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Iron is an essential element and the most abundant trace metal in the body involved in oxygen transport and oxygen sensing, electron 
transfer, energy metabolism, and DNA synthesis. Excess labile and unchelated iron can catalyze the formation of tissue-damaging 
radicals and induce oxidative stress. English abstracts were identified in PubMed and Google Scholar using multiple and various 
search terms based on defined inclusion and exclusion criteria. Full-length articles were selected for systematic review, and secondary 
and tertiary references were developed. Although bloodletting or phlebotomy remains the gold standard in the management of iron 
overload, this systematic review is an updated account of the pitfalls of phlebotomy and classical synthetic chelators with scientific 
justification for the use of natural iron chelators of dietary origin in resource-poor nations.

1. Introduction

Iron is an essential nutrient and a vital moiety of many proteins 
like iron-sulfur clusters (found in complex I and II, which are 
important for redox reactions involved in respiration, cellular 
energy metabolism, DNA synthesis, cell growth, and prolifer-
ation), heme moieties of cytochromes b, c, and cytochrome 
P450 that partake in oxidative phosphorylation and xenobi-
otics detoxification [1–4]. Iron is also utilized in other redox 
reactions within the cells [5, 6]. Incidentally, the inherent 
capacity of iron to revolve from its Fe2+–Fe3+ which enables 
its loss or gain of electrons, considered vital in electron trans-
port is the same feature that is implicated in its cellular toxicity 
via the generation of cytotoxic reactive oxygen species ROS 
by donating electrons to oxygen.

In man, an estimated four grams of iron is found in a heme 
form within hemoproteins (80% of iron), nonheme form dis-
tributed between storage (ferritin and hemosiderin) and trans-
port proteins (transferrin). Iron absorption is predominantly 
in the duodenum where dietary nonheme trivalent iron is 
reduced to divalent iron by the ferrireductase duodenal 

cytochrome b. �e Divalent Metal Transporter 1 DMT1, 
sequesters the divalent iron in the apical membrane of entero-
cytes to become a part of the Labile Iron Pool. In man, there 
are no regulatory mechanisms for iron excretion, however, the 
body burden of iron is largely controlled by regulatory mech-
anisms for absorption from the gut [7]. �ere should, there-
fore, be a balance between iron uptake, usage, and storage to 
maintain a tightly regulated intracellular iron concentration 
at all times [8]. Iron is indispensable for life but too much of 
anything is bad. Unchelated or nontransferrin bound iron is 
known to catalyze the formation of free radicals such as 
hydroxyl and other radical species. Iron overload as seen in 
hemochromatosis is an abnormal uptake of iron resulting in 
its accumulation in various organ systems with the attendant 
exaggerated formation of free radicals and consequent  
damage [9]. Derangement in iron homeostasis has been impli-
cated in various diseases from neurological disorders such as 
Alzheimer’s and Parkinson’s diseases to metabolic syndrome. 
As a redox active metal, iron is involved in the oxidation-re-
duction reactions that generate free radicals [10], linked with 
the catalytic decomposition of hydrogen peroxide (Fenton 
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reaction) leading to the formation of reactive hydroxyl radicals 
causing damage to biomolecules, including lipids, proteins, 
and DNA [11].

For many years, phlebotomy has been employed as the 
gold standard for the management of iron overload in hered-
itary hemochromatosis. However, phlebotomy is not usually 
optimal in some conditions of iron overload, especially 
anemia. Even the suggested alternative like erythrocytapher-
esis also called automated red blood cell exchange (aRBCX) 
may not be feasible in resource-poor countries of Sub-Sahara 
Africa (SSA) due to the lack of infrastructure. Use of  
iron chelators is an alternative where phlebotomy is not 
feasible [12]. �e evaluation of the effectiveness, safety, and 
cost of chelation treatment in the management of transfusion 
siderosis in sickle-cell disease with synthetic or classical 
chelators reported an absence of evidence regarding their 
effectiveness [13]. In view of the prohibitive cost, nonavaila-
bility and wide range of adverse effects of classical iron chela-
tors may contribute to resorting to natural chelators in the 
management of iron overload in resource-poor nations. �is 
systematic review seeks to provide evidence for the multi-
modal mechanistic considerations and beneficial roles of 
natural iron chelators in the management of various condi-
tions of iron overload in resource-poor nations. �is is an 
updated account of natural iron chelators including new 
experimental agents expected to be applicable as a deferration 
agents in various iron overload diseases. As much as possible 
this paper has also highlighted the relevance and preference 
of natural iron chelators over phlebotomy.

2. Methodology

Multiple online interactive searches in the databases of 
PUBMED, GOOGLE SCHOLAR, and SCOPUS for original 
research using terms such as “natural iron chelators”, “man-
agement of iron overload”, “phlebotomy and iron chelators”, 
“treatment of iron poisoning”, “natural antidotes for iron poi-
soning”, “iron chelation in metabolic syndrome”, “use of plant 
extracts in the treatment of iron toxicity”, “foods and supple-
ments for treating iron toxicity”, etc. Search results were 
screened, full texts obtained, inclusion and exclusion criteria 
applied to determine the suitability of articles used in this 
review. Studies that reported beneficial dietary effects of whole, 
parts or extracts of herbal plants on iron overload were 
included, and studies were excluded if the material used is a 
nonsupplemental synthetic drug or chemical agent (except for 
purposes of comparison). Articles in any other language other 
than English were excluded.

3. Results and Discussion

3.1. Search Results.  A total of 83 studies were found in the 
initial search. A�er screening their titles and abstracts, 32 
articles were excluded leaving 51 articles for further review. 
�e articles were excluded based on being relevant or not, 
twenty-four articles were not relevant (�푛 = 24), not available 
in English (�푛 = 2) and duplications (�푛 = 6). Further review of 

the full texts of the remaining articles with the application of 
the inclusion and exclusion criteria resulted in the exclusion 
of 13 additional articles, leaving 38 studies that were included 
in this review (Figure 1).

3.2. Some Diseases Associated with Iron Overload and �eir 
Prevalence in Sub-Sahara Africa (SSA)

3.2.1. Neurodegenerative Diseases.  Iron overload in the brain is 
now implicated in a myriad of neurodegenerative diseases like 
Alzheimer’s disease, Parkinson’s disease, Huntington disease, 
Friedreich ataxia, and amyotrophic lateral sclerosis. �e iron 
accumulation in certain brain regions like the substantia 
nigra in Parkinson’s disease trigger the generation of reactive 
oxygen species and intracellular α-synuclein aggregation, 
culminating in the oxidative neuronal destruction of this 
brain area [14]. Brain iron dyshomeostasis is also associated 
with the activation of the N-methyl-D-aspartic acid receptor, 
a signaling neurotoxicity cascade involving the enzyme 
nitric oxide synthase and adaptor proteins that interact with 
ferroportin, such as the divalent metal transporter-1 [15]. 
In the absence of high-quality prospective cohort studies, 
which employ internationally-validated criteria to help 
map the epidemiology of neurodegenerative diseases in 
SSA coupled with poor record keeping, it could be said 
that there is a paucity of information on the incidence of 
neurodegenerative diseases in SSA. Parkinsonian disorders 
like any other neurodegenerative disease are under-diagnosed 
in Nigeria with a crude estimate lower (10–249/100 000) than 
European data (65.6–12 500/100 000). Heavy metals through 
occupational exposure like blacksmithing and potable water 
have been implicated in the cases recorded in Nigeria [16]. 
�e estimated crude prevalence of Parkinsonian disorders 
in Nigeria was lower (10–249/100 000) compared to studies 
published in Europe (65.6–12 500/100 000) [17].

3.2.2. Cancer.  At least 100 000 new cases of cancer occur 
annually in Nigeria, with high case fatality ratio [18]. Nigeria 
contributed about 15% of the estimated 681 000 new cases 
of cancer that occurred in Africa in 2008 [19]. �e few or 
no case reports of cancer survivors in Nigeria delineate poor 
management. �e depleted levels of the protein ferroportin 
(only known protein to eliminate iron from the cells) has been 
linked with the incidence of most aggressive and recurring 
cancers such as breast cancer [20]. A report of cancer incidence 
from two regions in Nigeria revealed that the most common 
cancers in women were cancer of the breast and cervix; and 
cancer of the prostate in Nigerian men [21]. Of note the 
increasing incidence of breast cancer is an aggressive cancer 
dependent on iron in recent times [21].

3.2.3. Metabolic Syndrome.  Some countries in SSA are 
currently undergoing a rapid epidemiological transition 
to an increasing number of metabolic disorders [22], with 
suggestions like demographic changes such as aging, and the 
undesirable risk factors such as obesity and sedentary lifestyles 
as the causative factors [23–26].

According to the National Cholesterol Education Program 
�ird Adult Treatment Panel (NCEP ATP-III) ATPIII, the 
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International Diabetes Federation IDF, and the World Health 
Organization definition WHO definitions, the prevalence of 
cardiometabolic syndrome (a complex cluster of risk factors 
for cardiovascular disease, diabetes, dyslipidaemia, hyperten-
sion, and obesity) in Nigeria as follows 27.9% (NCEP ATP-III), 
28.1% (IDF), and 31.7% (WHO). �ese values are considered 
higher than the prevalence of 19.1% using ATPII criteria in 
Canada [27] and comparable to the prevalence of 33.5% in 
Australia according to the IDF definition [28], and unadjusted 
prevalence of 34.1% in the USA based on the ATPIII criteria. 
Amidst inadequate prevalence studies on cardiometabolic 
syndrome in Sub-Saharan Africa, available evidence suggests 
that Nigeria has the highest frequency of cardiometabolic syn-
drome among the Sub-Saharans probably due to the growing 
economic strength and the degree of western influence [22, 
29].

3.2.4. Sickle Cell Disease.  Sickle-cell disease is a qualitative 
haemoglobinopathy associated with mutations in the HBB 
gene, resulting from point mutations that change the sixth 
amino acid in the beta-haemoglobin chain from glutamic 
acid to valine (Glu6Val). It is characterized by chronic 
haemolytic anaemia, intermittent vaso-occlusive events, tissue 
Ischaemia (leading to acute and chronic pain), ischaemic 
and haemorrhagic stroke, acute chest syndrome, splenic 
sequestration, aplastic crises, bacterial sepsis resulting from 
hyposplenia with chronic morbidities such as cerebrovascular 
disease, pulmonary hypertension, osteonecrosis, nephropathy, 

and organ failure. Despite its predominant prevalence in 
Africa, the sickle-cell disease remains an orphan disease  
with the lack of specific funds for its management and  
research [30]. Although when performed according to stipu
lated guidelines appropriate blood transfusions may prevent 
and treat sickle cell disease associated complications [31], 
blood transfusion requirements in sickle-cell disease inevitably  
lead to increased body iron burden and, consequently, iron-
related organ damage and complications, notably hepatic 
damage and mortality [32]. Sickle-cell disease is associated with 
a chronic inflammatory state in children with the hallmark of 
high sensitivity C-reactive protein, a marker of inflammation 
and vaso-occlusive-crises leading to hospitalization [33, 34].

�ere is a high prevalence of sickle cell trait (10–45%) 
[35–37] in SSA and 2.39% sickle cell disease in Nigeria [38] 
due to the survival advantage conferred by the sickle cell trait 
against Plasmodium falciparum.

4. Management of Iron Overload

4.1. Phlebotomy: Gold Standard and Pitfalls.  Phlebotomy or 
bloodletting since its earliest use in the 1950s seems to have been 
the gold standard in the management of hemochromatosis or 
iron overload with treatment o�en commenced when serum 
ferritin levels exceed the normal range [39]. Phlebotomy is the 
induction of a mildly iron-deficient state. �e determination 
of the severity of iron overload and monitoring the response 

Total articles retrieved from databases (Pubmed,
scopus and google scholar) n = 83

Titles and abstracts read and screened

Studies retained following abstracts and titles
screening n = 51

Further review of full texts for speci�c
inclusion and exclusion criteria

Articles included in the review n = 38

Articles removed n = 13

Exclusion of irrelevant studies
n = 24

Duplicated articles excluded n = 6

Exclusion of articles not published in
english n = 2

Figure 1: Study selection flow diagram.
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form coordinate bonds with bound iron. �ese donor atoms 
namely oxygen, nitrogen or sulfur of the ligand affect the pref-
erence of the chelator for either the Fe2+ or Fe3+ oxidation states 
[48]. Usually, Fe2+ chelators possess nitrogen and sulfur donor 
atoms (so-called ‘so�’ donor atoms) which also have a high 
affinity for other biologically important divalent metals such 
as Cu2+ and Zn2+ [49]. An ideal iron chelator must also effec-
tively compete with the biological ligands that normally bind 
iron; therefore, the affinity of chelators for iron, and their sto-
ichiometry of iron binding will greatly impact their activity as 
therapeutic agents [50, 51]. Iron chelation is undoubtedly of 
immense benefit in the management of iron overload in man 
but can play other useful roles in diseases mediated by oxida-
tive stress such as ischemia-reperfusion injury [52], liver infec-
tious [53], and neurologic diseases [54], diabetes, inflammation 
[55–57], and atherosclerosis [58]. �ere is a need to extensively 
explore natural compounds derived from microorganisms 
siderophores and plants.

Literature is replete with studies that lend credence to the 
fact that foods containing plant polyphenols and flavonoids 
may have benefits not only as potent antioxidants but also as 
iron chelators [59–62] (Tables 1 and 2). �ese flavonoid-rich 
foods according to their subclasses include flavanols (examples 
of rich sources: teas and red wine), flavanone (citrus foods), 
flavones (fruit skins, peppers, and leafy vegetables), isoflavones 
(soy foods), flavonols (leeks, onions, leafy vegetables, and 
tomatoes), anthocyanidins (berries) and proanthocyanidins 
(apples, chocolate, and nuts) [63]. A common chemical feature 
of proanthocyanidins, epicatechins, flavonol, and anthocyanin 
is the iron-binding motif like the catechol moiety that is a 
known iron-binding element of microbial siderophores [64].

4.2.1. Spices/Turmeric.  Turmeric is a spice from the root 
of a turmeric plant (Curcuma longa) with yellow colored 
active ingredient called curcumin. Iron chelation is an 
inherent property of curcumin that has been employed in 
the management of cancer [44, 65–67]. Both in vitro studies 
involving liver cells treated with curcumin (one of the naturally 
occurring iron chelators) and in vivo studies using mouse model 
of thalassemia, exhibited fingerprints of iron depletion, which 
included decreases in the iron-storage protein ferritin, increases 
in transferrin receptor 1, repressed synthesis of hepcidin and 
activation of iron regulatory proteins [68]. Curcumin crosses 
the blood-brain barrier to exert its antioxidant and iron-
chelating properties in the brain [69–71]. Curcumin also  
has shown neuroprotection capability in a Parkinson disease 
model [72] reducing both oxidative damage and amyloid 
pathology in an Alzheimer disease model [73].

4.2.2. Staple Crops.  Polyphenols abundant in different types 
of foods like wheat, potato, soybean, sorghum, and common 
beans are known inhibitors of iron bioavailability [74]. 
Several workers have demonstrated strong binding capacity 
of polyphenols with iron [75–77]. In vitro and in vivo studies 
with whole colored beans and the seed coats of colored beans 
have regularly shown polyphenol mediated impairment 
of iron bioavailability [78, 79] and this inhibition has been 
demonstrated to be due to the presence of polyphenols in the 
seed coat. Similarly, the antioxidant activities polyphenol-

to treatment usually require a battery of tests viz laboratory 
quantification of serum ferritin concentrations, magnetic 
resonance imaging (MRI) to assess the liver and cardiac 
iron levels, and, in some cases, liver biopsy [7, 40]. It is 
usually advisable to avoid iron deficiency with lower serum 
ferritin levels since this may be associated with unnecessary 
and worrisome symptoms or, paradoxically, lead to further 
hepcidin (type II acute-phase protein that mediates the 
hypoferremia associated with infection and inflammation) 
depression and increased iron absorption during therapeutic 
phlebotomy [39]. Generally, phlebotomy is a delicate titration 
requiring in-depth knowledge of the patient’s serum ferritin 
levels by the physician that cannot be handled by a lay-person 
or outside the hospital setting.

�erapeutic phlebotomy is contraindicated in conditions 
like severe anemia, cardiac failure, or poor tolerance and in 
all these iron chelators have been considered as an alternative. 
Given that for ethical reasons the efficacy of phlebotomy is yet 
to be validated in controlled studies and its survival benefits 
remain hitherto not evaluated in patients with hemochroma-
tosis [39]. Phlebotomy tends to improve transaminase levels, 
skin pigmentation, and hepatic fibrosis but seem to have no 
beneficial effects on life expectancy in hemochromatosis-re-
lated hypogonadism, cirrhosis, destructive arthritis, and insu-
lin-dependent diabetes [41]. Since dietary absorption of 
divalent metals, including iron, require the same transporter 
(DMT1), homeostasis of the other metals will be continuously 
abnormal in patients who undergo phlebotomy [42, 43].

4.2. Dietary Sources of Iron-Chelators.  �e participation of 
unbound or loosely chelated iron in intractable generation 
of ROS and tissue damage remains a common feature in iron 
overload related diseases. �erefore, effective scavenging of 
excess iron is a plausible means to restrain and quell free 
radical-mediated tissue damage. Iron chelation is gaining 
traction in the management of various iron-related diseases. 
Chelators will not only remove iron from the body but also 
scavenge and firmly bind free iron to prevent the generation 
of ROS [44, 45]. Classical chelation is widely used in the 
treatment of iron loading anaemias but because of its cost, 
inconvenience, monitoring requirements, and untoward 
effects, newer chelating agents especially of dietary sources 
that are cheaper and more readily available might provide 
effective alternatives for this clinically consequential and 
common group of disorders.

An ideal chelator of redox active metals should tightly bind 
Fe3+, have low molecular weight, possess lipophilicity to pen-
etrate the blood–brain barrier in the case of management of 
neurodegenerative diseases and possess minimal toxicity. 
Interestingly, one of the most notable iron chelators desferri-
oxamine is of natural origin. Desferrioxamine is produced by 
the Streptomyces species [46], with a molecular structure that 
consists of multiple hydroxyl and carbonyl groups that can 
chelate iron in a 1 : 1 ratio. Its relevance in iron overload man-
agement lies in its specific preference in the binding of iron 
over calcium to protect myocytes against peroxide-induced 
damage [47].

�eir chemical diversity notwithstanding, typically iron 
chelators contain oxygen, nitrogen or sulfur-donor atoms that 
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epigallocatechin gallate (EGCG) suppress nonheme iron 
absorption in human intestinal Caco-2 cells [82].

4.2.6. Garcinia Kola.  Garcinia kola nut, a commonly chewed 
bitter seed in Nigeria contains kolaviron, a natural bioflavonoid 
found to be a potent iron chelator in the protection against 
lipid oxidation in rats [97]. Quercetin binds both Fe3+ and 
Fe2+ with even a stronger affinity for Fe2+ than ferrozine a 
well-known Fe2+ chelator. At micromolar concentration, even 
in the presence of the major cellular iron chelators ATP or 
citrate, quercetin can inhibit iron-promoted Fenton chemistry 
suggesting that the radical scavenging property of quercetin 
provides only partial protection against damages mediated by 
Fenton chemistry. Taken together, the antioxidant activity of 
quercetin may largely be due to its iron chelation property [98].

In a wide range of cellular and animal models of neuro-
logical disorders, catechins have shown their ability to chelate 
divalent metals in addition to their antioxidant, anti-inflam-
matory activities in penetrating the blood–brain barrier and 
eventual protection of neuronal death [99].

4.2.7. Plant Extracts.  Silymarin is the flavonoid extract 
of Silybum marianum, or milk thistle with its major active 
compound as silybin, when consumed with a meal resulted 
in a considerable reduction in the amount of dietary iron 
absorbed [100]. In the neutral pH of the duodenum, silybin 
forms a complex with unchelated ferric iron [101], to 
hamper its absorption. Silybin is more effective in limiting 
the postprandial increase in serum iron compared with  
tea [100]. Vitamin C enhances absorption of nonheme  
iron [102], and in fact, counteracts the iron-binding effect 
of tea polyphenols [103]. Silybin consumption has led to 
the appreciable reduction in the amount of iron absorbed 
from a single meal, even in the presence of vitamin C [100]. 
Similarly, another study also reported that the iron-chelating 
properties of silybin were responsible for the decrease in 
the body burden of iron in patients with chronic hepatitis 
C a�er 12 weeks of oral silybin [104]. In vivo iron chelating 
studies and phenolic profiles of the angel’s wings mushroom, 
Pleurotus porrigens, a culinary-medicinal mushroom 
reported satisfactory potency to chelate excessive iron in 
mice, potentially offering a new natural alternative to treat 
patients with iron overload [105].

�e hepatoprotective action of methanol extract of Acacia 
catechu heartwood or Katha against hepatic damage induced 
by iron overload in mice is also thought to be by ameliorating 
the antioxidant defense activities and reductive release of fer-
ritin iron [106]. �e ethanolic extract of Azadirachta indica 
tested for free radical scavenging activity by 2,2′-azi-
no-bis-3-ethylbenzothiaziline-6-sulfonic acid (ABTS) and for 
the reduction of the power of ferric ion Fe3+ to ferrous ion Fe2+ 
by ferric reducing antioxidant plasma (FRAP) assay, showed 
free radical scavenging activities, decreased the redox cycling 
of ferric ion (Fe3+) to ferrous ion Fe2+ in dose-dependent man-
ner and a rapid binding of iron [107].

Other phenols (chrysin, puerarin, naringenin, and genis-
tein) and traditional Chinese medicine/herbs (panax ginseng, 
ginkgo biloba, scutellaria baicalensis Georgi) are also known 
to have strong iron chelation property [89, 90].

rich extracts obtained from both green tea and grape seed is 
known to accentuated by their iron chelation potency [80, 81] 
Polyphenols impede nonheme iron absorption by decreasing 
basolateral iron exit rather than by reducing apical iron import 
in intestinal cells [82].

Phytate in soy protein is a strong inhibitor of nonheme 
iron absorption in humans [83, 84] Postmenopausal women 
who are at risk of excess iron may benefit from dietary soy 
protein to reduce iron stores, and lower cardiovascular risk 
[85]. Reduced iron stores as evinced by serum ferritin con-
centrations, reduced serum iron, and transferrin saturation 
were observed in postmenopausal women a�er six-week con-
sumption of commercially prepared powders of soy protein 
with native phytic acid [85].

4.2.3. Teas.  Phyto-polyphenols, like epigallocatechin gallate 
(EGCG), are also natural iron chelators. Epigallocatechin 
gallate (EGCG), (one cup of tea contains 30–130 mg EGCG) 
has several metal binding sites in its structure. �e antioxidant/
neuroprotective activity of green tea catechins like EGCG is 
linked to their iron chelation properties [86]. Recent studies 
have shown that the phenolic hydroxyl groups on the aromatic 
rings of EGCG confer the antioxidant and iron-chelating 
activities [44, 87, 88].

EGCG has been demonstrated to be neuroprotective in 
experimental models of Parkinson disease [89, 90], Alzheimer’s 
disease [91], and amyotrophic lateral sclerosis [92]. Green tea 
catechins in addition to being scavengers of free radicals have 
well-defined metal-chelating properties, in their 3′,4′-dihy-
droxyl group in the B ring as well as the gallate group [82, 93].

Earlier consideration of beneficial effects of green tea cat-
echin polyphenols hinged mainly on free radical scavenging 
but at the moment these polyphenols are known to be multi-
faceted acting compounds that direct numerous cellular neu-
roprotection/neurorescue mechanisms involving iron 
chelation, scavenging of oxygen, and nitrogen radical species 
and activation of protein kinase C signaling pathway and pro-
survival genes. Since the green tea catechin polyphenols are 
not toxic and possess the ability to permeate the blood-brain 
barrier given their lipophilicity they have been touted for 
removal of iron from specific brain areas where it preferentially 
accumulates in neurodegenerative diseases [94]. Heavy metals 
especially iron is implicated in the activation of redox cycling; 
thus, iron-chelation therapy should be considered as a valuable 
strategy for the treatment of neurodegenerative diseases [95].

4.2.4. Berries.  �e fruits of elderberry, Sambucus nigra L., a 
common wild-growing bush in many parts of Africa are a rich 
source of cyanidin-based anthocyanins which is a potent iron 
chelator. �e iron chelating potency of “Haschberg extract” 
majorly attributed to cyanidin-3-glucoside was found to be higher 
than even known standard iron chelators [96]. Anthocyanins are 
close derivatives of flavonoids and thus the functional groups 
responsible for chelation/reduction may be similar.

4.2.5. Citrus/Grape Seed.  Gallic acid, catechin, and 
epigallocatechin gallate (EGCG) are also polyphenols 
from grape seed extract with potent antioxidant activities 
attributable to iron chelation [82]. Grape seed extract and 
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above 2000 µg/l, iron chelation with desferrioxamine and 
deferiprone form the mainstays of therapy in developed 
nations where these iron chelators are available and affordable 
[134]. �e poor oral absorption of desferrioxamine leaves no 
alternative for its administration but expertise demanding 
slow intravenous or painful subcutaneous infusions which 
compromise patients’ compliance [135, 136] or not be afforda-
ble in resource-poor settings. Ophthalmic and auditory tox-
icity, bacterial and fungal infections, haematogical changes, 
allergic and skin reactions, and pulmonary, renal and neuro-
logical effects [137] are the daunting side effects of desferri-
oxamine in addition to the prohibitive cost [138]. Deferiprone 
the orally active iron chelator is not also devoid of the side 
effects of desferrioxamine has been shown in patients who 
reported gastric discomfort, zinc depletion, leukopenia, tran-
sient agranulocytosis or transient musculoskeletal, and joint 
pain. In developed nations, the clinical experience with iron 
chelation in transfusional siderosis is from thalassaemia 
patients as shown in literature with very lean mention of sickle 
cell anaemia which is common in resource poor nations in 
Sub-Sahara Africa. �ere is a great need for clinical studies of 
iron chelation therapy in sickle cell anaemia in Sub-Sahara 
Africa where an estimated 180,000 children are born each year 
with this haemoglobinopathy [139].

Since research findings indicate that specified amounts 
of iron are sine qua non for the progression of cell cycle, 
therefore, iron chelators in addition to ensuring cellular 
depletion of iron also target critical iron-regulated mole-
cules in the cell cycle to mediate its antiproliferative activity 
in cancer [140–142].

Phlebotomy may prevent some complications of haemo-
chromatosis and/or diminish their intensity following iron 
depletion, decrease dyspnoea, pigmentation, fatigue, arthral-
gia or hepatomegaly, or improved control of diabetes mellitus 
and le� ventricular diastolic function but cannot reverse the 
course of hepatic cirrhosis, and increased risk of primary liver 
cancer, hyperthyroidism or hypothyroidism [143]. �e chal-
lenge of lifetime conventional phlebotomy involving 250–
500 ml once or twice weekly during the initial phase, depending 
on patient characteristics and the level of iron overload, fol-
lowed by 500 ml every 2–4 months which is considered the 
best option that is required for normal erythropoiesis and 
repeated visits to a healthcare facility, and patients’ intolerance 
in some cases [143].

�ere is a consensus that patients with serial serum ferritin 
levels exceeding 1000 ng/ml and a total infused red blood cell 
volume of 120 ml/kg of body weight or more be treated with 
chelation therapy. Given the myriad of the side effects of clas-
sical iron chelators which range from auditory, ocular, and 
neurological toxicity; growth and skeletal abnormalities, 
Neutropenia and agranulocytosis; muscle and joint pain; gas-
tric intolerance; hepatic dysfunction; zinc deficiency, gastro-
intestinal disturbances; rash to possible renal toxicity, natural 
iron chelators like curcumin, silybin, etc. may be promising 
alternatives in the management of iron overload in man not 
only because they are devoid of the side effects of the synthetic 
iron chelators but because of their multimodal beneficial 
mechanisms which tend to repair the organs previously 
damaged by the excess iron.

4.2.8. Shrimp.  Shrimp shell wastes are rich sources of phenolic 
compounds [108], with important antioxidative properties 
[109, 110]. �e rationale behind the consumer’s preference for 
natural antioxidants has been accentuated by their multimodal 
activities and toxicity of synthetic antioxidants [111, 112]. �e 
squid pen powder fermented extract rich in phenolic and 
amino containing compounds is bioactive rich liquor with 
beneficial biological functions due to its inherent protein and 
chitin hydrolysis activity as well as the production of other 
bioactive materials during fermentation [113]. Serranticin 
isolated from the squid pen powder is analogous to siderophores 
(hexacoordinated catecholamine), which are iron chelators 
[113]. Serranticin may be of pharmacotherapeutic value in 
the management of diseases related to iron overload [113]. 
Similarly, parabactin, isolated from Paracoccus dentrificans 
[114], is at least 300% more effective than desferrioxamine, 
a known chelating agent for iron decorporation, in removing 
iron from a rodent model [115].

Most polyphenolic compounds notably flavones, isofla-
vones, stilbenes, flavanones, catechins (flavan-3-ols), chal-
cones, tannins, and anthocyanidins are known to chelate iron 
in addition to their antioxidant effects [116]. Flavones such as 
quercetin [117], rutin [118], gossypetin, myricetin, quercitrin, 
isoquercitrin [119], and flavonol [120] are the most potent in 
these regards. In Fanconi anemia and thalassemia, rutin appre-
ciably suppresses free radical production by neutrophils and 
increased the hemoglobin level [121].

Antioxidant activity [87, 122], regulatory inhibition of 
mitochondrial monoamine oxidase MAO activity [123, 124], 
stabilization, and transcriptional activation of iron-dependent 
HIF-1 [125–127], a selective ability to inhibit protein aggre-
gation and accumulation are some additional beneficial neu-
rotherapeutic properties of iron chelators in iron overload [14, 
128]. Iron chelation by catechins affects not only the posttran-
scriptional regulation of iron homeostasis-related RNAs, but 
also the induction of genes regulated by the hypoxia induced 
factor 1 HIF-1, that regulates the physiological responses to 
low oxygen levels and the pathophysiology of heart attack, 
cancer, stroke, and chronic lung disease [129]. �ere is an 
experimental evidence that dietary iron restriction or iron 
chelation protects from diabetes and loss of β-cell function in 
the obese mouse [130]. Although low-iron diet significantly 
ameliorated diabetes in the mice, iron chelation had a more 
dramatic effect, allowing the obese mice to maintain normal 
glucose tolerance for at least ten weeks despite no effect on 
weight [130].

Iron chelation is the laudable alternative in iron overload 
in transfusional siderosis induced in patients with thalassemia 
major, and other refractory anaemias [131]. It has also been 
employed in thalassemia major patients and in other condi-
tions of haemoglobinopathies such as sickle cell anaemia [132, 
133]. Sickle cell anemia is most prevalent in Sub-Sahara Africa, 
especially in equatorial African populations. Children born 
with such severe haemoglobinopathies like thalassemia major 
and sickle cell anaemia live on regular transfusions with no 
consensus on the follow-up, and therapy of the resulting iat-
rogenic siderosis.

With the contraindication of phlebotomy and the inevi-
table likelihood of most patients swi�ly attaining ferritin levels 
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5. Conclusion

Given the rising prevalence of pathologies associated with iron 
overload in resource poor countries of SSA, natural chelators 
may be laudable alternatives to both synthetic chelators and 
phlebotomy in management of iron overload especially in 
these resource poor countries. �ere is a need for further stud-
ies on the growing iron burden in sickle cell disease together 
with larger and longer randomized clinical trials need to be 
performed with natural chelators.
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