. After several thousand time steps

Figure 3. (a) The density-dependent pressure at different ρ and aww, at fixed Rc = 1, exhibits second order behavior for several values of the
repulsion parameter aww. (b) The inverse compressibility κ−1 as a function of the repulsion parameter aww for large (L) particles. The inverse
compressibility of water at room temperature is highlighted as a dashed red horizontal line. (c) The normalized pressure as a function of aww for
small (S) and large (L) particles.
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in the simulation for each Δa, both particle type A1 and
particle type A2 diffuse and occupy a portion of the other side
of the box, as shown in Figure 5(a). The majority volume
fractions ϕ in each of the two phases can then be measured.
The Flory−Huggins χ parameter is related to the degree of
mixing through the expression

= [ ]ln (1 )/
1 2 (16)

where ϕ is the maximum volume fraction of either particle A1
or A2. This numerical experiment is repeated several times with
different Δa; then λ is inferred from the linear fit calculated χ
results across different Δa, as reported in Figure 5(b).
When obtaining the matrix of χAB between beads, Groot and

Rabone23 summarized several experimental χ that can be used
to calculate aij from previous experimental reports.32−39 Gao et
al.22 used this consensus set of parameters with small
adjustments. In this work, we have found that, given the
interaction matrix of another coarse-grained model (e.g.,
MARTINI), the χAB matrix can be calculated using the mean
field equation

= = +
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑN

z
k T

1
2

( )AB AB AB AA BBm
B (17)

where z is the effective number of nearest neighbors in the
liquid. It is assigned to 8.85, such that χ̅ = 2.0 for water and C1,
which is consistent with Groot and Gao et al.22,23 The values of

ε are taken from the MARTINI model (Table 1 of Marrink et
al.2).
After λ and the matrix of χ̅AB are calculated, the finalized

parameter matrix aAB can be calculated by a modified eq 13:

= +a a N /ij ijww m m (18)

2.8. Determination of DPD Bonded Parameters. There
are four types of bonded interactions in this model: bond,
angle, dihedral, and improper. The bonded parameters in
Gao’s paper are simplified MARTINI bonded interactions,
where the equilibrium distances/angles are preserved but
different force constants are simplified into one single force
constant. In this work, the force constants are directly
converted from MARTINI for better accuracies. The
constraint interactions in MARTINI are converted to bond
interactions with a large force constant of 30,000 kJ/(nm2·
mol). All force constants are converted into DPD units.
The bond, angle, dihedral, and improper interactions are

simulated with bond style set to “harmonic”, angle style set to
“cosine/squared”, dihedral style set to “charmm”, and
improper style set to “harmonic” in LAMMPS, respectively.
2.9. HEME in CytC. Heme is a component of the CytC

protein, but its interaction potential is not readily available in
all coarse-graining representations. In particular, the original
MARTINI force field does not contain heme, so the coarse-
graining scheme and bonded interactions need to be defined
somehow. One possibility lies in borrowing the structure for
heme from the MARTINI model built by de Jong et al.40 As

Figure 4. (a) Diffusion coefficient of coarse-grained water particles with varying size�small (S) and large (L) as defined in the text�when
modeled within DPD for varying values of γ. (b) Diffusion coefficient as a function of viscosity�which depends on γ�for L particles, S particles,
and Nm = 1 particles. (c) Corrected γ for various Rc. (d) Diffusion coefficient vs γ parameter, simulated with different time steps as labeled in the
legend. The slopes are 0.0302 for DPD step 0.003, 0.0244 for DPD step 0.02, 0.0202 for DPD step 0.04, and 0.00746 for DPD step 0.05.
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the latter excludes particle−particle interactions within a heme,
the resulting DPD potential will likewise exclude them.
The parameters of a covalent bond between heme c and

MET80 of CytC, as well as angles that contain this bond, are
not provided by the current CHARMM36m force field. For
the all-atom simulations in this paper, these bonds and angles
are consequently ignored. In the MARTINI model, the
inclusion of the two bonds between the heme and MET80
leads to a merging of the heme and backbone into a single
coarse-grained molecule. Such a merge is required by Gromacs,
for example, if the bonded interaction is to be accounted for,
but would result in a force field that could not distinguish these
important components. Fortunately, in LAMMPS, we can
stipulate an effective interaction�viz., bond�between DPD
beads of different molecules. These bonds are modeled with
the same force parameter used for the bonds in the protein
backbone. The angle parameters resulting from the bonds are
modeled as 500 kJ/mol and perpendicular to the heme plane
in the DPD model.
2.10. Coarser-Grained Water Models. In order to access

even larger systems (and longer time scales) using coarse-
grained representations, the scaling factor denoting the ratio of
fine-grained to coarse-grained particles must necessarily be
larger than that in existing DPD models. Here, we introduce a
scheme for generating multiscale coarse-grained models at
higher scaling factors. We illustrate the scheme by increasing
the number density to ρ = 20, and thereby accommodate larger

coarse-grained water particles. We keep the baseline cut off
parameter at 1 for Nm = 4 particles for simplicity.
We denote coarse-grained water particles with Nm = n water

molecules as Wn; e.g., W20 and W4 correspond to water
particles with 20 and 4 water molecules, respectively. This
notation should not be confused with L particles and S
particles which refer to different coarse-grained groupings of
atoms within a protein. In introducing coarse-grained water
particles with larger Nm, we must necessarily rescale its
associated unit length Rc* to retain the correct number density.
According to eq 6, the resulting unit length is

* = × × =R 20 4 30 Å 13.4 Åc
33 (19)

The unit charge qDPD (= 6.46) can be calculated from eq 10.
Consequently, the parameter β of the Slater potential
determined earlier in eq 9 now takes on the value

=
×

= × ==

=

R

R
0.929 6.46

13.4
0.448

N

N
20

3 c, 3

c, 20

m

m (20)

The determination of the repulsion parameters aij and
dissipation parameter γ is discussed in Section 3.2.
Modeling the interactions between particles with different

volumes�that is, different scaling factors�requires specifica-
tion through some kind of mixing rule. In both W4 and W20
systems, all S particles with Nm = 3 are treated as L particles
(Nm = 4) when they are not interacting with another S particle.
This is the simplest choice as it entails no additional

Figure 5. (a) The observed volume fraction ϕ vs z coordinate in the initial and equilibrium ensembles. (b) χ vs Δaij for L particles. The fits
correspond to eq 14, resulting in the observed values of λ which are the slopes of the fitted lines. (c) Nm/λ plotted vs Rc

2. The slope of the fitted line
is 0.204, and the intercept is 0.
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parameters, and it is consistent with the treatment of the
MARTINI2.2 force field. For the interaction between water
particles (Nm = 20) and other protein particles (Nm = 4) in the
system, we use the customary Lorentz−Berthelot rules. That is,
we use the same LJ-form of the potential and set the effective
interaction radius Rc for the mixed interaction as the geometric
mean of the radii in the pure interactions. The repulsion
parameter can be calculated using eq 25. The dissipation
parameter γ between particles with different Nm is determined
by the assumption that the densities are preserved through the
equation

=N
R

R
Nm,int

c,int
3

c,4
3 m,4

(21)

For interactions between W4 and W20, the resulting effective
number water molecules in the coarse-grained particle
interaction is Nm = 9.95.
The W20 model is effectively fit to the pressure of the

particles and the diffusion coefficient, as shown in Section 3.2.
Like most coarse-grained water models, its accuracy is limited
by the loss of information from the loss of the fine-grained
degrees of freedom. This limitation is exacerbated in molecular
models as the broader scale of the coarse-grained water model
necessarily also obscures quantum effects. That is, in capturing
the intricate behavior of fine-grained water, which encompasses
quantum effects and more, with a coarse-grained classical
framework like the MARTINI model, these effects are
approximated at best up to a mean-field level. In the present
work, we confirmed the use of W20 by comparing the structure
of solvated proteins resulting from simulations using it and W4.
2.11. Software Tools. The all-atom protein models and

MARTINI protein models are built using Charmm-
GUI.27,41−43 All-atom simulations are performed under the
CHARMM36m force field44 using the NAMD 2.1345

molecular dynamics engine. MARTINI simulations are
performed under the MARTINI2.2 force field3 using the
Gromacs 546 particle dynamics engine. DPD particle mapping
is the same as for the MARTINI mapping. The DPD
simulations are integrated using LAMMPS.47

3. RESULTS AND DISCUSSION
3.1. Determined Parameters. The pressure versus

different ρ is assumed to be a second order curve by
Groot.11 The fitted second order curves are shown in Figure
3(a), which are P/kBT = 2.70ρ2 − 0.25ρ + 0.09 at aww = 25, P/
kBT = 5.27ρ2 − 0.27ρ − 1.83 at aww = 50, P/kBT = 7.73ρ2 +
0.55ρ − 4.79 at aww = 75, and P/kBT = 10.25ρ2 + 1.27ρ − 7.88
at aww = 100. The curves become steeper as aww increases
because larger repulsion generates larger pressure in the
simulation box. The fact that the curves do not intersect at the
origin suggests that this approximation works for a limited
range of ρ in agreement with earlier reports by Groot on the
efficacy of the approach in the regime when ρ > 2.11,48

The simulated inverse compressibility

=
i
k
jjjj

y
{
zzzzN k T

P11

m B simulation (22)

is the slope of the pressure in ρ shown in Figure 3. The fitted
linear equation for L particles at ρ = 3 and various aww is κ−1 =
0.156aww + 0.0769.

From experiment, the dimensionless inverse compressibility
of water is κ−1 = 15.9835.11 The resulting values in the
corresponding parameters for DPD water are aww = 102 for L
particles. This result is close to Gao et al.22 who set the
parameter at aww = 100.
As noted above, the unit length of the L particles is taken to

be the reference length in DPD units, and hence Rc = 1 and
aww = 100 for them. To determine the parameter aww for other
sized particles, we accounted for pressure as being proportional
to the cross section of the coarse-grained particles. As shown in
Figure 3(c), the pressures of the L particles and the S particles
are identical after this correction. This leads to a corresponding
rescaling of the water−water repulsion parameter for the
particles with Rc ≠ 1 that goes as

=a a Rww ww c
2

(23)

The diffusion coefficient D and the viscosity μ are measured
under different γ as reported in Figure 4. The behavior in the
diffusion coefficient versus γ appears to violate the Stokes−
Einstein relation, as the fitted line does not start from the
origin in Figure 4(a). This limiting behavior arises because the
DPD particles are intrinsically dissipated particles, and the
non-zero intercept reflects the dissipation they experience
when the mean-field solvent�represented by γ�disappears.
Nevertheless, the viscosities of the DPD particles, shown in
Figure 4(b), do follow the linearity of the Stokes−Einstein
relation. In addition to L particles and S particles, we also
measured the viscosity and diffusion rate for Nm = 1 particles
to represent particles with the volume identical to water
molecules. We find from Figure 4(b) that kBT/(NmDsimRc

2) =
1.09μRc/M for L particles, kBT/(NmDsimRc

2) = 1.15μRc/M for
S particles, and kBT/(NmDsimRc

2) = 1.05μRc/M for Nm = 1
particles. These slopes are nearly identical and imply that
probes diffusing in different-sized coarse-grained solvent
particles have the same diffusion rate at a given viscosity.
This confirms that such solvents are representing the same
liquid at least with respect to this observable.
One should not be tempted to impose the same γ for

different-sized particles because of the apparent similarity in
the diffusion constants D for a given γ. As shown in Figure
4(a), the regression lines for L particles and S particles are
indistinguishable, but the regression lines for Nm = 1 particles
are different from the other two. Specifically, the dependence
of the diffusion coefficient on the parameter γ seen in Figure
4 ( a ) i s = +0.0280 2.15k T

N DR
B

m c
2 f o r L p a r t i c l e s ,

= +0.0350 2.09k T
N DR

B

m c
2 f o r S p a r t i c l e s , a n d

= +0.0959 2.37k T
N DR

B

m c
2 for Nm = 1 particles. One can select

different γ on different lines to keep the diffusion rate D
constant across different particle sizes. Such corrected γ
parameters are shown in Figure 4(c). This correction also
defines the upper (viz., ca. 1.1) and lower limit (viz., ca. 0.4) of
particle sizes accessible to the model as γ cannot be less than
zero. Particles with Rc greater than 1.2 can still be included by
varying ρ accordingly.
The time scale of the simulation is determined by matching

the diffusion constant of DPD water particles and the
experimental water diffusion constant. The resulting effective
time for a DPD step is23
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=
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(7.11 10 cm)

2.43 10 cm /s
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m sim c
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8 2
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(24)

While the size of the integration step is formally arbitrary, in
practice it must be set according to the accuracy of the
integrator. As shown in Figure 4(d), integration of the DPD
system with a DPD step of 0.06�as used by Groot in his
simulations11�led the parameter γ to lose linearity. This
indicates that the internal dissipation of the system would also
become non-linear with γ for even larger integration DPD
steps. In addition, we observed that, as the DPD integration
step goes above 0.02, the regression lines of the diffusion
coefficient versus γ begin to differ substantially. The time step
is also limited by the stiffness of the spring constants for the
bonds. In converging the integrator, we therefore found a need
to use reduced time steps below even those earlier
implemented by Groot.11 Specifically, the Verlet integrator
was implemented with a DPD step of 0.003 in the present
simulations that is 20 times smaller. According to eq 24, each
such step of the DPD simulation represents a time step of
0.003 × 91.4 ps = 0.274 ps. Although this value is relatively
small, it still represents a speed up of more than a factor of 100
over typical implementations of all-atom simulations which use
2 fs time steps at best.49

The need for the smaller DPD step reported here does not
imply that the results reported by Groot using a larger step are
incorrect. In fact, the reason that Groot was able to use a much
larger DPD step is due to the modified Verlet integrator he

employed.11 Unfortunately, this integrator cannot be incorpo-
rated into our model easily because the current implementa-
tion in LAMMPS is not compatible with charged particles. As
an updated integrator allowing for charges could significantly
improve the performance, there is promise for the use of larger
DPD steps in the future within an updated LAMMPS package.
The distributions of volume fractions ϕ observed for the

initial and equilibrated distributions are shown in Figure 5(a).
The fitting parameters λ for the slopes of the lines, χ = λΔa, in
Figure 5(b) were found to be λ = 0.280 for L particles. This
process for determining the fitting parameter λ was justified in
Section 2.7. In turn, λ is used to calculate the non-self-
interacting DPD parameters aij, as shown in eq 14. The
experimental Flory−Huggins parameters χ are calculated using
the mean field eq 17, based on the parameters in Table 1 of
Marrink et al.2 The parameter aww is determined using the
method of Section 2.5. These parameters can then be used to
complete pair-interaction parameter tables such as the ones
reported in Table S1 of the Supporting Information.
We repeated the numerical experiment on different particle

sizes, and the result is shown in Figure 5(c). Therein, Nm/λ
changes linearly with Rc

2, and the intercept is zero. This leads
to Δaij′ = ΔaijRc

2, which, combined with aww′ = awwRc
2, gives

=a a Rij ij c
2

(25)

This simple and elegant relationship implies that one only
needs to use Rc

2 to correct for the repulsion parameter aij for
different particle sizes. The process of obtaining repulsion
parameters is consequently simplified to only the determi-

Figure 6. (a) The inverse compressibility of W4 and W20. (b) The calculated χ for Nm = 4 particles in W20 systems. (c) The calculated γ parameters
for various sized particles in the ρ = 20 system.
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nation of aww and λ. Though the process of calculating
corrected aij is simple enough, the γ parameter still needs to be
corrected to account for the correct diffusion rate. This is
because plots of γ versus the reciprocal of diffusion rate
typically do not exhibit a zero intercept; thus a simple linear
correction does not arise. The process described above should
be repeated to calculate γ for each particle size in the
simulation. An example for generating a multiscale W20 model
of coarse-grained particles with Nm = 4 particles for protein
subunits and ρ = 20 representing coarse-grained 20 waters
molecules is shown in Section 3.2.
3.2. Building the ρ = 20 Model. The water−water

repulsion parameter of a W20 model is inferred from the
reverse compressibility curves shown in Figure 6(a). As a result
of the fit, the inverse compressibility is κ−1 = 1.01aww + 1.77 =
15.9835 using the water−water repulsion parameter of aww =
14.1. For W20, aww must be corrected using eq 25. Using the fit
for W20 in Figure 6(a), the resulting inverse compressibility is
κ−1 = 0.357awwRc

2 + 0.113 = 14.8, which is close to the
experimental value of 15.9835. The χ parameter is then
determined from the same numerical procedure as in Figure
5(a), and the slope of the regression line in Figure 6(b) is 3.75.
With both aww and χ in hand, we can then calculate the
repulsion parameter for all the non-water particles using the
same energy table. This also leads to the aij parameters for
arbitrarily sized particles, as noted in the previous section.
The γ parameter is calibrated to make the diffusion

coefficient consistent across different particle sizes. The
resulting regression lines shown in Figure 6(c) are 0.535γ +
0.366 = kBT/(NmDsimRc

2) for W4, 0.122γ + 0.385 = kBT/
(NmDsimRc

2) for W20, and 0.225γ + 0.390 = kBT/(NmDsimRc
2)

for W9.94.
The γ parameter is then calculated from the regression lines

with γ = 4.5 for W4, which leads to γ = 19.6 for W20 and γ =
10.6 for W9.94.

The time scale of the simulation can be determined using eq
24:23

=
× + × ×

×
=

4.5 0.366 (13.4 10 cm)

2.43 10 cm /s
264 ps

1
0.535

8 2

5 2

(26)

The time scale of the W20 model is about 3 times faster than
that for the ρ = 3 model. Combined with a reduced number of
particles by further coarse-grained water, the W20 model
consequently reduces the required simulation time signifi-
cantly.
3.3. Model Validation on Proteins and Peptides. We

validated the DPD protein model relative to the more fine-
grained MARTINI and DPD models across a representative set
of small peptides and proteins. The probability density
functions for Trpzip2 (1LE1) and CytC (1AKK) over the
domain of the radius of gyration (Rg), and the RMSD shown in
Figure 7 support the main findings. The remaining density
functions for Trpcage (1L2Y), Villin Headpiece (1VII), WW-
Dgmain (1E0L), peripheral-binding-subunit (2PDD), Domain
B Protein A (1BDC), GB1 (2J52), Trp Inhibitor (1H34), and
Ubiquitin (2LD9) are included as Figures S1−S10 in the
Supporting Information.
To compare across different models, we use metrics that

depend on variables accessible to all three, namely, the
MARTINI representation. Consequently, the structures in
each frame of the all-atom trajectories are coarse-grained to the
MARTINI model before calculating values. The MARTINI
structures are ipso facto in the MARTINI representation, and
the DPD particles are the same as the MARTINI
representation. The radius of gyration of the native structures,
obtained from the MARTINI projection of the PDB structure,
is indicated with a red dashed line. For all the probability
density functions reported in Figure 7, red represents a high
probability and blue represents a low probability. Values below

Figure 7. Probability density functions for Trpzip2 and CytC in the all-atom model, MARTINI model, and DPD model. The RMSD is on the x
axis, the radius of gyration is on the y axis, and the radius of gyration of the PDB structure is represented by the red dashed line. (a) Trpzip2 all-
atom model. (b) Trpzip2MARTINI model. (c) Trpzip2 DPD model with W4. (d) Trpzip2 DPD model with W20. (e) CytC all-atom model. (f)
CytC MARTINI model. (g) CytC DPD model with W4. (h) CytC DPD model with W20.
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that threshold are indicated in white. In this case, negligible
values (shown in white) are defined by the lack of any captured
frame in the simulated trajectories. These densities are not
normalized, as they represent an arbitrary number of steps in
the simulation. The all-atom simulation, MARTINI simulation,
and DPD simulation are all simulated for different lengths of
times as needed to reach equilibrium. The probability density
functions in each of the all-atom and coarse-grained
representations of two proteins are shown in Figure 7, and
the others are available in the Supporting Information. The
Root Mean Square Fluctuations (RMSFs) were also obtained
and are shown in Figure 9. The underlying structures for the
proteins whose RMSD and Rg match those of the
corresponding averages of these distributions also serve to
provide a comparison across the representations. Figure 8

displays the alignment of these structures for the four proteins
reported here�Trpcage, Trpzip2, CytC, and ubiquitin�with
the coarse-grained structure of the all-atom model. The small
peptides Trpcage and Trpzip2 show good agreement between
all models, while larger proteins CytC and ubiquitin show
more differences.
3.4. Accuracy of the DPD Protein Model. For all DPD

proteins, as shown in Figure 7 and Figures S1−S10, the near-
equilibrium dynamics of the ρ = 3 DPD protein model can be

seen to exhibit close agreement with the MARTINI results and
good agreement with the all-atom results. Specifically, the
shape and position of their probability density functions are
similar. Not surprisingly, the probability density functions of
DPD are closer to those of MARTINI than to those of the all-
atom model. The W20 DPD protein models are less accurate
than the W4 DPD protein models. Their RMSDs are larger,
and the radii of gyration are further away from the default
positions. This is the expected behavior as the W20 DPD model
has further coarse-grained the water solvent, so the result
should be less accurate.
Nevertheless, the differences resulting from the two DPD

models relative to the MARTINI model are smaller than the
lengths of the structural differences between the DPD models.
The length scale of the DPD models�that is, the diameter of
the CG water particle�can be calculated from the relation, 30
Å3Nm = 4πr3/3, where Nm is the number of water molecules
per water particle and r is the radius of the water particle. The
resulting diameters for the W4 and W20 are 0.612 and 1.05 nm,
respectively. The differences between the MARTINI and DPD
models as seen in Figures S1−S10 lie well within the error bars
of these length scales.
The RMSF results, as shown in Figure 9 and Figures S1−

S10, also show similar behavior across all three models, with
W4 DPD and MARTINI more similar to each other.
Surprisingly, the W20 DPD protein models in general have a
RMSF closer to the all-atom result than the MARTINI model
and the W4 DPD model. This is probably due to the fact that

Figure 8. Comparison of selected structures of the proteins obtained
from analysis at each of the scales of Figure 7, and all shown using a
consistent coarse-grained representation. Structures are selected as the
one whose RMSD and Rg matched the corresponding averages in the
distributions shown in Figure 7. The coarse-grained (MARTINI)
representations shown here illustrate the backbone for the selected
structures from the all-atom model (blue), the MARTINI model
(red), the W4 DPD model (gray), and the W20 DPD model (yellow).
The all-atom model is the reference for the alignment, and the
displayed orientation is selected to best illustrate the clamped or
helical structure of the protein. Projected 3D structures are zoomed
according to the factor listed in parentheses, but exact distances across
images are difficult to compare because aspect ratios also change the
effective distance of bonds as they move in and out of the plane.

Figure 9. RMSF for Trpzip2 in panel (a) and CytC in panel (b)
obtained from the all-atom (blue dashed), MARTINI (green dotted),
W4 DPD (black real), and W20 DPD (red dash-dot) models.
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the increased number density also increased the accuracy of
the protein model.
The all-atom model has lower RMSD and RMSF in

comparison to the coarse-grained models, especially on smaller
peptides. The larger deviations in the RMSFs seen for the
MARTINI and DPD models relative to the all-atom models
should not be a cause for alarm. The need for MARTINI to
better stabilize protein structure was observed earlier, and is
one of the issues that the program ElNeDyn was constructed
to correct.50 Nevertheless, addressing this discrepancy within
our DPD model is an aim for future work. We also observe that
the RMSF results for CytC are less consistent across all-atom,
MARTINI, and DPD. We expect that improved parameters for
the heme could increase the accuracy of all methods and
resolve the relatively larger shifting in the radius of gyration in
all-atom and W20 DPD in CytC.

4. CONCLUDING REMARKS
In this paper, we have consolidated an approach for building a
DPD protein model based on the scheme suggested by
Groot11 in combination with the MARTINI2 model. We
benchmarked the accuracy of this scheme on several small
peptides and larger proteins. We found that the resulting DPD
proteins solvated in a similarly coarse-grained DPD water
solvent have a comparable accuracy to the MARTINI protein
models.
When a DPD protein was dissolved in a solvent of coarser-

grained water�viz., a DPD model with particle radii increased
by a factor of 5�the resulting protein structure was similar
and tended to showed similar accuracy, thus providing
additional computational savings. However, this coarser-
grained solvent�referred to as the W20 model�in the text
did lead to some anomalies. For example, salts which are
known to be soluble were often seen to aggregate in the
solution during the simulations. A possible resolution could
involve the implementation of a polarizable water model51 and
a scheme to coarse-grain it within the framework of DPD.
Although DPD implementations are often empirical�that

is, the parameters are usually fitted to match simulations with
benchmarking data�we show here that DPD can also be built
bottom up from finer-grained or bottom-up models (such as
MARTINI). In so doing, we retain high accuracies and clear
physical meaning for the nature of the system at the coarser
DPD scale.
The scheme implemented here for building a DPD protein

model from the MARTINI force field can also be applied to
other reference coarse-grained potentials. That is, the mean
field equation (eq 17) does not limit the type of potentials
used as reference in obtaining the effective parameters at the
DPD scale.
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