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The goal of personalized medicine is to match
patient-specific factors with relevant therapeutic
options. The therapeutic conundrum in acute

myeloid leukemia (AML) remains the heterogeneity of the
disease and the paucity of treatment options for which
there are highly predictive biomarkers. AML is broadly
heterogeneous across all measured axes, including mor-
phological presentation, cytogenetics, point mutations,
expression signatures, epigenetic signatures, and chro-
matin signatures.1,2 Furthermore, within patients, subclonal
architecture suggests ongoing acquisition of new variants
and expression signatures,3 providing for intrapatient
leukemic heterogeneity as well as interpatient heterogene-
ity. Just as heterogeneity can be seen across a range of
measurements, response diversity has been mapped to
clinical and molecular diversity, providing prognostic
opportunities, but not yet personalized opportunities.2

AML results in unrestrained growth of the leukemia cells
in vivo, but this has not translated into easy in vitro growth
sufficient for effective cell manipulation in laboratory set-
tings. Primary human AML cells grow poorly in liquid tis-
sue culture media or methylcellulose. Only a fraction of
samples will effectively engraft into immunodeficient
mice, and among these, it is often only a subclone that
engrafts.4 Recent progress has made short-term ex vivo cul-
ture possible, and improvements in the immunodeficient
hosts have improved xenograft potential.5

Ex vivo analysis of chemotherapy has been championed
by several groups, including the large-scale BEAT AML
project.6-9 Studies have increasingly suggested ex vivo corre-

lations with clinical response and the feasibility of scaling
up to achieve sufficient throughput to identify useful func-
tional biomarkers of sensitivity and resistance to
chemotherapy.  
In this issue, Tavor et al. present a focused analysis that

leverages careful sample selection with ex vivo drug sensi-
tivity.10 They applied a 384-well approach to interrogates
cell viability in liquid culture after 48 hours assessed across
46 drugs, each at 12 concentrations, which provided a
broad area under the curve (AUC) measurement. In this
assay, the authors used cytokine combinations (colony-
stimulating factor, interleukin 3, interleukin 6, thrombopoi-
etin) in liquid culture and avoided stromal cell co-culture to
facilitate viability read-out using a streamlined ATP-depen-
dent assay (Cell Titer Glo). This approach provides an effi-
cient read-out of early chemotoxicity, but does not provide
an effective measure of differentiation or the cell toxicity
that occurs after several days of exposure or cell divisions.
In evaluating outcomes using this design, it is worth noting
that the strong cytokine stimuli in the tissue culture may
bias cell survival and chemosensitivity to cells that are
capable of utilizing those signaling pathways or dependent
on their stimuli for survival, and the small cell numbers
evaluated in 384-well formats focus outcomes on pheno-
types in the bulk cell population.
Tavor et al. found that relapse samples were less

chemosensitive than the paired diagnostic sample, across
diverse classes of chemotherapy. Indeed, there were statis-
tical differences between the sensitivity of diagnostic and
relapse pairs to some common salvage agents, including



etoposide and fludarabine, while cytarabine and veneto-
clax were associated with strong trends. This phenomenon
of reduced sensitivity at relapse, compared with diagnosis,
has played out across diverse chemotherapy regimens and
newer venetoclax-based approaches in vivo.11,12 This pro-
vides a possible clinical validation of the platform and
insight into relapsed AML as a broadly chemoresistant dis-
ease and not simply a cytarabine-resistant problem.
Although the sample size was relatively small (29

patients), sensitivity and resistance could be clustered by
functional groups, with tyrosine kinase inhibitors emerg-
ing with shared phenotypes. Drug targets included MEK,
PI3K, PIM, JAK, mTORC1/2, FLT3, and BET inhibitors. 
To understand the mechanism of activity and to expand

potential biomarker targets, Tavor et al. integrated muta-
tion and transcriptome data with the functional chemosen-
sitivity results. This identified increased frequency of
FLT3-ITD variants in the chemosensitive cases. In particu-
lar, dasatinib emerged as a compound for which there
were wide differences in chemosensitivity between these
groups of patients. The authors further leveraged available
results from the BEAT-AML study with their transcription-
al data to identify overlapping signatures associated with
dasatinib sensitivity, including dasatinib targets (CSF1R,
FGR, HCK, and LYN). Using further model building and
validation between the two cohorts, a model with an AUC
0.78 could be generated, providing an intriguing new bio-
marker for dasatinib. Finally, response to dasatinib could
be observed in xenograft models of FLT3-ITD AML.
Dasatinib has been studied in combination with multi-

chemotherapy regimens in both acute lymphoblastic
leukemia and AML,13-15 and thus is a natural compound to
consider for quick integration into biomarker-driven AML
therapy. In AML, the interest in dasatinib has focused on
its use for the core-binding factor leukemias (CBF; t(8;21)

and inv(16)), which are frequently associated with muta-
tions in KIT, and where the presence of the secondary KIT
mutation is associated with inferior outcomes.16 Dasatinib
has been explored in single-arm studies by the Cancer and
Leukemia Group B (CALGB) and the Acute Myeloid
Leukemia Study Group (AMLSG) to determine whether
KIT inhibition could mitigate the negative effects of these
variants. In both studies, responses and survival were
favorable compared with those of historical controls. In the
CALGB study, the adverse impact of KIT mutations
appeared to have been effaced by dasatinib treatment.13

Analysis in the AMLSG study included paired evaluation
of nine patients with KITmutations. Five of these patients
lost the variant at relapse, suggesting a potential selective
disadvantage in the presence of dasatinib.15

In contrast to the molecular focus of dasatinib as an anti-
KIT agent in the CBF leukemia studies, Tavor et al. identi-
fied broader kinase mutations and kinase activity that cor-
relate with dasatinib sensitivity, suggesting that additional
biomarkers may be relevant for predicting sensitivity to
dasatinib in non-CBF AML.10

In AML, biomarker-driven personalized medicine is
challenged by the therapeutic timeline. Treatment needs to
begin quickly once the diagnosis has been made. However,
the delays in therapy initiation appear to affect predomi-
nantly younger patients,17 and the RADIFY study suggested
that a delay of 8 days in adding a tyrosine kinase inhibitor
to induction chemotherapy did not compromise efficacy in
the younger age group.18 This provides a reasonable win-
dow for either ex vivo drug screening to be completed or
mutation and transcriptomic analysis to be finalized while
chemotherapy options are fine-tuned.
AML is diversely heterogeneous between patients, but

outcomes will be patient-specific. The application of ex
vivo drug screening and the integration of results with
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Figure 1. Integration of ex vivo drug sensitivity data and molecular signatures described in Tavor et al.10 AUC: area under the curve.



expression and mutation signatures may provide the
means of ultimately matching patients with treatment and
matching treatment with response mechanisms. Given
that relapsed disease appears to be chemoresistant across
multiple classes of therapy, integration of personalized
treatment is likely to be most effective when applied as
early as possible.
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Administration of passive antibodies through trans-
fusion of plasma from donors recovering from a viral
infection has long been employed to treat individu-

als infected with the same pathogen.1 However, in studies
with convalescent plasma (CP), differences and inherent
limitations (e.g., sensitivity/specificity of  tests to quantify
neutralizing antibodies; sample size; scheduling of treat-
ment [early/late CP administration vs. degree of disease
severity], the presence of confounders [concomitant treat-
ments]), and restricted generalizability of data argued for
large-scale, randomized, controlled trials.1,2 The results of a
multicenter proof-of-concept, observational Italian study in
46 patients with moderate or severe acute respiratory dis-
tress syndrome due to infection with the novel coronavirus,
SAR-CoV-2, who needed mechanical ventilation and/or
continuous positive airway pressure are reported in this

issue of the Journal.3 The interval between symptom onset
and study inclusion was highly variable (2-29 days). The 7-
day mortality rate was 6% in patients given CP compared
with an expected 15% according to Italian statistics and
30% in a small concurrent cohort not treated with CP.
Weaning from continuous positive airway  pressure was
achieved in 26 of 30 patients, and three of the seven intu-
bated patients were extubated. Whether those who
received CP earlier improved more or faster than patients
who received plasma later in the course of the disease is not
clarified, nor are the reasons for administering one, two or
three CP bags provided. In this larger than previous uncon-
trolled reports, five serious adverse events (including 1
transfusion-related acute lung injury [TRALI]) occurred in
four patients. Although TRALI may be triggered by trans-
fused antibodies,4 CP was safe in this study as it was in


