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Abstract: The count of circulating tumor cells (CTCs) has been associated with a worse prognosis
in different types of cancer. Perioperatively, CTCs detach due to mechanical forces. Diagnostic
tools exist to detect and isolate CTCs, but no therapeutic technique is currently available to remove
CTCs in vivo from unprocessed blood. The aim of this study was to design and test new magnetic
nanoparticles to purify whole blood from CTCs. Novel magnetic carbon-coated cobalt (C/Co)
nanoparticles conjugated with anti-epithelial cell adhesion molecule (EpCAM) antibodies were
synthesized, and their antifouling and separation properties were determined. The newly developed
C/Co nanoparticles showed excellent separation and antifouling properties. They efficiently removed
tumor cells that were added to healthy subjects’ blood samples, through an anti-EpCAM antibody
interaction. The nanoparticles did not interact with other blood components, such as lymphocytes or
the coagulation system. In blood samples of carcinoma patients suffering from metastatic disease,
on average, ≥68% of CTCs were removed. These nanoparticles could prompt the development of a
blood purification technology, such as a dialysis-like device, to perioperatively remove CTCs from
the blood of cancer patients in vivo and potentially improve their prognosis.

Keywords: circulating tumor cells; nanoparticles; blood purification

1. Introduction

Metastases are the leading cause of death in cancer patients [1]. They occur when
tumor cells spread and colonize a distant organ [1]. Cells released from the primary
tumor that travel in the blood are known as circulating tumor cells (CTCs). These may
extravasate from blood vessels, infiltrate tissues, colonize niches, and eventually develop
into metastases [1]. The presence and number of CTCs have been used for staging purposes
as well as markers of disease progression, relapse, and overall prognosis in cancer patients.
The effectiveness of such applications has been demonstrated in various types of cancer,
including breast, colorectal, prostate, lung [1], urothelial [2,3], gastric, and gastroesophageal
junction adenocarcinoma [4,5].

Surgery is often the primary cancer treatment, and the perioperative period is increas-
ingly recognized as a crucial time point with potentially deleterious effects on the course of
the disease [6]. Intraoperative manipulation of a tumour can release cells and is associated
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with a higher intravascular CTC count during and after surgery [7–10]. These CTCs might
increase the risk of future metastases and disease relapse [11,12].

Current strategies to reduce the number of CTCs in the perioperative period include
neoadjuvant chemo- or radiotherapy [13]. While both are beneficial for local disease control,
their preventive effect on dissemination and occurrence of metastases is uncertain [14,15].

Diagnostic tools to detect and isolate CTCs have been developed [16,17]. These include
immunocytological approaches (immunocytochemistry, CellSearch system, flow cytome-
try), RNA-based molecular technologies (qPCR, FISH), as well as functional assays [18].
The CellSearch system is the only detection system approved by the Food and Drug Admin-
istration (FDA) and is currently the gold standard for CTC quantification [19]. It isolates
cells of epithelial origin that express the epithelial cell adhesion molecule (EpCAM) and is
designed to enumerate CTCs in 7.5 mL blood samples which must be processed in order to
be analyzed [20]. However, these systems are designed for diagnostic purposes. There is
currently no technique available to specifically and efficiently remove CTCs in vivo from
whole blood without interacting with other individual blood components. These features
would allow the use of CTC removal for therapeutic purposes.

This study aimed to develop a method for efficient CTC removal from whole blood
using highly magnetic nanoparticles. Carbon-coated cobalt (C/Co) nanoparticles are ferro-
magnetic and exhibit a magnetic saturation (158 Am2 kg−1) that is three to five times higher
than commercially available (superparamagnetic) iron oxide-based nanoparticles [21]. Ep-
CAM, as described, is expressed on cells of epithelial origin and is likely to be suitable
for extracting carcinoma cells. The goal was to remove CTCs from epithelial origin from
the blood of healthy subjects spiked with tumor cells as well as from blood samples of
cancer patients.

Such particles can lay the ground for therapeutic, in vivo whole blood purification of
CTCs, such as adjuvant therapy for cancer surgery in the perioperative period which might
prevent metastasis formation (Figure 1).

Pharmaceutics 2022, 14, x  2 of 13 
 

 

course of the disease [6]. Intraoperative manipulation of a tumour can release cells and is 
associated with a higher intravascular CTC count during and after surgery [7–10]. These 
CTCs might increase the risk of future metastases and disease relapse [11,12]. 

Current strategies to reduce the number of CTCs in the perioperative period include 
neoadjuvant chemo- or radiotherapy [13]. While both are beneficial for local disease 
control, their preventive effect on dissemination and occurrence of metastases is uncertain 
[14,15].  

Diagnostic tools to detect and isolate CTCs have been developed [16,17]. These 
include immunocytological approaches (immunocytochemistry, CellSearch system, flow 
cytometry), RNA-based molecular technologies (qPCR, FISH), as well as functional assays 
[18]. The CellSearch system is the only detection system approved by the Food and Drug 
Administration (FDA) and is currently the gold standard for CTC quantification [19]. It 
isolates cells of epithelial origin that express the epithelial cell adhesion molecule 
(EpCAM) and is designed to enumerate CTCs in 7.5 mL blood samples which must be 
processed in order to be analyzed [20]. However, these systems are designed for 
diagnostic purposes. There is currently no technique available to specifically and 
efficiently remove CTCs in vivo from whole blood without interacting with other 
individual blood components. These features would allow the use of CTC removal for 
therapeutic purposes. 

This study aimed to develop a method for efficient CTC removal from whole blood 
using highly magnetic nanoparticles. Carbon-coated cobalt (C/Co) nanoparticles are 
ferromagnetic and exhibit a magnetic saturation (158 Am2 kg−1) that is three to five times 
higher than commercially available (superparamagnetic) iron oxide-based nanoparticles 
[21]. EpCAM, as described, is expressed on cells of epithelial origin and is likely to be 
suitable for extracting carcinoma cells. The goal was to remove CTCs from epithelial 
origin from the blood of healthy subjects spiked with tumor cells as well as from blood 
samples of cancer patients. 

Such particles can lay the ground for therapeutic, in vivo whole blood purification of 
CTCs, such as adjuvant therapy for cancer surgery in the perioperative period which 
might prevent metastasis formation (Figure 1). 

 
Figure 1. Overview of working principle in blood from cancer patients. (1) Blood from cancer 
patients with circulating tumour cells (CTC) (light blue) is drawn, and CTC are deterimined. (2) 
Nanoparticles, coated with anti-EpCAM antibodies, are added. (3) Through nanoparticles, 
captured tumor cells are eliminated by a strong magnet, followed by a CTC enumeration. 

2. Methods 
This study was conducted with the following steps: synthesis of the C/Co 

nanoparticles, characterisation of their antifouling (prevention of non-specific absorption 

Figure 1. Overview of working principle in blood from cancer patients. (1) Blood from cancer patients
with circulating tumour cells (CTC) (light blue) is drawn, and CTC are deterimined. (2) Nanoparticles,
coated with anti-EpCAM antibodies, are added. (3) Through nanoparticles, captured tumor cells are
eliminated by a strong magnet, followed by a CTC enumeration.

2. Methods

This study was conducted with the following steps: synthesis of the C/Co nanoparti-
cles, characterisation of their antifouling (prevention of non-specific absorption of proteins)
and separation properties, removal of CTCs from the blood of healthy subjects spiked
with (cultured) tumor cells, evaluation of the effect of the nanoparticles on other blood
components such as lymphocytes and the coagulation system, and removal of CTCs from
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blood samples of cancer patients (Figure 1). This study follows the Revised Standards for
QUality Improvement Reporting Excellence (SQUIRE 2.0) publication guidelines [22].

2.1. Synthesis of the Nanoparticles

In a five-step synthesis, EpCAM-antibody functionalised magnetic nanoparticles were
produced (Figure 2a). Briefly, carbon-coated cobalt nanoparticles (Nanoarmor, Katy, TX,
USA), in the first step, reacted with 4-aminophenethyl alcohol (Sigma-Aldrich, Buchs,
Switzerland), sodium nitrite (Sigma-Aldrich) and hydrochloric acid (VWR, Dietlikon,
Switzerland) in water to obtain free hydroxy functionalities on the surface of the magnetic
nanoparticles [23]. Next, the hydroxy-functionalised magnetic nanoparticles were coated
with polyglycidol, a biocompatible polymer, to increase stability in the solution and reduce
non-specific adsorption. This was achieved by anionic ring-opening polymerisation of
glycidol (Sigma-Aldrich). For the polymerisation, the hydroxyl-functionalized magnetic
nanoparticles were beforehand deprotonated to be able to act as initiator species [24–26].
In total, three different batches were prepared to be tested with 0, 16 and 48 polymer
units. Subsequently, carboxylic acid end groups were introduced onto the polyglycidol
coating of the magnetic nanoparticles with succinic anhydride (Sigma-Aldrich) and a
mixture of triethylamine (Sigma-Aldrich) and 4-dimethylaminopyridine (Sigma-Aldrich)
in dimethylformamide (Sigma-Aldrich) [27]. Finally, EpCAM or isotype IgG antibodies
were conjugated to the free carboxylic acid end groups on the magnetic nanoparticles via
EDC/NHS chemistry to obtain the antibody-magnetic nanoparticle conjugate (detailed
experimental methods can be found in the Supplementary Materials).
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Figure 2. Nanoparticle synthesis and characterization. (a) Overview of the synthesis of antibody-
functionalised Co/C nanoparticles. (b) Transmission electron micrographs, particle size distribution
(SI). Black dots represent nanoparticles. Scale bar: 200 nm. (c) Graphic representation of particle
size distribution. (d) Scanning electron micrograph of a HT-29 cancer cell after incubation with
anti-EpCAM-functionalised Co/C nanoparticles. The blue area delimits a HT-29 cell, and the red
area nanoparticles bound on the cell surface. Scale bar: 300 nm.

2.2. Characterisation of Separation Property

The separation properties of the nanoparticles were tested using nanoparticles with
different polymer units (0, 16, 48). Solutions of nanoparticles were prepared at a concentra-
tion of 2 mg mL−1 in phosphate-buffered saline (PBS). An amount of 4 mL of the solutions
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were transferred to 5 mL glass vials. The vials were placed for 10 min in an ultrasonic
bath. The separation was started by placing one glass vial on each side of a permanent
magnet (1.3T, Webcraft AG, Uster, Switzerland). The separation was recorded using two
CMOS sensors (sensor 1: 12 MP, 1.25 µm, f/2.2; sensor 2: 12 MP, 1.0 µm, f/2.6; Xiaomi A1,
Xiaomi Inc., Düsseldorf, Germany). The quantification was done using an image processing
program (ImageJ, NIH, Bethesda, MD, USA).

2.3. Characterisation of Antifouling Property

An experiment was then conducted to test for the antifouling characteristics of the
nanoparticles. Albumin (rhodamine-labelled), the most abundant plasma protein, was
used. The three nanoparticle batches with the different polymer units were added to
PBS (concentration of 2 mg mL−1). The dispersion was achieved by using an ultrasonic
horn (3 × 30 s on ice, UP50H, Hielscher, Teltow, Germany). Tetramethylrhodamine-
conjugated bovine serum albumin (rhodamine-BSA) was dissolved in PBS (concentration of
0.4 mg mL−1), and the rhodamine-BSA solution was then diluted 3 times to reach a
concentration range where linear behaviour is observed for the antifouling tests. An
amount of 500 µL of the rhodamine-BSA and 500 µL of each nanoparticle solution were
added to an Eppendorf tube. Particles having no polymer coating were used as the
negative, while milli-Q water was used as the positive control. To ensure homogeneous
dispersion, the solutions were vortexed for 10 s, followed by an ultrasonication bath. The
samples were shaken for 90 min at 1000 rpm at 25 ◦C (Thermomixer Comfort, Eppendorf,
Hamburg, Germany) to ensure optimal contact between the proteins and the nanoparticle
surface. The particles were separated by placing the Eppendorf tubes for 1 h in a SuperMag
separator. Supernatant aliquots (5 × 100 µL) of each sample were transferred to a 96-well
plate before fluorescence was measured (ex: 540 nm, em: 620 nm; Spark 10 M; Tecan,
Männedorf, Switzerland).

2.4. Cell Line Experiments

To obtain human tumor cells for the spiking experiments, the EpCAM-expressing hu-
man colon cancer cell line HT-29 (HTB38, ATCC) was cultured in RPMI 1640 medium, sup-
plemented with glutamax (Gibco, Zug, Switzerland), 10% fetal bovine serum (FBS, Gibco)
and a mixture of penicillin/streptomycin (final concentration 100 U mL−1/100 µg mL−1,
Gibco). The cells were incubated at 37 ◦C in 5% CO2. Once cells reached confluence, they
were detached with accutase (Gibco) and resuspended in blood at 5 × 105 cells mL−1. The
cell membranes of the HT-29 cells were stained with the PKH26GL labelling kit (Sigma-
Aldrich) before they were added to whole blood for the experiments. Cell passages between
5 and 40 were chosen for these experiments.

2.5. Ethics Ex Vivo Part, Healthy Volunteers

Ethical approval for blood sampling from healthy volunteers (Ethical Committee N◦

2012-0274) was provided by the local Ethical Committee (Kantonale Ethikkommission
Zurich, Zurich, Switzerland), Chairperson Prof. Dr. Peter Meier-Abt on 14.08.2012.

2.6. Removal of CTCs from the Blood from Healthy Subjects Spiked with Tumor Cells

After informed consent, blood samples up to 20 mL were drawn from healthy subjects
into heparin tubes (BD Biosciences, Allschwil, Switzerland). The blood was then spiked
with HT-29 cells to a final concentration of 5 × 105 cells mL−1.

Eppendorf tubes containing a solution with anti-EpCAM nanoparticles (2.38 mg mL−1

in PBS) were sonicated (5 × 1 min with 1 min breaks in between) in an ultrasonication bath
in ice-cold water. In addition, a control solution with nanoparticles, conjugated with an
IgG isotype control antibody (2.38 mg mL−1 in PBS), was prepared the same way. Once
sonicated, 25 µL of either solution was added to 475 µL of blood containing tumor cells (final
concentration of nanoparticles: 0.119 mg mL−1). A second control was established with
only 25 µL PBS as carrier solution without nanoparticles. The samples were then incubated
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for 2 min on an orbital shaker (16 mot min−1, WS 10, Edmund Bühler, Bodelshausen,
Germany) before being passed through a magnet column system (MS columns, MACS,
Miltenyi Biotec, Bergisch Galdbach, Germany). Each column was washed twice with
500 µL of PBS, which was also collected as filtrate.

2.7. Analysis of Samples Using Fluorescence-Activated Cell Sorting (FACS)

The filtrates were then prepared for flow cytometry analysis based on fluorescence-
activated cell sorting (FACS). Red blood cells were lysed by adding 10 mL of red blood
cells lysis buffer (Biolegend, San Diego, USA), and samples were centrifuged for 10 min
at 400× g (centrifuge 5810R, Eppendorf). The supernatant was discarded, and the pellet
was resuspended in 200 µL PBS. The cells were fixed with 200 µL of a 4% formalin solution.
An amount of 25 µL of counting beads solution (concentration of 5.2 × 104 counting
beads per 50 µL, CountBright Absolute, Life Technologies, Zug, Switzerland) was added
to each sample before analysis using a flow cytometer (BD Canto II, BD Biosciences). The
acquisition was carried out with the BD FACSDiva Software (BD Biosciences). Forward,
side scatter area, and signal height were recorded. Circulating tumor cells were detected
using the forward scatter area vs. the PE-A. Fluorescence-activated cell sorting data were
processed using FlowJo V10.0.8, Ashland, OR, USA.

2.8. Evaluation of a Possible Effect of Nanoparticles on Blood Cells

We investigated if the nanoparticles interact with other blood cells or components
such as lymphocytes. Blood samples from healthy volunteers were exposed to anti-EpCAM
nanoparticles or to PBS without nanoparticles, as described above. The samples were run
over the magnetic column system. Lymphocytes were labelled by incubating the filtrates
with human anti-CD19 APC-conjugated (SJ25-C1, ThermoFisher, Waltham, MA, USA;
final concentration: 0.2 mg mL−1) and human anti-CD3d Alexa Fluor 48-conjugated (AB,
ThermoFisher; final concentration: 0.2 mg mL−1) antibodies for 30 min at 4 ◦C. Red blood
cells were then lysed, and samples were prepared for flow cytometry analysis, as mentioned
above. Forward and side scatter area, as well as signal height, were recorded. Lymphocytes
were detected using either side scatter area or forward scatter area and APC-A vs. Alexa
Fluor 488-A. FACS data were processed using FlowJo V10.0.8.

2.9. Evaluation of a Possible Effect of Nanoparticles on the Coagulation System

To assess the effects of nanoparticles on the coagulation system, blood samples were
incubated with anti-EpCAM or with IgG isotype particles, solved in PBS as described. After
letting the samples run over the magnetic column, rotational thromboelastometry (ROTEM),
a clinically well-established viscoelastic method to test haemostasis in whole blood as a
reliable point-of-care tool, was performed. ROTEM provides detailed information about
clot formation such as clotting time (CT), clot formation time (CFT) or maximum clot
firmness (MCF), reflecting the strength of the clot via two activation pathways (EXTEM:
activation via tissue factor; INTEM: contact activation).

2.10. Ethics Ex Vivo Part Cancer Patients

Ethical approval for blood sampling from cancer patients (Ethical Committee N◦

2016-01140) was provided by the local Ethical Committee (Kantonale Ethikkommission
Zurich, Zurich, Switzerland), Chairperson Prof. Dr. Erich Russi on 24.11.2016. The study is
registered as part of a multi-step project on clinicaltrials.gov, study identifier: NCT04290923.

2.11. Removal of CTCs from Blood Samples of Cancer Patients

Upon obtaining informed consent, blood samples from cancer patients suffering from
metastatic disease were drawn and considered for eligibility for the project. The samples
were collected in CellSave (Menarini-Silicon Biosystems, Castel Maggiore, Italy) or EDTA
tubes. The presence of CTCs in the samples was established using the CellSearch system,
with a cut-off value of 5 cells per 7.5 mL to proceed with the nanoparticle-based CTC
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removal. Eligible blood samples were treated with either the anti-EpCAM nanoparticle
solution (2.38 mg mL−1 in PBS) or with PBS as described. As analysis of such low CTC
counts is not feasible with the FACS method, the filtrates were determined using the
CellSearch system. The detection limit was one cell in 7.5 mL of blood. Results were
evaluated by trained experts with CellSpotter.

2.12. Data presentation and Statistical Analyses

Data of Figure 3b,c and Figure 4b are presented as mean with standard deviation (SD).
The two groups were compared using a two-tailed Student’s t-test. Statistical significance
was defined at the 5% level (p < 0.05). All statistical analyses were performed using the
GraphPad Prism for Mac software (version 8.1.2, GraphPad Inc., La Jolla, CA, USA).
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Figure 3. Nanoparticle optimization. (a) Separability: The graph depicts a representative of several
experiments performed with different batches. (b) Antifouling: the fraction of bovine serum albumin
(BSA) absorbed was determined in particles with a different number of polymer units. (c) Efficiency:
CTC-absorption was determined using nanoparticles with a different polymer unit.
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Figure 4. Removal of CTCs. (a) Flow cytometry data of filtrates obtained after removal of CTCs
from healthy donors’ blood spiked with tumor cells using IgG isotype and anti-EpCAM-coated
nanoparticles. The gate indicates the region where the spiked HT-29 cells appear. (b) Reproducibility
of the experiment, which was repeated three times with three different optimized anti-EpCAM
nanoparticles batches in comparison to IgG istotype nanoparticles. (c) Flow cytometry results
after treatment of blood with anti-EpCAM-functionalized nanoparticles focusing on granulocytes,
monocytes and lymphocytes. (d) Percentage of remaining granulocytes, monocytes and lymphocytes
after IgG isotope or anti-EpCAM particle treatment.
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3. Results
3.1. Optimal Nanoparticle Characteristics
3.1.1. Synthesis and Separation Capability

Nanoparticles are usually engineered to be as stable as possible. However, this often re-
sults in poor separability and performance in filtration applications. This was demonstrated
by preliminary experiments with recently developed nanoparticles with poly(3-sulfopropyl
methacrylate potassium salt) (pSPM) as polymer [28]. Therefore, polyglycidol was selected
as a polymer for the nanoparticles in this study. The electrosteric repulsions are much lower
than for pSPM, providing adequate separability while maintaining antifouling properties.
In addition, polyglycidol is biologically inert and approved by the FDA [29–31].

The nanoparticle synthesis and size are shown in Figure 2a,b. Assuming that colloidal
stability is directly dependent on the extent of the polymer coating, three nanoparticle
batches with different polymer lengths were manufactured with no polymer spacer (‘0’),
16 or 48 polymer units. The particles were then conjugated with anti-EpCAM antibodies:
Figure 2c depicts the nanoparticles, while Figure 2d shows aggregates of these nanoparticles
on HT-29 tumor cells, both analyses performed by transmission and scanning electron
microscopy, respectively.

For qualitative information about the relative magnetic separability of the three
batches, the different particles were dispersed in PBS and separated from the solution
using a permanent magnet. The separation speed was recorded with a camera and quanti-
tatively analyzed with image processing software. Increasing the amount of functionalized
polyglycidol (from 0–48) units increased separation by a magnet from seconds to several
minutes (Figure 3a).

3.1.2. Antifouling Properties

To assess the antifouling properties of the nanoparticles with the different polymer
groups, the nanoparticles were exposed to rhodamine-labelled albumin, the most abundant
plasma protein [32]. After incubation and magnetic collection of the nanoparticles, the
fluorescence of the supernatant was measured, and protein adsorption was calculated
using a standard curve. A higher degree of polymerization accounted for better antifouling
properties. Particles functionalized without spacer demonstrated a 6.8-fold higher bovine
serum albumin (BSA) adsorption than particles with 48 polyglycidol units (Figure 3b).

3.1.3. CTC Removal Efficiency

The CTC removal efficiency of the three types of nanoparticles was assessed in blood
from ten healthy donors spiked with HT-29 tumor cells. The nanoparticles that provided
the highest efficiency for CTC removal were functionalized with an average of 16 units per
polyglycidol chain (Figure 3c).

Based on the results of the separation capability, the antifouling properties and the
efficiency, nanoparticles with an average of 16 polyglycidol units were considered the most
promising material. The following experiments were all performed with this batch.

3.1.4. Specificity of CTC Removal

Removal of CTCs by the functionalized nanoparticles should result from an EpCAM
epitope-antibody interaction and not from the non-specific binding of tumor cells to the
surface of the nanoparticles. The experiment was repeated with nanoparticles conjugated
with the IgG control antibody to confirm specificity. The removal efficiency was then
compared with anti-EpCAM nanoparticles. With IgG isotype nanoparticles (control),
between 83% and 91.4% of the cancer cells remained in the blood samples, with anti-
EpCAM nanoparticles only 0.8 to 1.5% remained (Figure 4a,b).

3.1.5. Testing of Possible Adverse Effects

While the specific removal of cancer cells is desired, non-specific interaction with other
blood cells should be avoided. To exclude unintentional removal of B- or T-lymphocytes,
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their cell count was determined by flow cytometry after exposure to anti-EpCAM nanopar-
ticles (or IgG particles as control) and purification using the magnetic column system. The
B- and T-lymphocyte count was comparable, whether or not blood samples were treated
with anti-EpCAM nanoparticles (p = 0.6 and p = 0.5, respectively) (Figure 4c and Table 1).
Moreover, the cells in the gates for granulocytes, lymphocytes, and monocytes were evalu-
ated. No difference was observed between IgG vs. Anti-EpCAM nanoparticle treatment
(p = 0.4, p = 0.8 and p = 0.9, respectively, Figure 4d).

Table 1. B- and T-lymphocyte count in three different blood samples after treatment with anti-EpCAM-
coated magnetic nanoparticles (or IgG isotype particles as control). The number of B-lymphocytes
and T-lymphocytes remains similar after IgG vs. Anti-EpCAM nanoparticle treatment (p = 0.6 and
p = 0.5). n = number.

Particles

B-Lymphocytes
(n Cells per 106 Counting Beads)

T-Lymphocytes
(n Cells per 106 Counting Beads)

Test 1 Test 2 Test 3 Test 1 Test 2 Test 3

IgG 3529 2936 1641 34888 27673 20943
Anti-EpCAM 4233 2927 1447 40493 28682 19231

Additionally, a potential interaction of the nanoparticles with the coagulation system
using ROTEM was assessed. For blood samples treated with anti-EpCAM nanoparticles, all
EXTEM and INTEM ROTEM data were within the reference values (Table 2). EXTEM and
INTEM assess the coagulation cascade induced by the tissue factor and contact activation,
respectively (Table 2) [33].

Table 2. ROTEM measurements in blood from healthy subjects. The measurements were made
in blood supplemented with either anti-EpCAM nanoparticles or IgG isotype particles (control).
Clotting time (CT), clot formation time (CFT) and maximum clot firmness (MCF) for the EXTEM
channel (activation via tissue factor) and for the INTEM channel (contact activation) are displayed.
No difference was observed for the two treatments (EXTEM: CT p-value = 0.3, CFT p-value = 0.3,
MCF p-value = 0.07; INTEM: CT p-value = 0.7, CFT p-value = 0.5, MCF p-value = 0.5).

Coagulation
Parameters

EXTEM INTEM

CT
(s)

CFT
(s)

MCF
(mm)

CT
(s)

CFT
(s)

MCF
(mm)

Test 1
IgG 69 95 61 177 72 60

Anti-EpCAM 74 116 55 207 71 76
Test 2
IgG 68 162 48 213 139 48

Anti-EpCAM 109 185 44 211 150 47
Test 3
IgG 67 182 49 186 106 53

Anti-EpCam 71 178 47 175 105 51
Normal range 38–79 34–159 50–72 100–240 30-110 50–72

3.2. From the CTC In Vitro Model to Blood from Cancer Patients

Finally, nanoparticles were tested with blood samples from cancer patients. Between
October 2017 and March 2018, blood samples of 41 patients with metastatic cancer were
assessed for eligibility. Of 41 samples, 8 met the cut-off of five cells/7.5 mL to proceed with
the CTC removal experiment. Three samples were from prostate, three from colon cancer,
and two from pancreatic cancer patients. Sample treatment was identical to the treatment
of healthy volunteers’ blood samples (see above), with the only difference in the sample
volume. The samples were 7.5 mL rather than 0.5 mL, all volumes were scaled up by a
factor of 15.
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A measurement error was observed in two samples of colon cancer patients, and the
results could not be interpreted. For the remaining six samples, an average of ≥68% of
CTCs were removed with a single passage through a magnet column. The detailed results
are shown in Table 3.

Table 3. Removal of CTCs from blood samples of cancer patients. n = number. Samples 1, 2 and 3:
from prostate cancer patients. Samples 4 and 6: from pancreatic cancer patients. Sample 5: from a
colon cancer patient.

CTC n CTC without
Treatment

n CTC with
Treatment % CTC Removed

Sample 1 1946 620 68

Sample 2 95 22 77

Sample 3 161 1 99

Sample 4 8 5 37

Sample 5 75 13 83

Sample 6 11 6 45

4. Discussion

For this study, Co-C nanoparticles were covalently functionalised with a polyglycidol
coating and anti-EpCAM antibodies to purify blood samples from CTCs. These nanopar-
ticles exhibited a high degree of magnetisation while conserving good separability and
the necessary antifouling properties for this application. They specifically interacted with
CTCs through their anti-EpCAM antibody, while other blood cells were not involved in
the removal process. Additionally, no influence on the coagulation system was observed.
The manufacturing process presented little variability between batches, and CTC removal
efficacy was consistent. This allowed efficient CTC removal from the blood of healthy
subjects and blood samples of cancer patients with metastatic disease.

The use of magnetic nanoparticles for medical purposes has developed dramatically
in recent years. The possibility of manufacturing the desired particle size and coating with
biological or pharmaceutical molecules provides diverse applications, ranging from drug
delivery to imaging enhancement [34]. One of the most notable applications of magnetic
nanoparticles has been separating and isolating specific cells, notably CTCs. This has aided
in the diagnosis and in the staging of cancer patients and monitoring therapeutic response.
Isolation of CTCs is not without challenges, partly due to their very low concentration
in the blood (from 1–10 cells per 10 mL) [18]. Currently, only one system for diagnostic
CTC isolation exists. This implies that their application is restricted to low volumes of
blood. Moreover, for diagnostic purposes, interactions with other blood components are
irrelevant. Whereas for therapeutic purposes, time-efficient purification of large volumes of
blood without preprocessing is essential, and it is crucial to avoid any side effects on other
blood components.

A strength of our study is that it encompasses many steps, from manufacturing to
clinical testing of blood samples of cancer patients. The advantages provided by our
nanoparticles are notably faster clearance without compromising the separability or an-
tifouling characteristics. Additionally, no adverse effects were found, such as non-specific
blood cell removal or interaction with the coagulation system.

This study also has limitations. As a proof-of-concept study, the sample size for the
CTC removal experiment from cancer patients’ blood was small. However, the effect was
consistent, even though patients suffered from varying cancer types and had unequal
CTC concentrations. A larger sample size will be required to confirm a consistent effect
across different malignancies or highlight an improved efficacy for some cancer subtypes.
Between 37% and 99% of CTCs (mean value: 70%) were removed from cancer patients’
blood with one addition of nanoparticles. The clinical implications of such a value are
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still unknown. To increase blood purification efficiency, repeating the elimination process
might be necessary. An optimized particle production with a smaller size variance might
additionally improve purification. Furthermore, nearly complete removal of the particles
has to be ensured since toxic effects through cobalt-iron leaching cannot be excluded.
However, bioreactivity of cobalt is mainly observed in acidic pH [35]. Additionally, the
contact time between nanoparticles and blood is relatively short (only minutes).

Another limitation is that only one cell line was used, namely the HT-29 colon cancer
cells. However, this study aimed to focus on the removal of EpCAM-expression cancer cells,
independent of the entity of the tumor cell. This is exactly the mechanism the CellSearch
system uses, allowing a broad application.

Finally, one must realise that tumor cells expressing EpCAM may undergo epithelial
mesenchymal transformation with a reduction of EpCAM expression [36]. In an advanced
stage of this process, such cells will no longer be detected by EpCAM antibodies; therefore,
elimination will be reduced.

While only a tiny fraction of CTCs colonize a distant organ, CTCs are a known source
of metastases. A high CTC count has been associated with an elevated risk of metastases or
a worse prognosis in many types of cancer [37]. In addition, surgery, often the treatment of
choice, has been linked to an increase in CTC counts perioperatively [14]. The nanoparticles
presented in this article could provide the basis for developing a whole blood filtration
technology for CTC removal. Extracorporeal blood purification is an attractive method
of removing undesirable non-cellular and cellular compounds from the blood. Some
well-known blood purification methods include haemodialysis or the use of filters. While
these systems are suitable for removing small molecules, they are not optimised for larger
compounds [38].

Using magnetic nanoparticles allows a reliable and specific removal of small and
large compounds. To date, sepsis has been the main focus of novel blood purification
systems with techniques such as CytoSorb [39]. However, no blood purification device
exists for CTCs. We envision a device akin to a dialysis machine, which could purify the
blood of CTCs extracorporeally in vivo using the nanoparticles presented in this study.
Such a device might be used at any time point in the perioperative timeframe to limit the
dispersion of CTCs. Biosafety of the nanoparticles is crucial for such an application. While
interference with lymphocytes and the coagulation system could be excluded, a potential
concern could be the nanoparticles re-entering the patient’s body after filtration. However,
our group co-developed a method to detect nanoparticles in blood down to sub-picomolar
concentrations [33]. Using such a system combined with a blood purification device would
prevent nanoparticle-contaminated blood from re-entering the patient’s circulation [40].
Future studies are required to confirm the biosafety of the nanoparticles and the feasibility
of using them with a blood purification device which would require another significant
up-scale of our experimental setup. Finally, such studies would also have to investigate if
reducing the CTC count perioperatively improves prognosis and reduces the occurrence
of metastases.

In conclusion, this study presents the development of highly magnetic C/Co nanopar-
ticles conjugated with anti-EpCAM antibodies to separate CTCs from whole blood. The
advantage of these nanoparticles lies in their scalability and ease of synthesis. As shown in
the experiments, these magnetic nanoparticles can remove CTCs in specific cases without
significantly interfering with other blood cells or components. Therefore, such nanoparticles
may lay the ground for developing an adaptable blood purification technology, similar to
dialysis, to perioperatively remove CTCs from the blood of cancer patients and potentially
improve their prognosis.
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