
ARTICLE

1NATURE COMMUNICATIONS  |  2:586  |    DOI:  10.1038/ncomms1596   |  www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

Received 1 Sep 2011   |   Accepted 14 Nov 2011   |   Published 13 Dec 2011   DOI:  10.1038/ncomms1596 

 The vast majority of commodity materials are obtained from petrochemical feedstocks. 

These resources will plausibly be depleted within the next 100 years, and the peak in global 

oil production is estimated to occur within the next few decades. In this regard, biomass 

represents an abundant carbon-neutral renewable resource for the production of polymers. 

Here we report a new strategy, based on tandem catalysis, to obtain alternating polyesters from 

renewable materials. Commercially available complexes are found to be effi cient catalysts for 

the cyclization of dicarboxylic acids followed by alternating copolymerization of the resulting 

anhydrides with epoxides. This operationally simple method is an attractive strategy for the 

production of new biodegradable polyesters.         
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 T
he vast majority of commodity materials are obtained from 
fossil fuels 1 . However, these resources are limited and many 
studies predict that all fossil resources will be depleted within 

a few centuries 2 – 5 . In this regard, biomass represents an abundant 
carbon-neutral renewable resource for the production of biomateri-
als 6 – 12 . Many of these renewable resource polymers can also be ren-
dered biodegradable under the appropriate conditions 1,13,14 . How-
ever, except for polylactide, their high cost hampers their widespread 
use as bulk polymeric materials, relative to conventional petroleum-
based plastics 15 . Recognizing that the raw material cost accounts 
for up to 50 %  of the overall production cost of biodegradable 
polymers 12 , several research groups have directed investigative 
eff orts towards the synthesis of new renewable monomers and the 
catalytic conversion of these monomers into their corresponding 
polymers, such as polyesters. Generally, aliphatic polyesters are 
obtained by either polycondensation or ring-opening polymeriza-
tion of cyclic esters ( Fig. 1 ) 16 . Th e latter route restricts the poly-
mer architectures to those of the cyclic esters that are available 17 . 
Although the nearly unlimited choice of diols and diacids gives 
access to a much larger range of polymer properties, their direct 
use in polycondensation reactions is energy intensive and requires 
drastic conditions to drive the reaction towards high conversion and 
very accurate comonomer stoichiometries to obtain high-molecu-
lar-weight products. In this overall context, organic acids have been 
suggested as important renewable building blocks because they are 
available in a minimum number of steps from biorefi nery carbo-
hydrate streams 18 . Among them, dicarboxylic acids have received 
attention as platform chemicals and their potential as monomer 
precursors is a major challenge that deserves to be explored, even if 
their overall production cost still remains to be reduced in order to 
be competitive with petrochemical-derived chemicals 19 . 

 Tandem catalysis is one of the strategies used by nature for 
building macromolecules 20 . Living organisms generally synthesize 
macromolecules by  in vivo  enzyme-catalyzed chain growth polym-
erization reactions using activated monomers that have been formed 
within cells during complex metabolic processes 21 . For instance, 
aliphatic polyesters, such as polyhydroxyalkanoates, are synthe-
sized from renewable, low-cost feedstocks (for example, sugars or 
fatty acids) under mild conditions. However, these biological proc-
esses rely on highly complex biocatalysts, such as polyhydroxyal-
kanoate synthases, thus limiting their industrial applications. In the 
same spirit, we have initiated a research eff ort to synthesize aliphatic 

polyesters via an auto-tandem catalytic transformation, where  ‘ acti-
vated ’  monomers (that is, cyclic anhydrides) are synthesized from 
dicarboxylic acids and subsequently copolymerized with epoxides 
( Fig. 1 ). Auto-tandem and assisted tandem catalyses, which make 
multiple use of a single (pre)catalyst, are more effi  cient in catalyst 
utilization than orthogonal catalysis, which requires a diff erent 
catalyst for each transformation 22 . Although orthogonal tandem 
catalysis has already been employed for polymer synthesis 23,24 , 
there is no example to date in the literature in which a single metal 
complex is able to connect two independent catalytic cycles for the 
production of polymers 25 . 

 Developing a tandem catalytic system is a diffi  cult task, which 
requires an eff ective ligand framework for achieving high activity 
and control during the polymerization reaction and stabilization of 
the metal centre towards the solvent, substrate, and reaction side 
products and preventing decomposition of the active species 26 . 
As pointed out by Jacobsen, salen catalysts (H 2  salen    =     N , N ′  -bis(3,5-
di- tert -butylsalicylidene)-1,2-cyclohexanediimine) can be regarded 
as privileged structures and as useful platforms for the discovery of 
new reactions 27 . We hypothesized that commercially available metal 
complexes based on the specifi c tetradentate salen ligand would 
have the potential to act as auto-tandem catalysts given their unique 
robustness and versatility 28 , as well as the documented perform-
ance of their chromium counterparts for the synthesis of polycar-
bonates or polyesters 29 – 34 . Herein we introduce a practical route to 
biodegradable polyesters by way of an auto-tandem reaction using 
simple commercial catalysts. Th is process provides direct access to 
anhydrides and polymers in high yields.      

 Results  
  Cyclization step   .   Th e fi rst objective of our tandem approach is 
the synthesis of cyclic anhydrides from dicarboxylic acids. Th is 
cyclization is a known transformation, which can only be achieved 
upon dehydration of the starting compound under acidic conditions 
and at high temperatures. Accordingly there is a need for a process 
for the synthesis of cyclic anhydrides, which is fast and, which 
produces cyclic anhydrides in high yield. Recently Bartoli 35  reported 
effi  cient protocols for the preparation of esters from the reaction of 
carboxylic acids with primary, aromatic and secondary alcohols in the 
presence of dialkyl dicarbonates under weak Lewis acid catalysis. Th e 
mechanism involved a double addition of the acid to the dicarbonate, 
aff ording a carboxylic anhydride and an alcohol. Th e fi nal esters arose 
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   Figure 1    |         Synthetic approaches to aliphatic polyesters. Aliphatic polyesters are obtained by either polycondensation of diols and diacids, ring-opening 

polymerization of cyclic esters or copolymerization of cyclic anhydrides with epoxides.  



ARTICLE   

3

NATURE COMMUNICATIONS  |    DOI:  10.1038/ncomms1596 

NATURE COMMUNICATIONS  |  2:586  |    DOI:  10.1038/ncomms1596   |  www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

from the attack of the alcohols on the anhydrides. Inspired by these 
previous fi ndings, we envisaged that salen-based catalysts might 
provide the basis for a multifunctional catalytic system that opens 
direct access to cyclic anhydrides with high selectivity and fl exibility 
starting from dicarboxylic acids ( Figs 2, 3 ). 

 Th e catalytic performances of the diff erent salen complexes 
were evaluated in tetrahydrofuran (THF) in the presence of 
commercially available dialkyl dicarbonates. Representative results 
are summarized in  Table 1 . We fi rst investigated the chromium(III) 
system  1 . However, the reaction of 100 equiv. of succinic acid with 
di- tert -butyl dicarbonate (Boc 2 O) in the presence of  1  at 40    ° C was 
unsuccessful. When succinic acid and diethyl dicarbonate (Eoc 2 O) 
were allowed to react with complex  1  in THF at 40    ° C (1   mol % ), 
succinic anhydride (SA) was obtained in 12 %  yield in 50   h. Grati-
fyingly, in the presence of dimethyl dicarbonate (Moc 2 O), SA was 
detected in 100 %  yield aft er 10   h. As a control experiment the 
reaction was performed using a complex in the absence of dicar-
bonate or using a dicarbonate without a complex, and no reaction 
product could be isolated aft er an even longer period of time. We 
also observed that the addition of cocatalyst [PPN]Cl ([PPN]     +         =    
bis(triphenylphosphoranylidene)iminium) increased the cata-
lytic activity (entry 4). Th ese results indicate that the chromate 

complexes derived from (salen)CrCl and onium salt should be the 
active species 36 . It has already been demonstrated that this type of 
Lewis basic cocatalyst reversibly coordinates to the metal centre, 
increases the electron density on the metal and labilizes the  trans  
ligand to it 37 . Th erefore a more electron-rich metal centre is more 
effi  cient for this reaction, which is in accordance with Bartoli ’ s 
observations that the reaction pathway is infl uenced by the Lewis 
acidity and that weak Lewis acids are preferable for this reaction 35 . 
Under the same reaction conditions we were also able to synthesize 
glutaric (GA), adipic (AA), itaconic (IA), pimelic (PA) and cam-
phoric (CA) anhydrides (entries 5 – 9). However, for succinic, adipic, 
glutaric and pimelic acids, we observed that ester formation might 
occur from attack of alcohol to the anhydride. Th us the reaction had 
to be stopped before the formation of ester from the correspond-
ing anhydride. For instance, in the presence of complex  1 , pimelic 
anhydride was detected in 97 %  yield aft er 30   min at room tempera-
ture, together with the corresponding monoester (3 % ). Surprisingly 
in the case of camphoric ( Supplementary Figs S1 – S4 ) and itaconic 
anhydrides no ester formation was detected (entries 8 – 9). Th ere-
fore, under these conditions, strict control of the reaction time was 
not necessary, as no alcoholysis of the anhydride was observed even 
aft er a prolonged reaction time. To avoid alcoholysis of the anhy-
drides complex  2  was tested as a cyclization catalyst under the same 
reaction conditions and ester formation was also detected aft er the 
reaction (entry 10). However, the reaction of 100 equiv. of pimelic 
acid with Boc 2 O (instead of Moc 2 O) in the presence of  2  at 50    ° C 
was quantitative and showed no evidence of esterifi cation by  1 H 
NMR spectroscopy, owing to the much lower nucleophility of  tertio -
butanol (entry 11). By using the other salen derivatives  3  –  4 , we 
were also able to completely convert the camphoric acid into the 
corres ponding anhydride (entries 13 – 14). Th us, the cyclization of 
dicarboxylic acids with commercially available dicarbonates can be 
carried out under mild conditions, is rapid in processing and suit-
able for the preparation of relevant monomers. Only volatile by-
products are removed between the anhydride formation step and the 
copolymerization step so that the resulting monomers are ready for 
polymerization without purifi cation; thus, a wide range of aliphatic 
polyesters can be synthesized for diff erent applications.   
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  Figure 2    |         Metal-based complexes used. Commercially available metal 

complexes based on the tetradentate salen ligand are useful platforms for 

the synthesis of aliphatic polyesters.  
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 Figure 3    |         Tandem synthesis of polyesters from epoxides and dicarboxylic acids. Salen complexes are effi cient catalysts for cyclization of dicarboxylic 

acids followed by alternating copolymerization of the resulting anhydrides with epoxides.  
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  Polymerization step   .   With an effi  cient and quantitative synthesis 
of cyclic anhydrides in hand, we investigated the alternating copo-
lymerization of a series of anhydrides and epoxides using complexes 
 1  –  4 . Th e results are summarized in  Table 2 . Th e copolymerizations 
were performed either in bulk (entries 1 – 8, 16 – 18) or in a toluene 
solution (entries 9 – 15). Neat conditions were optimal for reactions 
performed without toluene. Th e resultant polymers reveal narrow 
molecular-weight distributions and experimental number-average 

molecular masses ( M  n ) close to the theoretical ones. However, in 
some cases, experimental  M  n  values do not correspond well with 
calculated  M  n  values. Th is mismatch possibly arises from the pres-
ence of trace amounts of hydrolyzed anhydride, as already reported 
by Coates and co-workers 34 . To evaluate the feasibility of the over-
all process, we conducted preliminary experiments with the chro-
mium-based catalyst  1 , camphoric acid as a model substrate and 
1500   equiv. of propylene oxide (PO) as an inexpensive comono-
mer 38 – 40 . Th e Cr(salen) complex was not an eff ective initiator 
without co-catalyst (entry 1). However, in the presence of 1   equiv. 
of PPNCl, this complex was found to be an active initiator for the 
copolymerization of PO and CA to aff ord poly(propylene cam-
phorate) ( Supplementary Figs S5 – S8 ) with high  M  n  and narrow 
molecular weight distribution (entry 2). In agreement with previous 
observations 41 – 43 , we considered that copolymerization takes place 
via a mechanism similar to the one reported for the alternating 
copolymerization of epoxide with CO 2 . Th e formation of the ani-
onic six coordinate species of the form  trans -(salen)CrX 2      −      occurs 
upon treating (salen)CrCl with PPNCl. Th e next step in the process 
involves binding and subsequent ring opening of the cyclic ether 
monomer. Th e role of the Lewis base cocatalyst is to labilize the 
metal-nucleophile bond of either the initiator or growing polymer 
chain towards heterolytic bond cleavage 36 . We then explored other 
anhydrides as comonomers and found that SA copolymerizes with 
PO (entry 3) ( Supplementary Figs S9 – S12 ). In addition glutaric 
anhydride and pimelic anhydride react with PO to give polyesters 
with a moderate  M  n  (entries 4 – 5) ( Supplementary Figs S13 – S20 ). 
Although the Mn(salen) complex  4  displayed poor reactivity (entry 
8) 44 , the screen did reveal the rather surprising result that the cobalt 
and aluminium analogues catalyzed the alternating copolymeriza-
tion with similarly good reactivity (entries 6 – 7). Other epoxides, 
including cyclohexene oxide (CHO), limonene oxide (LO) and 
pinene oxide (PiO) are also viable monomers for copolymerization 
with CA ( Supplementary Figs S21 – S28 ); in that case, higher temper-
ature and a longer reaction time are required (entries 9 – 18). In the 

  Table 1      |    Cyclization of dicarboxylic acids. 

    Entry
  

  Complex
  

  Anhydride
  

  [PPNCl] /
 [M]  

  Dicarbonate
  

  Time 
(h)  

  Yield 
( % ) * 

   1   1   SA   —   Boc 2 O  13  0 
   2   1   SA   —   Eoc 2 O  50  12 
   3   1   SA   —   Moc 2 O  10  100 
   4   1   SA  1  Moc 2 O  8  100 
   5   1   GA  1  Moc 2 O  3  100 
   6   1   AA  1  Moc 2 O  6  95 †  
   7 ‡    1   PA  1  Moc 2 O  0.5  97 §  
   8   1   IA  1  Moc 2 O  7.5  100 �  
   9   1   CA  1  Moc 2 O  1  100 
   10   2   PA  1  Moc 2 O  0.5  97 §  
   11 ¶    2   PA  1  Boc 2 O  10  100 
   12   2   CA  1  Moc 2 O  1  100 
   13   3   CA  1  Moc 2 O  1  100 
   14   4   CA  1  Moc 2 O  1.5  100 

     Abbreviations: AA, adipic anhydride; CA, camphoric anhydride; GA, glutaric anhydride; 
IA, itaconic anhydride; PA, pimelic anhydride; SA, succinic anhydride    .   

     All reactions performed in tetrahydrofuran with [anhydride] / [M]=100 at [anhydride]=1   M and 
[dicarbonate]=[anhydride] at 40    ° C.   

     *As determined by the integration of  1 H NMR.   

      † 5 %  ester.   

      ‡ Reaction performed at room temperature.   

      § 3 %  ester.   

      � 18 %  isomer (that is, citraconic anhydride).   

      ¶ Reaction performed at 50    ° C.   

   Table 2      |    Tandem synthesis of aliphatic polyesters. 

    Entry
  

  Complex
  

  Anhydride
  

  Epoxide
  

  [PPNCl] /
 [M]  

  [A] / [E]
  

  Temperature 
( ° C)  

  Time (h)
  

  Yield ( % )*
  

   M  n  
(g   mol       −    1   ) †   

  PDI †
   

   1   1   CA  PO   —   15  30  24      <    5  ND ‡   ND ‡  
   2   1   CA  PO  1  15  30  24  100  16,900  1.2 
   3   1   SA  PO  1  13.5  30  7.5  82  5,100  1.1 
   4   1   GA  PO  1  13.5  30  6  70  3,700  1.1 
   5   1   PA  PO  1.5  13.5  30  7.5  76  5,200  1.3 
   6   2   CA  PO  1  15  30  20  68  9,500  1.2 
   7   3   CA  PO  1  15  30  6.5  33  5,700  1.1 
   8   4   CA  PO  1  15  30  20  17  4,300  1.1 
   9 §    1   CA  CHO  2  1  70  36  26  8,500  1.2 
   10 §    3   CA  CHO  2  1  70  36  48  6,300  1.6 
   11 §    2   CA  CHO  2  1  70  36  59  8,900  1.3 
   12 §    3   CA  LO  2  1  100  28  29  8,500  1.2 
   13 §    2   CA  LO  2  1  100  28  85  9,700  1.2 
   14 §    2   CA  LO  1  1  100  120  12  5,900  1.1 
   15 §    2   CA  LO  5  1  100  24  74  10,300  1.3 
   16   2   CA  LO  5  10  100  9  100  8,100  1.3 
   17 �    2   GA  PiO  5  5  100  2  29  8,400  1.2 
   18 ¶    2   CA  LO  2  4  100  45  47  27,000  1.2 

     Abbreviations: CA, camphoric anhydride; GA, glutaric anhydride; PA, pimelic anhydride; SA, succinic anhydride;     .   

     All reactions were performed after the cyclization step with [anhydride] / [M]=100 (except for entries 17 and 18).   

     *As determined by the integration of  1 H NMR.   

      †  M  n  and PDI ( M  w / M  n ) of the polymer determined by SEC-RI in tetrahydrofuran at room temperature using polystyrene standards.   

      ‡ Not determined.   

      § Reaction performed in toluene.   

      � Reaction performed with [anhydride] / [M]=200.   

      ¶ Reaction performed with [anhydride] / [M]=300.   
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presence of 2   equiv. of PPNCl in toluene, the Al(III) complex  2  and 
the Co(II) complex  3  were more eff ective catalysts than the chro-
mium analogue  1  for the copolymerization of CHO and CA. Th is 
prompted us to investigate the catalytic behaviour of  2  and  3  for the 
copolymerization of CA and LO. Less reactive alicyclic epoxides, 
such as  α -PiO or LO, are particularly interesting substrates based on 
biorenewable resources. In particular the pendant functionality of 
LO provides an opportunity to tune the properties of the resulting 
polyester through postpolymerization modifi cation of the pendant 
vinyl groups. In that case the aluminium derivative  2  was found to 
be much more active than the cobalt catalyst  3 , as it converted 85 %  
monomers in 28   h versus 29 %  in 28   h for  3  (entries 12, 13). Optimi-
zation of the molar ratio between aluminium complex and [PPN]Cl 
revealed that the highest activity was achieved when using more 
than 2   equiv. of [PPN]Cl (entries 13, 15 – 18). Other counteranions 
for [PPN]     +     , such as azide, acetate and perfl uorobenzoate, can be 
also employed without a signifi cant infl uence on catalytic activity. 
Th is is in accordance with previous studies that demonstrated that 
the formation of the six coordinate anion  trans -(salen)MX 2      −      occurs 
more easily with at least 2   equiv. of PPNCl. 36  Notably, the combina-
tion based on aluminium complex  2    and 5   equiv. of PPNCl in bulk 
LO was also very reactive (entry 16). Finally it was interesting to 
observe that aluminium complex  2  is also active for the copolym-
erization of glutaric anhydride and PiO; neat conditions were opti-
mal for this reaction. To the best of our knowledge, this is the fi rst 
copolymer synthesized from PiO (entry 17). 

 As control experiments, we performed polymerization reactions 
using a clean combination of isolated anhydrides with epoxides in 
the presence of the precatalyst ( Table 3 ). Interestingly, we observed 
that direct synthesis gives polymers with similar molecular weights 
and approximate rates as the tandem system ( Table 2 , entries 3 – 4). 
Th ese results suggest that the active species formed during the 
copolymerization process might be the same species in the overall 
tandem process (that is,  trans -(salen)MX 2      −     ).    

 Discussion 
 We have introduced a new class of tandem catalysts for the syn-
thesis of biodegradable polyesters. Insight into the mechanism of 
individual catalytic cycles, and the resulting ability to control turno-
ver frequencies need to be further developed in this context. Th e 
discovery of effi  cient and selective tandem catalysts for the synthe-
sis of renewable polymers is a crucial requirement for the sustained 
growth of the chemical industry. Increasingly important will also be 
the stereoselective catalysts that provide key enantiomerically pure 
monomers for the design and preparation of novel stereoregular 
macromolecules as promising advanced commodity materials in a 
sustainable development context. Th ese results suggest a number of 
new avenues for next generation renewable polymers.   

 Methods  
  Materials   .    (    +    )-Limonene oxide  (mixture of  cis  and  trans ),  propylene oxide , 
 CHO  and   α -PiO  (all purchased from  Aldrich ) were stirred over calcium hydride, 
put through three freeze-pump-thaw cycles, then vacuum transferred under 
argon (twice) and stored in a glovebox.  (1 R ,3 S )-(    +    )-Camphoric acid ,  glutaric 
acid  (purchased from  Aldrich ),  pimelic acid  and  succinic acid  (purchased from 

 Janssen Chimica ) were recrystallized three times with THF / pentane or meth-
ylene chloride / diethyl ether, dried overnight under vacuum and then stored 
in the glovebox.  Dimethyl dicarbonate ,  diethyl dicarbonate  and  di- tertio -butyl 
dicarbonate  (purchased from  Aldrich ) are degassed by freeze-thaw-vacuum cycles 
and stored in the freezer of the glovebox.  (1 R ,2 R )-(    −    )-[1,2,-Cyclohexanediamino-
 N , N  ′ -bis(3,5-di- tertio -butylsalicylidene)]chromium(III) chloride ,  aluminium(III) 
chloride  and  manganese (III) chloride  were purchased from  Strem Chemicals  and 
used as received in the glovebox.  (1 R ,2 R )-(    −    )-[1,2,-Cyclohexanediamino- N , N  ′ -
bis(3,5-di- tertio -butylsalicylidene)]cobalt(II)  was purchased from  Aldrich , and 
used as received in the glovebox.  Bis(triphenylphosphoranylidene)ammonium 
chloride  (purchased from  Fluka ) was recrystallized twice with acetone / pentane or 
methylene chloride / pentane, dried overnight under vacuum and then stored in the 
freezer of the glovebox.   

  Tandem procedure   .   A Schlenk fl ask was charged with a solution of the catalyst 
(10    μ mol), PPNCl (6   mg, 10    μ mol), dicarboxylic acid (1   mmol) and dimethyl dicar-
bonate (1   mmol, 110    μ l, 134   mg) in 1   ml of THF. Th e solution was stirred at 40    ° C. 
Aft er the allocated reaction time, the reaction was checked by  1 H NMR spectros-
copy, which indicated complete and selective conversion of the starting dicarbo-
xylic acid. When the conversion is complete, volatiles are removed under vacuum 
overnight. Th e complex was directly engaged in polymerization aft er the addition 
of a solution of epoxide in the appropriate ratio in toluene. Th e reaction was stirred 
at the desired temperature for the desired reaction time. Aft er a small sample of the 
crude material was removed for characterization, the reaction was quenched with 
acidic methanol (0.5   ml), and the polymer was precipitated with excess of pentane. 
Th e polymer was then dried  in vacuo  to constant weight.   

  Measurements   .   All manipulations requiring dry atmosphere were performed un-
der a purifi ed argon atmosphere using standard Schlenk techniques or in a glove-
box. Solvents (toluene, pentane, THF) were freshly distilled from Na / K alloy under 
nitrogen and degassed thoroughly by freeze-thaw-vacuum cycles before use. Deu-
terated solvents ( benzene- d  6  ,  toluene- d  8  ,  THF- d  8   /  99.5 %  D ,  Eurisotop ) were freshly 
distilled from sodium / potassium amalgam under argon and degassed before use. 
NMR spectra were recorded on  Bruker Avance-300 ,  Avance-400  and  Avance-600 
spectrometers .  1 H and  13 C chemical shift s are reported in p.p.m. versus SiMe 4  and 
were determined by reference to the residual solvent peaks. Assignment of signals 
was made from multinuclear 1D ( 1 H,  13 C{ 1 H}) and 2D (correlation spectroscopy, 
heteronuclear multiple quantum coherence, heteronuclear multiple bond correla-
tion) NMR experiments. Gel permeation chromatography analyses were carried 
out using a  Waters instrument GPCV 2000 , equipped with an ultraviolet and a 
viscometry detectors. Th e columns used are  Styragel columns      (two HT6E and one 
HT2) fi lled with 10    μ m styrene-divinyl benzene gel balls. Th e number average mo-
lecular masses ( M  n ) and polydispersity index ( M  w  /  M  n ) of the resultant polymers 
were calculated with reference to a polystyrene calibration. IR analyses were carried 
out using a  FT / IR-4100 Jasco instrument , with a ATR PRO450-S, a  TGR detector , 
2   mm per sec scanning speed and a resolution of 16   cm     −    1 .                   
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