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Pedobacter saltans Steyn et al. 1998 is one of currently 32 species in the genus Pedobacter 
within the family Sphingobacteriaceae. The species is of interest for its isolated location in the 
tree of life. Like other members of the genus P. saltans is heparinolytic. Cells of P. saltans 
show a peculiar gliding, dancing motility and can be distinguished from other Pedobacter 
strains by their ability to utilize glycerol and the inability to assimilate D-cellobiose. The ge-
nome presented here is only the second completed genome sequence of a type strain from a 
member of the family Sphingobacteriaceae to be published. The 4,635,236 bp long genome 
with its 3,854 protein-coding and 67 RNA genes consists of one chromosome, and is a part of 
the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain 113T (= DSM 12145 = LMG 10337 = NBRC 
100064) is the type strain of the species Pedobac-
ter saltans [1], one of currently 32 validly named 
species in the genus Pedobacter [2]. We prefer to 
use here the strain designation ‘113’ as originally 
published by Steyn et al. in 1992 [3] and as also 
shown in the LMG online catalogue [4] and in the 
StrainInfo database [5] over the designation ‘LMG 
10337T’ which was later used for the description 

of the species by the same authors [1]. The genus 
name is derived from the Latinized Greek word 
'pedon' meaning 'the ground, earth' and the Neo-
Latin word 'bacter' meaning 'rod', yielding 
'Pedobacter', the 'rod from soil' [1]. The species 
epithet is derived from the Latin word 'saltare' 
meaning 'to dance', yielding 'saltans', referring to 
the gliding motility of the strain' [1]. P. saltans 
strain 113T was isolated from soil in Iceland;  
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several more strains belonging to the species were 
isolated from soil in Iceland, Belgium (Brussels) 
and Germany (Rüdesheim) [1]. Members of the 
genus Pedobacter were isolated from various en-
vironments including different soils [1,6-10], wa-
ter [11-13], a nitrifying inoculum [14], glaciers 
[15,16], fish [1] and compost [17]. Here we 
present a summary classification and a set of fea-
tures for P. saltans strain 113T, together with the 
description of the complete genome sequence and 
the genome annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of 
strain 113T was compared using NCBI BLAST 
[18,19] under default settings (e.g., considering 
only the high-scoring segment pairs (HSPs) from 
the best 250 hits) with the most recent release of 
the Greengenes database [20] and the relative fre-
quencies of taxa and keywords (reduced to their 
stem [21]) were determined, weighted by BLAST 
scores. The most frequently occurring genera 
were Pedobacter (53.4%), Sphingobacterium 
(33.3%), Mucilaginibacter (5.0%), Flavobacterium 
(4.1%) and 'Sphingoterrabacterium' (2.1%) (95 
hits in total). Regarding the two hits to sequences 
from members of the species, the average identity 
within HSPs was 99.7%, whereas the average cov-
erage by HSPs was 97.6%. Regarding the 20 hits to 
sequences from other members of the genus, the 
average identity within HSPs was 92.8%, whereas 
the average coverage by HSPs was 84.1%. Among 
all other species, the one yielding the highest 
score was Pedobacter lentus (EF446146), which 
corresponded to an identity of 93.2% and an HSP 
coverage of 93.4%. (Note that the Greengenes da-
tabase uses the INSDC (= EMBL/NCBI/DDBJ) an-
notation, which is not an authoritative source for 
nomenclature or classification.) The highest-
scoring environmental sequence was HM008274 
('anodic biomass air-cathode single chamber mi-
crobial fuel cell clone 9week.anode.2'), which 
showed an identity of 94.6% and an HSP coverage 
of 83.8%. The most frequently occurring key-
words within the labels of environmental samples 
which yielded hits were 'skin' (8.6%), 'fossa' 
(4.2%), 'poplit' (2.2%), 'soil' (2.2%) and 'forearm, 
volar' (2.0%) (152 hits in total). Interestingly, sev-
eral of the most frequent keywords relate to a 
mammalian or clinical habitats, which may allude 
to some yet unknown ecological features of  

P. saltans, taking into account that all known iso-
lates are from soil in different countries [1]. How-
ever, environmental samples which yielded hits of 
a higher score than the highest scoring species 
were not found. 
Figure 1 shows the phylogenetic neighborhood of 
P. saltans in a 16S rRNA based tree. The sequences 
of the four 16S rRNA gene copies in the genome 
differ from each other by up to one nucleotide, 
and differ by up to three nucleotides from the pre-
viously published 16S rRNA sequence (AJ438173). 
The cells of P. saltans are short rods (0.5 × 0.7-1.0 
µm) with rounded or slightly tapering ends (Fig-
ure 2) [1]. Three of the four strains belonging to P. 
saltans were described as being motile via gliding 
[1]. P. saltans cells strain Gram-negative and are 
non-spore-forming (Table 1). Strain 113T is strict-
ly aerobic and chemoorganotrophic [1]. Colonies 
on modified TSA are smooth, light yellow to yel-
low, translucent, round, 2-5 mm in diameter, con-
vex to slightly umbonate with entire margins [1]. 
On nutrient agar colonies are smooth, yellow, 
round, 2-4 mm in diameter, convex with entire to 
scalloped margins [1]. The temperature range for 
growth is normally between 5°C and 30°C [1]. The 
biochemical features and antibiotic resistance of P. 
saltans has been described previously [1]. Strain 
113T produces acetoin from sodium pyruvate, de-
grades chondroitin sulfate and hydrolyzes aescu-
lin. It grows on heparin, which is degraded by in-
ducible enzymes. Good growth occurs on nutrient 
agar or on regular or modified TSA. P. saltans does 
not produce H2S from thiosulfate and does not 
grow on MacConkey agar [1]. P. saltans can be dif-
ferentiated phenotypically from other Pedobacter 
species by its inability to assimilate D-cellobiose 
and the ability to utilize glycerol. The organism 
does not reduce nitrate [1]. 

Chemotaxonomy 
The cell wall of the members of the genus Pedobac-
ter contain sphingolipids and menaquinone-7 as 
the predominant menaquinone system [11-13]. 
Strain 113T contains the following fatty acids: iso-
C15:0 (31.4%), C16:1ω7c (19.6%), iso-C17:0 3-OH (12.7%), 
iso-C15:0 2-OH (8.9%), iso-C17:1ω9c (6.6%), C16:0 (4.0%), 
anteiso-C15:0 (2.9%), iso-C15:0 3-OH (2.8%), C15:0 
(1.4%), C15:1ω6c (1.4%), and C16:1ω7c (19.6%) which 
are acids typical of the genus. It also contains traces 
of C14:0, C16:1ω5c,  and C16:0 3-OH [1]. 
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Figure 1. Phylogenetic tree highlighting the position of P. saltans relative to the other type strains within the genus Pe-
dobacter. The tree was inferred from 1,402 aligned characters [22,23] of the 16S rRNA gene sequence under the max-
imum-likelihood (ML) criterion [24] and rooted with the type strain of the type species of the family Sphingobacteria-
ceae [25]. The branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the 
branches are support values from 550 ML bootstrap replicates [26] (left) and from 1,000 maximum-parsimony bootstrap 
replicates [27] (right) if larger than 60%. Lineages with type strain genome sequencing projects registered in GOLD [28] 
as unpublished are marked with one asterisk, those listed as published with two asterisks [29]. Note that the taxon se-
lection used in this figure does not allow conclusions about the monophyly of the genus Pedobacter. In an expanded 
analysis also including the genera Mucilaginibacter and Nubsella (data not shown), neither the Kishino-Hasegawa test 
as implemented in PAUP* [27] in conjunction with the maximum-parsimony criterion nor the Shimodaira-Hasegawa 
test as implemented in RAxML [24] in conjunction with the ML criterion indicated a significant difference between the 
respective globally best tree and the best tree after constraining for the monophyly of all four genera. (See, e.g. chapter 
21 in [30] for an in-depth description of such paired-site tests.) 

 
Figure 2. Scanning electron micrograph of P. saltans strain 113T. 
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Table 1. Classification and general features of P. saltans strain 113T according to the MIGS recommendations 
[31] and the NamesforLife database [2] 

MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [32] 

Phylum “Bacteroidetes” TAS [33] 

Class “Sphingobacteria” TAS [34] 

Order “Sphingobacteriales” TAS [34] 

Family Sphingobacteriaceae TAS [1] 

Genus Pedobacter TAS [1,11,12,14] 

Species Pedobacter saltans TAS [1] 

Type strain 113 TAS [1,3] 

 Gram stain negative TAS [1] 

 Cell shape short rods with rounded, slightly tapering ends TAS [1] 

 Motility gliding TAS [1] 

 Sporulation none TAS [1] 

 Temperature range 5°C–30°C TAS [1] 

 Optimum temperature not reported  

 Salinity not reported  

MIGS-22 Oxygen requirement strictly aerobic TAS [1] 

 Carbon source carbohydrates, some alcohols and glycosides TAS [1] 

 Energy metabolism chemoorganotroph TAS [1] 

MIGS-6 Habitat soil TAS [1] 

MIGS-15 Biotic relationship free-living NAS 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 TAS [35] 

 Isolation soil TAS [3] 

MIGS-4 Geographic location Iceland TAS [1,3] 

MIGS-5 Sample collection time 1992 or before TAS [1,3] 

MIGS-4.1 Latitude not reported  

MIGS-4.2 Longitude not reported  

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude not reported  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-
traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally 
accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontol-
ogy project [36]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [37], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [38]. The genome project is depo-
sited in the Genome OnLine Database [28] and the 

complete genome sequence is deposited in Gen-
Bank. Sequencing, finishing and annotation were 
performed by the DOE Joint Genome Institute 
(JGI). A summary of the project information is 
shown in Table 2. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Tree genomic libraries: one 454 pyrosequence standard library, one 
454 PE library (7.7 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 
MIGS-31.2 Sequencing coverage 645.0 × Illumina; 19.5 × pyrosequence 
MIGS-30 Assemblers Newbler version 2.3, Velvet version 0.7.63, phrap version SPS - 4.24 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 INSDC ID CP002545 
 Genbank Date of Release March 2, 2011 
 GOLD ID Gc01673 
 NCBI project ID 49337 
 Database: IMG-GEBA 649633082 
MIGS-13 Source material identifier DSM 12145 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
P. saltans 113T (DSM 12145), was grown in DSMZ 
medium 605 (Nutrient agar (Oxoid CM3)) [39] at 
28°C. DNA was isolated from 0.5-1 g of cell paste 
using Jetflex Genomic DNA Purification Kit (GE-
NOMED 600100), modified by 1 hour incubation 
at 58°C with 20 µl proteinase for improved cell 
lysis. DNA is available through the DNA Bank 
Network [40]. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Illumina and 454 sequencing platforms. All 
general aspects of library construction and se-
quencing can be found at the JGI website [41]. Py-
rosequencing reads were assembled using the 
Newbler assembler (Roche). The initial Newbler 
assembly consisting of 44 contigs in two scaffolds 
was converted into a phrap [42] assembly by mak-
ing fake reads from the consensus, to collect the 
read pairs in the 454 paired end library. Illumina 
sequencing data (6,233.8 Mb) was assembled with 
Velvet [43] and the consensus sequences were 
shredded into 1.5 kb overlapped fake reads and 
assembled together with the 454 data. The 454 
draft assembly was based on 112.7 Mb 454 draft 
data and all of the 454 paired end data. Newbler 
parameters are -consed -a 50 -l 350 -g -m -ml 20. 
The Phred/Phrap/Consed software package [42] 
was used for sequence assembly and quality as-
sessment in the subsequent finishing process. Af-
ter the shotgun stage, reads were assembled with 
parallel phrap (High Performance Software, LLC). 

Possible mis-assemblies were corrected with  
gapResolution [41], Dupfinisher [44], or sequenc-
ing cloned bridging PCR fragments with subclon-
ing. Gaps between contigs were closed by editing 
in Consed, by PCR and by Bubble PCR primer 
walks (J.-F. Chang, unpublished). A total of 205 
additional reactions were necessary to close gaps 
and to raise the quality of the finished sequence. 
Illumina reads were also used to correct potential 
base errors and increase consensus quality using a 
software Polisher developed at JGI [45]. The error 
rate of the completed genome sequence is less 
than 1 in 100,000. Together, the combination of 
the Illumina and 454 sequencing platforms pro-
vided 664.5 × coverage of the genome. The final 
assembly contained 205,963 pyrosequence and 
82,382,711 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [46] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [47]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) non-redundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [48]. 
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Genome properties 
The genome consists of a 4,635,236 bp long chro-
mosome with a G + C content of 36.6% (Figure 3 
and Table 3). Of the 3,921 genes predicted, 3,854 
were protein-coding genes, and 67 RNAs; 62 
pseudogenes were also identified. The majority of 

the protein-coding genes (64.8%) were assigned a 
putative function while the remaining ones were 
annotated as hypothetical proteins. The distribu-
tion of genes into COGs functional categories is 
presented in Table 4. 

 

 
Figure 3. Graphical circular map of genome. From outside to the center: Genes on forward strand (color by 
COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, 
other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 4,635,236 100.00% 
DNA coding region (bp) 4,149,395 89.52% 
DNA G+C content (bp) 1,695,689 36.58% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,921 100.00% 
RNA genes 67 1.71% 
rRNA operons 4  
Protein-coding genes 3,854 98.29% 
Pseudo genes 62 1.58% 
Genes with function prediction 2,539 64.75% 
Genes in paralog clusters 87 2.22% 
Genes assigned to COGs 2,644 67.43% 
Genes assigned Pfam domains 2,757 70.31% 
Genes with signal peptides 1,646 41.98% 
Genes with transmembrane helices 898 22.90% 
CRISPR repeats 0  

Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 
J 158 5.5 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 175 6.1 Transcription 
L 142 5.0 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 26 0.9 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 55 1.9 Defense mechanisms 
T 146 5.1 Signal transduction mechanisms 
M 278 9.7 Cell wall/membrane/envelope biogenesis 
N 11 0.4 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 47 1.6 Intracellular trafficking, secretion, and vesicular transport 
O 106 3.7 Posttranslational modification, protein turnover, chaperones 
C 157 5.5 Energy production and conversion 
G 282 9.8 Carbohydrate transport and metabolism 
E 172 6.0 Amino acid transport and metabolism 
F 69 2.4 Nucleotide transport and metabolism 
H 128 4.5 Coenzyme transport and metabolism 
I 86 3.0 Lipid transport and metabolism 
P 195 6.8 Inorganic ion transport and metabolism 
Q 41 1.4 Secondary metabolites biosynthesis, transport and catabolism 
R 355 12.4 General function prediction only 
S 238 8.3 Function unknown 
- 1,277 32.6 Not in COGs 
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Insights into the genome sequence 
An estimate of the overall similarity between Pe-
dobacter heparinus and P. saltans [1] was generat-
ed with the GGDC-Genome-to-Genome Distance 
Calculator [49,50]. This system calculates the dis-
tances by comparing the genomes to obtain high-
scoring segment pairs (HSPs) and interfering dis-
tances from a set of three formulae (1, HSP length 

/ total length; 2, identities / HSP length; 3, identi-
ties / total length). The comparison of P. heparinus 
and P. saltans revealed that an average of only 
4.7% of the two genomes are covered with HSPs. 
The identity within these HSPs was 82.3%, whe-
reas the identity over the whole genome was 
3.8%. 

 
Figure 4. Venn diagram depicting the intersections of protein sets (total number of derived protein sequences 
in parentheses) of P. heparinus, P. saltans and N. aromaticivorans. 

 
The fraction of shared genes in the genomes of P. 
heparinus, P. saltans and Novosphingobium aroma-
ticivorans [51] is shown in a Venn diagram (Figure 
4). The phyogentically distant reference genome 
of  N. aromaticivorans was selected based on its 
similar genome size and due to a lack of complete 
reference type strain genomes from the Sphingo-
bacteriaceae. The numbers of pairwise shared 
genes were calculated with the phylogenetic profi-
ler function of the IMG ER platform [48]. The ho-
mologous genes within the genomes were de-
tected with a maximum E-value of 10-5 and a min-
imum identity of 30%. Only about one quarter of 
all genes (954 genes) are shared by all three  

genomes, whereas the two Pedobacter species 
share 2,732 genes, corresponding to 63.7% (P. 
heparinus) and 70.9% (P. saltans) of their genes. 
The pairwise comparison of N. aromaticivorans 
with the two Pedobacter species revealed only 154 
(P. heparinus) and 65 (N. aromaticivorans) homo-
logous genes (Figure 4). 
Among those genes that are shared by the three 
genomes, are those which might be responsible 
for the yellow color of the organisms. These genes 
encode enzymes that are involved in the synthesis 
of carotenoids. Biosynthesis of carotenoids starts 
with geranylgeranyl pyrophosphate synthases 
combining farnesyl pyrophosphate with  
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C5 isoprenoid units to C20-molecules, geranylge-
ranyl pyrophosphate. The phytoene synthase cata-
lyzes the condensation of two geranylgeranyl py-
rophosphate molecules followed by the removal of 
diphosphate and a proton shift leading to the for-
mation of phytoene. Sequential desaturation steps 
are catalyzed by phytoene desaturase followed by 
cyclization of the ends of the molecules catalyzed 
by the lycopene cyclase [52]. Genes encoding ly-
copene cyclases (Phep_2088, Pedsa_2222, Sa-
ro_1817) and phytoene synthases (Phep_2092, 
Pedsa_2218, Saro_1814) were identified in the 
genomes. In the two Pedobacter species, genes 
coding for phytoene desaturases (Phep_2093, 
Pedsa_2217) were also identified. A carotene hy-
droxylase gene (Saro_1168) was only identified in 
the genome of N. aromaticivorans. 
As the two Pedobacter species are known for their 
ability to degrade heparin, it is not surprising that 
the genomes encode several heparinase encoding 

genes: seven (P. saltans) and five (P. heparinus) 
heparinases, were identified, whereas N. aromati-
civorans encodes only one heparinase. 
Fucoidan degradation was not determined expe-
rimentally, but is assumed as both P. saltans and P. 
heparinus have genes for eleven and ten α-
fucosidases respectively. In addition, 12 (P. sal-
tans) and 18 (P. heparinus) α-sulfatases genes 
were identified, whereas N. aromaticivorans con-
tains only five α-sulfatases and no α-fucosidase 
genes. Experimental evidence for the fucoidan hy-
drolysis in Pedobacter has not been found, but for 
Mucilaginibacter paludis and M. gracilis, which are 
also members of the family Sphingobacteriaceae, 
have been experimentally confirmed to exhibit 
fucoidan degradation [53]. Moreover, Sakai et al. 
[54] reported the existence of intracellular α-L-
fucosidases and sulfatases, which enable ‘F. fucoi-
danolyticus’ to degrade fucoidan. 
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