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Introduction

Oxytocin, a nine amino acid CNS neuropeptide, was
discovered by Sir Henry Dale in 1906 when he found
that extracts from the human posterior pituitary gland
contracted the uterus of a pregnant cat; it was also
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SUMMARY

Is oxytocin the hormone of happiness? Probably not. However, this small nine
amino acid peptide is involved in a wide variety of physiological and patholog-
ical functions such as sexual activity, penile erection, ejaculation, pregnancy,
uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes,
cancer, social bonding, and stress, which makes oxytocin and its receptor po-
tential candidates as targets for drug therapy. In this review, we address the
issues of drug design and specificity and focus our discussion on recent find-
ings on oxytocin and its heterotrimeric G protein-coupled receptor OTR. In
this regard, we will highlight the following topics: (i) the role of oxytocin in
behavior and affectivity, (ii) the relationship between oxytocin and stress with
emphasis on the hypothalamo-pituitary—adrenal axis, (iii) the involvement of
oxytocin in pain regulation and nociception, (iv) the specific action mecha-
nisms of oxytocin on intracellular Ca?* in the hypothalamo neurohypophysial
system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a vis-
ible fluorescent protein to study the physiology of vasopressin and oxytocin,
and (vi) the action of the neurohypophysial hormone outside the central ner-
vous system, including the myometrium, heart and peripheral nervous system.
As a short nine amino acid peptide, closely related to its partner peptide vaso-
pressin, oxytocin appears to be ideal for the design of agonists and antagonists
of its receptor. In addition, not only the hormone itself and its binding to OTR,
but also its synthesis, storage and release can be endogenously and exoge-
nously regulated to counteract pathophysiological states. Understanding the
fundamental physiopharmacology of the effects of oxytocin is an important
and necessary approach for developing a potential pharmacotherapy.

Sir Henry Dale who coined the name oxytocin from
the Greek words wxvé, toxkox&, meaning “swift birth.”
Oxytocin was the first peptide hormone to be sequenced
and synthesized by Vincent du Vigneaud in 1953; for
this achievement he was awarded the Nobel Prize in
1955 [1].
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Regulation of Oxytocin Release

Oxytocin is produced in the supraoptic and paraventric-
ular nuclei of the hypothalamus and is mainly released
(by exocytosis) from the neurohypophysis and nerve ter-
minals in response to multiple physiological stimuli (see
Refs. 2-6). The somatodendritic release of vasopressin
and oxytocin has been widely demonstrated [7]; the re-
lease of oxytocin increases during the milk-ejection re-
flex [8]. The mechanisms underlying the autoregulation
of oxytocin and vasopressin neurones by the peptide that
they themselves synthesize and the involvement of au-
toreceptors [9], Ca®" channels [10], intracellular Ca?" sig-
nals [11], and intracellular Ca?* stores have also been
clearly described [12,13].

In oxytocin cells, oxytocin binds to specific oxytocin
receptors (OTR), which trigger an increase in [Ca**];.
This Ca?* response is selectively blocked by the oxytocin
receptor antagonist [d(CH2)5,Tyr(Me)2,0rn8]-vasotocin
but is not affected by selective antagonists of AVP re-
ceptors, suggesting the specific action of oxytocin. The
[Ca?*]; increase induced by oxytocin results mainly from
a mobilization of Ca?* from thapsigargin-sensitive intra-
cellular Ca*" stores, and from an effect of OTR on Ca*"
influx similarly to the V;, receptors (12). In contrast,
the vasopressin-induced [Ca?*]: increase can predomi-
nantly result from an influx of Ca?* through voltage-
dependent Ca?* channels in some cell types [10], to-
gether with a Ca?" release from internal thapsigargin-
sensitive stores via the activation of inositol-trisphosphate
receptors (InsP;R), since the AVP receptor subtype Vi,
is always directly coupled to the phospholipase C (PLC)
signaling pathway. It should be noted, however, that
in the supraoptic vasopressin neurones, though the va-
sopressin Vi, receptors have been shown to be simul-
taneously linked to the adenylyl cyclase (AC) pathway
[11,12,14], may reflect indirect regulations possibly via
the presence of Ca?*-sensitive AC in this tissue, up to
now, no direct coupling between V;, and AC had been
described.

It is important to indicate that the concentrations of
oxytocin, vasopressin, and their respective agonists and
antagonists used in our previous studies for both mea-
suring intracellular Ca®* signals in isolated SON neu-
rones and oxytocin/vasopressin release from the isolated
supraoptic nuclei in vitro, ranged between 1 nM and 1 uM
[9]. The threshold concentration necessary to induce a
modification of the firing rate of oxytocin neurones is
between 1 and 10 nM oxytocin [15]. The selectivity for
OTR is still an open debate. The selectivity of most of
the peptide agonists and antagonists described later in
this communication is mainly based on in vivo assays and
not directly on receptor assays. Moreover, these peptides
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have never been tested for their affinities on Vy;, receptor.
Thus, it is advisable to be quite cautious on the question
of their selectivity. Of interest, in a recent review, Chini et
al. have clearly stated that establishing the affinity and ef-
ficacy of selective agonists and antagonists for vasopressin
and oxytocin receptors is a complex task and depends on
all the vasopressin/oxytocin receptor subtypes within the
species under investigation [16].

In this particular physiologically relevant model, that
is, the SON neurones, no detailed receptor pharmacology
was performed. Noteworthy that the activation of oxy-
tocin receptors by oxytocin and the messengers involved
in the signaling cascade are more straightforward than
those described for vasopressin (see review by Dayanithi
et al. [12]). There is still debate regarding the appropriate
concentrations of specific agonists and antagonists to use
in examining the physiology of SON neurones.

Another aspect that deserves attention is the regula-
tion of oxytocin and vasopressin release by neurosteroids.
In this study, experiments were performed to look at the
[Ca**]; profiles and peptide release from both supraoptic
nuclei and their axon terminals in different age groups,
ranging from young animals to fully grown adults [17].
The results showed that at the level of SONs, the oxytocin
release induced by neurosteroids involves a mechanism
that partly depends on the presence of GABA (depolariz-
ing in young rats) and that the effect of the neuroactive
steroid allopregnanolone upon oxytocin release changes
with age, as the action of GABA,4 receptors changes from
excitation to inhibition of oxytocin neurones [17].

Recently we have highlighted the importance of the re-
lationship between neurosteroids, oxytocin and the role
of calcium ions [18,19]. Further studies have demon-
strated that glial coverage of neurones and of their
synapses is modified in response to stimulation. During
stimulation, intersynaptic crosstalk is enhanced when as-
trocytes withdraw their processes. Therefore, astrocytes
are critically important for the regulation of communi-
cations between neighbouring synapses and extrasynap-
tic transmission. Under conditions of increased oxytocin
secretion, for exmaple, during lactation or osmotic stim-
ulation, astroglial coverage of supraoptic nucleus neu-
rones in the hypothalamus is significantly diminished
[20,21]. Because glial cells represent a physical barrier
to diffusion, they have been shown to influence ex-
trasynaptic (or volume) transmission [22,23]. Reduction
of the astrocytic coverage of SON neurones dramati-
cally increases the extracellular diffusion of the primary
neurotransmitter glutamate and, as a consequence, in-
creases the glutamate-induced heterosynaptic depression
of GABAergic transmission [24]. The changes in diffusion
properties and in glutamate spillover that are associated
with anatomical remodeling are thus likely to improve
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neurohypophyseal hormone release in response to suck-
ling or dehydration [25]. The question arises to what ex-
tent does oxytocin control the astroglial remodeling.

Localization of Oxytocin Receptors
within the Brain

The central actions of oxytocin are mediated via oxytocin
receptors (OTRs) distributed widely in the brain in a re-
markably species-specific fashion. Areas containing OTRs
include, but are not restricted to, the ventromedial nu-
cleus of the hypothalamus, the amygdala, the lateral sep-
tum, the bed nucleus of the stria terminalis, the anterior
olfactory nucleus, the preoptic and ventral tegmental ar-
eas, and the hippocampus [26,27]. Oxytocin binding sites
in the medial preoptic and ventral tegmental areas are
up-regulated during pregnancy and cooperation and are
thought to be involved in the mediation of maternal be-
havior (for a recent review, see Ref. 28).

In 1998, Nancy L Ostrowski showed that OTR mR-
NAs are distributed widely in the forebrain, includ-
ing the limbic system and the hypothalamus, as well
as in the brain stem [29]. This author divided the
brain regions expressing OTR mRNA as follows: (i) re-
gions involved in steroid-sensitive reproductive behaviors
(hypothalamic ventromedial nucleus: VMH, paraventric-
ular nucleus: PVN), (ii) regions involved in maternal be-
haviors (PVN, substantia nigra, ventral tegmental area),
(iii) region involved in learning and memory (hippocam-
pus) and (iv) regions involved in reinforcement (substan-
tia nigra, ventral tegmental area, lateral septum, caudate
putamen, amygdaloid nuclei, olfactory tubercle and cin-
gulate, perirhinal, and frontal cortices).

Another study employed functional magnetic reso-
nance imaging (IMRI) to detect the locations of oxytocin-
responding brain regions (not necessarily equivalent
to OTR locations, because some of these areas could
be target sites of oxytocin-stimulated neurones having
transmitters other than oxytocin) [26]. In this report
the authors tried to visualize oxytocin-responding regions
following the central injection of oxytocin into lactating
rats (compared with noninjected control animals). They
also performed several behavioral tests: the freezing (fear-
associated immobility) time in response to odor stimula-
tion with 2,3,5-trimethyl-3-thiazoline (or TMT, a chemi-
cal extracted from fox feces) was significantly shortened
by oxytocin injection, while the grooming time was sig-
nificantly prolonged by oxytocin. No difference was de-
tected in other tests. These results showed that oxytocin
effectively reduced the anxiety caused by a fear stimulus.
The outcomes of fMRI mapping were as follows: the au-
thors illustrated the brain regions that had an increased
blood oxygenation level dependent (BOLD) response as
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red to yellow and those that had decreased BOLD re-
sponse as blue to purple. Oxytocin affected both positive
and negative BOLD responses across the olfactory and
forebrain nuclei (larger increases: the anterior cingulate,
the bed nucleus of the stria terminalis, and the perirhinal
area; larger decreases: the mammillary bodies, the sec-
ondary motor cortex, the gustatory cortex, the prelimbic
prefrontal cortex, the orbital cortex, and the anterior ol-
factory nucleus).

A different approach to the assessment of OTR local-
ization utilizes immunocytochemistry. Adan et al. found
immunoreactivity for rat OTR in the pituitary and mam-
mary glands, the uterus and in the brain (the ventrome-
dial hypothalamus, the bed nucleus of the stria termi-
nalis, the ventral pallidum, the PVN, the dorsal part of
the supraoptic nucleus) [30]. Surprisingly no immunore-
activity could be seen in the ventral hippocampus or the
central nucleus of the amygdala, although autoradiog-
raphy showed oxytocin binding sites in these two areas
of the brain. The authors interpreted the data as being
due to the presence of ditferent OTR subtypes, which was
not, however, demonstrated directly. Moreover, to date,
no reliable antibodies raised against OTR are available,
which prevents any good immunocytochemical localiza-
tion studies. Therefore, only histo-autoradiography gives
consistent results.

A more precise study of oxytocin binding using histo-
autoradiography, especially regarding the rat amygdala,
was undertaken by Veinante and Freund-Mercier in 1997
[31]. For a complete overview on OTR with a special em-
phasis on OTR localization, the readers are advised to re-
fer to the outstanding review of Gimpl and Fahrenholz
[32].

The Role of Oxytocin in Social
Behavior and Affectivity

Social bonding is essential to species survival since it fa-
vors reproduction, protection against predators and en-
vironmental changes, and brain development [33]. Ex-
clusion from the group results in individual physical and
mental disorders and leads ultimately to death, both
in animal models and in primitive human tribes [34].
Moreover, behavioral pathologies characterized by neu-
rochemical pathway defects, such as autism and depres-
sion, lead to social isolation. Thus, it is of particular im-
portance to understand the molecular mechanisms that
sustain the establishment and modulation of relation-
ships between individuals, especially in the context of
treatments and drug therapies for patients.

Although a wide range of specific neurotransmitters
(dopamine, endorphins) is involved in the processes of
synaptic activity formation and regulation that occur
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especially during cognition phenomena and the onset of
other behavioral patterns, oxytocin and its receptors ap-
pear to hold the leading position among the candidates
for the substance of “happiness.” If not “happiness,” at
least it seems to be an important brain compound in
building trust, which is necessary in developing emo-
tional relationships, a process also referred to as social
bonding. There is a discharge of the neuropeptide oxy-
tocin during parturition, milk ejection, and orgasm, indi-
cating that it could play a major role in the social bonding
of animals and humans as well. A recent study demon-
strated that a nasal spray of oxytocin raised the trust (in
a stranger) of people playing a money game [35]. Fur-
thermore, the spray was said to reduce the activities of
the amygdala and caudate nucleus, regions of the brain
implicated in emotions, fear conditioning and social cog-
nition on the one hand, and learning, memory and feed-
back processing on the other hand [36,37]. Nevertheless,
the role of oxytocin in ordinary relationships and real-
life circumstances is still unclear. However, such findings
could bring some hope in the treatment of social disorders
such as phobia and autism [38].

Recently, Israel and collaborators demonstrated a cor-
relation between oxytocin receptor gene polymorphisms
and individual differences in prosocial behavior [39]. This
finding highlights the fact that any kind of oxytocin ther-
apy should be addressed individually, which might make
the design of drugs much more complex.

Another demonstration of the direct role of the oxy-
tocin receptor in the socialization of normal patients was
provided by Lucht et al., though with a reduced sample
size. They could associate oxytocin receptor haplotypes
with affect regulation, social interaction (social and emo-
tional loneliness) and cognition (intelligence) [40].

Furthermore, oxytocin and its receptors are involved
in a plethora of social and affective, physiological and
pathophysiological behaviors, ranging from attachment
security, mating [41], paternal behavior and motherhood
[33] to autism [42-44] and obsessive—compulsive disor-
der [45]. In addition, the neuropeptide also modulates
learning, memory and intelligence as shown in animal
and human investigations [46,47]. In mice, an anxiolytic
effect of oxytocin via the direct activation of the oxy-
tocin receptors has been demonstrated [48]. Noteworthy
is the link made by a recent study between oxytocin ad-
ministration and injury healing. Vitalo et al. provide evi-
dence that injections of the hormone oxytocin (as well as
nest making activity) had a positive influence on wound
healing in isolated reared rats [49]. They believe that ex-
ogenous oxytocin and an enriched environment (i.e., the
possibility to build nests) play a role in the modulation
of the hypothalamic-pituitary axis (HPA) responsible for
stress responses. Thus, the effects of the neuropeptide go
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beyond its interaction with its receptors in the CNS and
can also indirectly control phenomena occurring at the
periphery.

Therefore, the potential of oxytocin for drug targeting
is immense and brings some hope for alleviating seri-
ous social disorders, but the issue appears obviously ex-
tremely complex to tackle since the specificity of action
might be quite difficult to control [50].

Effect of Oxytocin on the Regulation
of the Hypothalamo-Pituitary-Adrenal
(HPA) axis

Several studies have demonstrated that, under physio-
logical conditions, the secretion of adrenocorticotropic
hormone (ACTH) by the anterior pituitary corti-
cotrophs is controlled by hypothalamic hormones such as
corticotrophin-releasing hormone (CRH) and vasopressin
(see reviews in Refs. 51,52) and by oxytocin under stress
conditions [53]. In addition to CRH and vasopressin,
the oxytocin-induced ACTH secretion is suppressed by
adrenal glucocorticoid hormones, and hence oxytocin is
considered to be a hypophysiotrophic hormone. In the
early 1990s, Dayanithi’s group first demonstrated that
oxytocin alone at physiological concentrations (already
at 1 nM) under normal conditions, applied in a pulsatile
fashion, induces the release of ACTH in freshly isolated
rat anterior pituitary cells [54]. It should be noted that the
oxytocin level can be markedly elevated in hypophysial
portal plasma after pituitary stalk damage in the rat (see
Ref. 55). The ACTH response due to oxytocin can be
variable, that is, oxytocin exerts a synergistic or addi-
tive effect on ACTH secretion when applied with CRH or
vasopressin, respectively [54]. Oxytocin-dependent stim-
ulation of ACTH release is mediated by an increase in
[Ca%*];, which occurs in the absence of external Ca?*
[54,56] by mobilizing Ca** from InsP;-sensitive intracel-
lular Ca?* stores [57]. Furthermore, this ACTH release
induced by oxytocin is blocked by glucocorticoids (corti-
costerone or RU 28362, a selective glucocorticoid receptor
agonist) without interfering with [Ca?*]; transients [57].
Subsequently in the literature, no further emphasis was
placed on better understanding the effect of oxytocin on
ACTH secretion.

In recent times, however, many studies have demon-
strated that, in addition to its role in reproduction and
during pregnancy and lactation, oxytocin has central
actions in moderating behavioral responses to various
stressors and the activity of the HPA axis. For exam-
ple, in adult animals, endogenous brain oxytocin en-
hances only the long-lasting response of the HPA axis
to stress [58], and various developmental consequences

eld



From Neuropeptide to Happiness Chemical

of oxytocin have been reported [59]. Subsequently, it
was demonstrated that chronic intracerebroventricular
oxytocin administration attenuates pathologically high
anxiety in selectively bred Wistar rats [60]. Another
group has presented evidence to support the concept
that the hypothalamic-neurohypophysial system (HNS)
might directly affect the activity of the HPA axis, by em-
phasizing its possible impact on some aspects of behav-
ioral regulation and psychopathology [61]. In a different
experimental approach, using oxytocin knockout mice,
results has been published suggesting that oxytocin path-
ways play a role in attenuating the HPA axis’ response
to psychogenic stress in female mice [62]. It was also re-
ported that the ability of central oxytocin to inhibit the
HPA axis’ activity depends on the levels of oestradiol, sug-
gesting a direct interaction between them [63]. Hence,
oxytocin seems to attenuate stress-induced HPA activity
and anxiety behaviors. Central oxytocin attenuates both
the stress-induced neuroendocrine and the molecular re-
sponses of the HPA axis, and the oxytocin-sensitive fore-
brain stress circuit comprises the dorsal hippocampus, the
ventrolateral septum and the PVN [64]. In contrast, it
should be noted that the stress-induced responses can be
improved by oxytocin, by reducing ACTH and cortisol se-
cretion, thus representing a potential therapeutic path-
way in postpartum pathologies such as depression [65].
These authors therefore reinforce the notion that oxy-
tocin, at the moment of initiating breastfeeding, acts not
only on the physiological condition, but also on the psy-
chic condition of the mother.

Is There Oxytocin Signaling
in the Sensory System?

Returning to the nervous system, we shall now focus on
the sensory system with particular emphasis on the dorsal
root ganglia (DRG) neurones. In 1986, Kai-Kai et al. iden-
tified immunoreactivity for vasopressin and oxytocin in
neurones of the rat DRG [66]. Shortly thereafter, the ac-
cumulation of inositol phosphates following the applica-
tion of vasopressin and oxytocin at concentrations within
the micromolar range in the rat DRG was described [67].
This increase in inositol phosphate production was medi-
ated through the V, vasopressin receptor subtype. These
reports demonstrated that: (i) both peptides of the HNS,
vasopressin and oxytocin, are present in the PNS and
specifically in DRG neurones, (ii) the neurohypophysial
hormones are involved in the regulation of the inositol
phosphate pathway through G, protein coupled recep-
tors, suggesting the existence of vasopressin receptors in
ganglia cells and the possibility for the peptides to induce
the production of inositol trisphosphate (InsP5) responsi-
ble for the activation of Ca*" release channels localized
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on the membrane of the endoplasmic reticulum. Prelim-
inary results from our group showed [Ca?*]; increases in
response to oxytocin application in neuronal cells from
the DRG. In 2002, Qing Yang et al. demonstrated that
oxytocin had an inhibitory etfect on ATP-mediated cur-
rents in rat DRG neurones [68]. The mechanism of this
inhibition was based on the oxytocin receptor leading
to the activation of protein kinase A and the elevation
of intracellular Ca?*, thus corroborating our data. While
these studies clearly describe the action of oxytocin on
DRGs, it is still difficult to relate a definite function of
oxytocin to DRG cells. Whether oxytocin is excitatory or
inhibitory probably depends on complex signaling path-
ways involved in the response to various stimuli. How-
ever, since oxytocin seems to be involved in antinocicep-
tive effects in the spinal cord, as will be discussed below,
understanding the physiological role of oxytocin in DRG
neurones remains an important challenge.

Antinociceptive Functions of Oxytocin

It has long been known that neurones in the hypotha-
lamic paraventricular nucleus (PVN) project not only to
the posterior pituitary gland, but also to other brain ar-
eas and the spinal cord (e.g., see review in Ref. 69). The
antinociceptive effect of OT was hinted at by the early
demonstration of oxytocin-immunoreactive fibers in the
dorsal horn of the spinal cord [70-72]. Several initial be-
havioral investigations speculated on the possibility of in-
trathecally administered oxytocin exerting antinocicep-
tive effects in a dose-dependent manner [71,73,74]. The
antinociceptive effect of oxytocin injected intrathecally
was also reported in humans, where oxytocin was shown
to relieve low back pain [75]. Oxytocin was also shown
to exhibit antinociceptive effects in a model of experi-
mental neuropathy developed following a spinal nerve
ligation in rats [76]. It was further shown that oxytocin
injected intraperitoneally into rats caused antinocicep-
tive etfects, which were reversed by an oxytocin antag-
onist (1-deamino-2-D-Tyr-(OEt)-4-Thr-8-Orn-oxytocin),
but not by naloxone [77].

The release of oxytocin from synaptosomes prepared
from the spinal cord was observed in response to
50 mM K™, and this release was inhibited by naloxone
[78,79]. The inhibitory etfect of naloxone was mim-
icked by dynorphin but not by [D-Ala2,N-Me-Phe4,Gly-
ol]-enkephalin, suggesting that oxytocin release is
under inhibitory control by opioids, and the major recep-
tor involved in the inhibitory control is the kappa opioid
receptor [79].

The antinociceptive effect of oxytocin was further
studied in electrophysiological experiments. Spinal cord
neurones, mainly located in the intermediolateral cell
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column (IML) and in the intermediomedial gray matter
(IMM), responded to the application of oxytocin with ei-
ther activation (48%) or inhibition (52%) [80]. The au-
thors interpreted this complex response to oxytocin as the
activation of inhibitory interneurones acting on second
order projecting cells to modulate afferent tactile and no-
ciceptive information.

A more precise analysis was made by comparing the
latency after electrical stimulation of the dorsal root to
distinguish the nature of the recorded neurones [81].
The analysis provided evidence that the signals carried
by A-§ and C fibers were selectively blocked by oxy-
tocin and also by electrical stimulation of the PVN.
The experiments further showed that the suppression
of A-§ and C fiber responses by PVN electrical stimula-
tion was blocked by a selective oxytocin receptor antag-
onist (d(CH2)5[Tyr(Me)2,Thr4,Tyr-(NH2)9]OVT) [82].
The same group reported that electrical stimulation of the
PVN prolonged leg withdrawal latencies and caused an
increase in oxytocin concentration in the spinal cord, in-
dicating that the oxytocin system arising from the PVN
participates in endogenous analgesia [83]. The authors
also demonstrated that both PVN stimulation and in-
trathecal oxytocin administration prevented LTP (long-
term potentiation) in the dorsal horn, which is thought
to be the central sensitization mechanism by which acute
pain can turn into chronic pain [84]. Another group
showed, using isolated spinal cord preparations, that not
only oxytocin, but also corticotrophin releasing factor
(CRF) and DAMGO (mu opioid receptor agonist) can in-
crease the pain threshold [85].

The complex synaptic circuit involved in oxytocin-
mediated antinociception has been revealed by measure-
ments of synaptic currents in dorsal horn neurones [86].
Electrical stimulation of the PVN or oxytocin application
caused the activation of presynaptic oxytocin receptors
at the terminals of glutamatergic interneurones, which,
in turn, activated local GABA neurones to suppress the
action potential firing of the laminar II dorsal horn neu-
rones induced by inputs from A-3/C fibers.

Transgenic Animals Tagged by a Visible
Fluorescent Protein to Study the
Physiology of Vasopressin and Oxytocin

Recently, transgenic techniques have been developed
and applied to the study of neurohypophyseal hormones
[87,88]. In particular, it is important and useful to iden-
tify oxytocin- and vasopressin-secreting neurones tagged
by fluorescent proteins such as green fluorescent protein
(GFP).
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GFP was originally identified from a bioluminescent
jellyfish (Aequorea Victoria) [89], and cloned GFP has
been modified to produce enhanced fluorescence in a va-
riety of colors [90]. The first application of this transgenic
strategy to neurohypophyseal hormones was performed
in mice by Dr. Young and his colleagues.

The enhanced GFP (eGFP) was selectively expressed
in oxytocin-secreting neurones in the SON and PVN of
the hypothalamus and nerve terminals in the posterior
pituitary in oxytocin-eGFP transgenic mice [91,92]. A
vasopressin-eGFP fusion gene [93] and its mRNA were
selectively expressed in the vasopressin-secreting neu-
rones in the hypothalamus and the posterior pituitary of a
transgenic rat [93,94] and successfully used in other stud-
ies [95,96].

Furthermore, to visualize the oxytocin-producing neu-
rones in the hypothalamus and their terminals in the
posterior pituitary, another transgenic rat was gener-
ated using an oxytocin-enhanced cyan fluorescent pro-
tein (eCFP) fusion gene designed from a mouse construct
(provided by Scott Young 3rd, USA). In situ hybridiza-
tion revealed that the oxytocin-eCFP fusion gene was ex-
pressed in the SON and the PVN of these rats [97]. The
fluorescence emanating from eCFP was observed only
in the SON, PVN, the internal layer of the median em-
inence, the neurohypophysis and isolated nerve termi-
nals. In freshly dissociated SON neurones or nerve ter-
minals (for review see Ref. 12) the fluorescence could be
visualized up to 6 h (no attempt was made to keep them
for longer durations) after isolation, and these neurones
and terminals could be used to measure the [Ca?*]; tran-
sients upon depolarization with high Kt or stimulation
with glutamate, ATP, caffeine and ryanodine, suggesting
the survival of these tissues (unpublished results by G.
Dayanithi). Details of the gene constructs of the different
fluorescent fusion proteins are illustrated in Figure 1.

Immunocytochemistry for oxytocin and vasopressin
revealed that the eCFP fluorescence co-localizes with
oxytocin-immunofluorescence, but not with vasopressin-
immunofluorescence, in the SON and the PVN. More-
over, the physiological responses to osmotic stimulation
have been well demonstrated [97].

These vasopressin-eGFP, double vasopressin-eGFP and
c-fos-mRFP1 [98], and oxytocin-eCFP transgenic rats pro-
vide for unequivocal identification of vasopressin and
oxytocin neurones and their terminals using fluorescent
microscopy in in vitro preparations. Thus, these success-
ful animal models are very useful for electrophysiolog-
ical studies such as whole cell-patch clamp recordings
and imaging techniques such as intracellular Ca** con-
centration measurements, leading to major advances in
the study of the physiology of vasopressin and oxytocin
neurones and certainly of other cell/neuronal types.
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Figure 1 Constructs of the fluorescent protein fusion genes used for
transgenic animal models. (A) Structure of the arginine vasopressin (AVP)-
enhanced green fluorescent protein (eGFP) transgene. In the AVP-eGFP
transgene, the eGFP coding region is inserted at the frame in the middle
of exon IlI. “Copyright 2005, The Endocrine Society” modified and repro-
duced with permission from Ref. [94]. (B) Structure of the c-fos-monomeric
red fluorescent protein 1 (mMRFP1) transgene. In the c-fos-mRFP1 trans-
gene, the mRFP1 coding region is inserted at the frame at the end of exon

Pharmacology of Oxytocin Agonists
and Antagonists

In addition to fundamental insights into the role of oxy-
tocin in the CNS [99], an increasing number of stud-
ies performed recently has shown the importance of

el44

IV followed by the stop codon. “Copyright 2009, The Endocrine Society”
reproduced with permission from Ref. [98]. (C) Structure of the oxytocin-
enhanced cyan fluorescent protein (eCFP) transgene. In the oxytocin-eCFP
transgene, the eCFP coding region is inserted at the frame in the middle of
exon lll, after the oxytocin and the bulk of the neurophysin coding regions.
“Copyright 2010, Society for Endocrinology” modified and reproduced
with permission from Ref. [97].

oxytocin and its involvement, directly or indirectly, in
several pathophysiological disorders in the nervous sys-
tem and other organs. For example, oxytocin has been
broadly discussed under the following titles: “oxytocin
and addiction” [100]; “oxytocin increases trust in hu-
mans” [35]; “oxytocin increases generosity in humans”
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[101]; “search for autism treatments turns to ‘trust hor-
mone’” [102]; “being human: love: neuroscience reveals
all” [103]; “oxytocin: the great facilitator of life” [104].
Oxytocin, therefore, has become an interesting tool, es-
pecially through the design of oxytocin agonists and an-
tagonists, and a potential candidate for drug research and
therapeutics in humans [50].

In this section, we would like to address the issue of
drug design based on oxytocin and oxytocin receptors in
the CNS.

Drug Forms: Synthetic Nonapeptides

First of all, we shall consider the neurohormone itself and
its peptide sequence. Though the amino acid sequence
is rather short, its first complete synthesis more than
55 years ago was a struggle of many years because of
difficulties, in the first place, in elucidating the structure,
in degradation and in obtaining a sufficient amount of
purified material [1,105]. Oxytocin is a peptide of only
nine amino acids: the sequence is Cysteine-Tyrosine—
Isoleucine-Glutamine—Asparagine—Cysteine—Proline—
Leucine-Glycineamide (CYIQNCPLG-NH,). The Cysteine
residues form a sulfur bridge. At this stage, it is worth
noting the subsequent impact of the Merrifield Solid
Phase Method in facilitating the synthesis of agonists and
antagonists of oxytocin [106]. The role of many oxytocin
agonists and antagonists as invaluable pharmacology
research tools in studies on the peripheral and central
effects of oxytocin [50] should also be mentioned here.
Oxytocin has a narrow therapeutic window (i.e., the
drug dosage which is effective is restricted) and is elimi-
nated from the circulatory system within minutes [107].
Therefore, the most precise and reliable mode of deliver-
ing oxytocin is through infusing it directly into the blood.
Administered orally, the nonapeptide can be destroyed by
proteolytic enzymes in the gastrointestinal tract [107]. As
discussed above, the most common therapeutic applica-
tion is the stimulation of maternal labor, and we saw that
the efficiency of the method is not accepted by everyone.
Possible administration routes include intraveinous infu-
sion or intranasal administration. However, there seem
to be some contradictions in the statements that can
be found in the scientific literature. For instance, oxy-
tocin nasal sprays have been successfully employed in
neurobehavioral research [35], but an attempt to stim-
ulate breastfeeding by a nasal spray was demonstrated to
be ineffective [108]. Furthermore, this approach lacked
biochemical evidence indicating that oxytocin can en-
ter the CNS in significant quantities through a nasal
spray. According to earlier reports, oxytocin given intra-
venously does not enter the brain—it does not cross the
blood-brain barrier in significant quantities (see e.g., Ref.
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109). However, the evidence that oxytocin can cross the
blood-brain barrier following nasal administration and/or
intraveinous administration is quite compelling according
to recent studies [42,110,111].

Towards an Oxytocin Receptor Therapy

For 40 years, there has been increasing interest concern-
ing neurohypophysial peptide research, particularly con-
cerning the design of more selective agonists and antago-
nists (peptide and nonpeptide) of oxytocin receptors. The
following excellent reviews should be consulted for more
complete descriptions, see Refs. [112,50,104].

Potent and selective peptide agonists were de-
veloped for the oxytocin uterine receptor in the
rat: [Thr*]OT, [HO'][Thr*]OT, [Thr*, Gly’]OT, and
[HO'][Thr*, Gly’]OT [50]. While [Thr?, Gly’]OT is
not highly selective for the human oxytocin receptor,
[HO!'][Thr*]OT is, and might therefore be used to design
therapeutic analogues of oxytocin.

Similarly, highly selective peptide antagonists were
synthesized for the oxytocin receptor in the rat and
in humans: desGly-NH,,d(CH,)s[Tyr(Me)? Thr*]OVT,
desGly-NH,,d(CH,)s[D-Tyr?, Thr*]OVT, d(CH,)s[D-
Thi2, Thr*, Tyr-NH,?]OVT, and desGly-NH,,d(CH,)s[D-
Trp?,Thr*,Dap®]OVT [50].

More specifically, selective human oxytocin re-
ceptor antagonists with high affinities were pro-
duced: desGly-NH,,d(CH,)s[D-2-Nal?, Thr*]OVT,

desGly-NH,,d(CH,)s[2-Nal?>, Thr*]OVT, d(CH,)s[D-2-
Nal?, Thr*, Tyr-NH,°]OVT, d(CH,)s[2-Nal?, Thr*, Tyr-
NH,°]OVT, and FE 200 440 (Barusiban) [50]. The
rationale behind developing highly selective oxytocin
receptor antagonists for humans is the necessity to find a
compound with better and safer tocolytic properties than
Atosiban for the prevention of premature labor. Atosiban
is a peptidic antagonist, but as we shall discuss below,
its effects are complex, not entirely specific to oxytocin
receptors (i.e., affinity for the AVP receptor subtype V,,)
and the peptide is quickly metabolized. Alternatively,
nonpeptide antagonists have also been developed with
the aim of creating new orally administered active sub-
stances for the treatment and prevention of premature
labor.

At this stage of the discussion, it is important to distin-
guish between the central and peripheral actions of the
various oxytocin agonists and antagonists.

Some promising compounds (oxytocin receptor ag-
onists or antagonists) have peripheral therapeutic ap-
plications: L-372,662 (antagonist [113]), GSK-221,149
(antagonist [114]), SSR-126,768 (antagonist [115]), and
synthetic oxytocin (known as Pitocin or Syntocinon),
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which is used to induce labor and to help milk produc-
tion [116].

Correspondingly, several nonpeptide oxytocin agonists
or oxytocin antagonists have a central therapeutic rele-
vance: antagonist L-371,257 (CAS# 162042-44-6) (K; =
9.3nM) [117,118]—which does not cross the blood brain
barrier when administered in the CNS [119], L-368,899
(antagonist, CAS# 148927-60-0, CNS effects after oral
administration, see Refs. 120,121), WAY-162,720 ([119],
which is a brain-penetrant oxytocin receptor antagonist
when administered peripherally), WAY-267,464 (ago-
nist, which has been successfully introduced as an anx-
iolytic in mice, see [122], US patent assigned to Wyeth
Corp, [50,123]) and Compound 27 (agonist, ECsqg =
33nM, 25 times more selective over vasopressin recep-
tors, [124]). Compound 27 has been classified in the list
of drugs putatively having a central effect, but this should
be taken carefully since its biological actions are still un-
der investigation.

It is important to know that over 94 clinical trials on
oxytocin-related studies are currently listed by the Clini-
calTrials.gov registry (National Institutes of Health, USA).
Of note is that 12 of these relate to the nervous system
effects of oxytocin.

If treatments based on the nonapeptide itself and its
analogues (Demoxytocin and Carbetocin) do not seem
to be ideal, targeting oxytocin receptors with more long-
acting, specific and selective nonpeptide ligands might
constitute a more reliable and successful approach. Yet
the major challenge in the near future will be to tackle
the issue of the diversity of the oxytocin receptor sig-
naling pathways, which involve coupling to not only
G, proteins, but also to G, and G proteins. Further-
more, the activation of G4 proteins itself seems to trig-
ger a multifaceted and complex response in which
not only the PLC/InsP;/PKC pathway, but also the
phosphatidylinositol-3-kinase/AKT/endothelial nitric ox-
ide synthase pathway is stimulated, at least at the pe-
ripheral level [125]. Therefore, designing drugs targeting
both the oxytocin receptor and selectively one specific
pathway (by combining agents or addressing one partic-
ular cell type for instance) might become a major con-
sideration in the development of the next oxytocin-based
therapies.

Peripheral Functions of the Hormone
Oxytocin and its Receptors

Oxytocin research has been extensively pursued in en-
docrine models such as the myometrium and mammary
glands [126]. Furthermore, an increasing amount of data
provides evidence that oxytocin acts on a plethora of
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peripheral organs distinct from the usual endocrine sys-
tems, where the neuropeptide plays unexpected biologi-
cal roles, for instance as a peripheral neuromodulator or
growth factor. Therefore, the question emerges: what can
we learn from the periphery in terms of oxytocin’s ac-
tions that could be applicable to better understand the
CNS?

Reproductive System

We shall start with one of the oldest applications of
oxytocin as a proper drug, that is, oxytocin used as a
therapeutic agent during deliveries. The nonapeptide (or
more precisely the octapeptide amide as first described by
Vincent du Vigneaud in 1953; [1]) is a stimulant widely
employed to induce or augment maternal labor [105],
especially after term, when adequate oxytocin receptors
are present. Although it is prescribed routinely, emerg-
ing studies highlight the side effects caused by misuse of
oxytocin treatment: patient hyperstimulation and an in-
creased caesarean delivery rate. Particularly, there was a
recent controversy about how clinicians should give oxy-
tocin to patients in terms of dosage, timing and monitor-
ing its effects [127]. The authors report that oxytocin is
considered to be one of the high-alert medications along
with insulin, methotrexate and nitroprusside ([127]; see
the corresponding reply in the same journal: [128]). In-
deed, even though the relationship between oxytocin sig-
naling and maternal labor seems to be well established
and therapy with the synthetic hormone has been com-
monly used for many years, the range of potential risks
linked to oxytocin infusion is still not completely known;
this requires further clinical trials with a larger number
of patients. However, as we discussed above, oxytocin is
multifaceted and all its targets are difficult to control. One
investigation has proposed that oxytocin administration
during pregnancy might be responsible for the develop-
ment of autism and other behavioral disorders, but this
hypothesis still needs to be tested [129]. Noteworthy is
that an antagonist of the oxytocin receptor (Atosiban) is
given to delay premature birth [130,131]. In fact, Atosi-
ban treatment is now generally accepted as the preferred
treatment of preterm labor throughout Europe. The use
of Atosiban is still controversial, and some authors have
reported the lack of positive effect [132] and have pro-
posed the alternate use of nifedipine (a dihydropyridine
calcium channel blocker), which was recently shown
to be ineffective as well [133]. Similarly, another study
has shown that neither Atosiban nor nifedipine com-
bined with betamethasone administration have direct ad-
verse effects on the fetus [134]. In fact, it was reported
that Atosiban is a rather nonselective compound in the
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human myometrium, where it activates very efficiently
the AVP V, receptors [50].

One of the main and now well-characterized peripheral
oxytocin targets is the erectile tissues (corpus spongio-
sum and corpus cavernosum). Though it appears to be an
indirect effect, oxytocin injected in the ventral tegmen-
tal area of rats induces penile erection, a phenomenon
which is dependent on calcium influx, nitric oxide
(NO) production and a cyclic guanosine monophosphate
(GMP) increase in dopaminergic neurones that modu-
late oxytocinergic neurones projecting to the spinal cord
[135]. Moreover, oxytocin is thought to be associated
with ejaculation by increasing sperm number and con-
tracting ejaculatory tissues (prostatic urethra, bladder
neck, and ejaculatory duct; [136]). An interesting study
determined that oxytocin-stimulated ejaculation is specif-
ically mediated by vasopressin V;, receptors, as shown
by the application of the V;, antagonist, SR49059, on
ejaculatory tissues [137]. The authors demonstrated Vi,-
dependence in erectile tissues as well, and therefore pro-
posed V,, antagonists as a putative therapy for premature
ejaculation.

Oxytocin as a Trophic Hormone

Devost et al. recently demonstrated that oxytocin exerts
a trophic effect on myometrial cells and that this effect
is mediated by dephosphorylation and the activation of
elongation factor eEF2 [138]. These authors furthermore
established that this effect does not involve any of the
pathways known to activate eEF2 but, instead, is medi-
ated via the activation of PKC [139].

Another recent investigation revealed the involvement
of the neuropeptide in the anabolism of bone mass. By
the use of oxytocin and oxytocin receptors (oxytocin re-
ceptors being present on bone cells) in null male and fe-
male mice, the authors found that the hormone evokes
the differentiation of osteoblasts, stimulates osteoclast
formation, but inhibits the restorative activity of mature
osteoclasts ex vivo [140]. These findings strongly support a
previous study demonstrating oxytocin-promoted osteo-
genesis in human mesenchymal stem cells and oxytocin-
induced reversion of bone loss in mice [141]. Thus, there
might be some medical perspective for osteoporosis; in
particular, oxytocin could be employed as an anabolic
stimulus to restore the skeletal loss occurring during preg-
nancy and lactation or postmenopausal periods, which
should now be explored in patients.

Cell Proliferation and Cancer

Oxytocin can serve as a factor in differentiation, and it is
now recognized that the neurohormone can also act as a
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growth factor, regulating cell proliferation, with a promi-
nent effect on cancer cells. Paola Cassoni’s seminal work
over the last 10 years sheds some light on the connec-
tion between tumors and the nonapeptide. The latter dis-
plays a dual effect: while oxytocin impairs the prolifera-
tion of neoplastic cells from the mammary and endome-
trial epithelium, nerves and bone, in vitro [142-145] and
in vivo [146], the hormone promotes growth in the tro-
phoblast and endothelium [147,148]. Noteworthily dif-
ferent signaling pathways are involved in these opposite
actions: the cAMP-protein kinase A (PKA) cascade (quite
unusual for oxytocin signaling) seems to be responsible
for the inhibitory effect [149] with a possible link to the
vasopressin receptor type 2 [150], whereas the stimula-
tory effect would be sustained by a conventional increase
in intracellular calcium concentration and tyrosine phos-
phorylation [147,148]. A change in the membrane local-
ization of oxytocin receptors from noncaveolar structures
to lipid rafts can switch the effect from inhibition to pro-
liferation in MDCK cells [151].

Oxytocin in the Heart

Recently, we reviewed the actions of oxytocin in the
heart and reported that an oxytocin system is present
in cardiac cells and that oxytocin signaling plays a role
in cardiac differentiation via NO signaling, in atrial na-
triuretic peptide (ANP) release and in the expression of
oestrogen receptors [19,152]. In rats, endogenous oxy-
tocin plays an important role in cardiovascular responses
to stress [153]. The heart is also a suggested site of oxy-
tocin production and action [152]. From the vascular
point of view, postnatal treatment with oxytocin was able
to decrease blood pressure in spontaneously hypertensive
adult male rats [154]. Nonetheless, the neurohormone
seems to be ineffective in female rats [155].

Role of Oxytocin in Pancreatic Cells

The investigation of Bjorkstrand et al. in 1996 sug-
gests that oxytocin influences pancreatic hormone secre-
tion by two different mechanisms: peripheral circulat-
ing oxytocin evokes a rise in glucagon and glucose lev-
els, whereas central oxytocin (administered by intracere-
broventricular injections) causes a rise in insulin levels
probably due to the activation of vagal cholinergic neu-
rones [156]. Quite interestingly, some authors observed a
decrease in the gene expression of oxytocin and oxytocin
receptors in the heart of young diabetic mice [157]. Hith-
erto, however, no attempts to develop an oxytocin-based
therapy against diabetes have been made.
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Coupling of Oxytocin Receptors
to Intracellular Cascades

As discussed above, the OTR that mediates the manifold
actions of oxytocin is a member of the GPCR superfamily.

In contrast to arginine-vasopressin, oxytocin was
known to have only one type of receptor, which belongs
to the rhodopsin-type (class I) G protein (Ggqi1)-coupled
receptor family and is coupled to PLC, which controls
the generation of InsP; and diacylglycerol (DAG), which,
in turn, leads to the liberation of Ca?* from intracellular
stores and the activation of protein kinases type C (PKC),
respectively. In fact, the OTRs couple to different G pro-
teins (for review see Ref. 32). Indeed, the coupling of the
oxytocin receptor to Gs and G; proteins also takes place
(Figure 2).

Moreover, several intracellular signaling pathways are
activated via Gq. Beside the activation of PLC, intracellu-
lar Ca?* is also increased by the opening of plasmalem-
mal Ca?*" channels. Oxytocin-induced contractions are
also mediated via the activation of the Rho kinase path-
way. OTR activation leads to the stimulation of phospho-
lipase A2 production and an increase in cyclooxygenase
2 levels, both resulting in increased prostaglandin pro-
duction. The MAP-kinase (MAPK) cascade is activated by
different pathways, including trans-activation of receptor
tyrosine kinases and possibly different G protein-linked
pathways. The trophic effects of oxytocin have recently
been shown to occur via a PKC-mediated activation of
eukaryotic elongation factor 2 [139]. The proliferative ef-
fects of oxytocin appear to be Gq-linked and likely involve
MAPK activation, leading to ¢-fos and c¢-jun induction. On
the other hand, inhibition of cell growth has been re-
ported to be Gj-mediated [158]. As shown in Figure 2,
the oxytocin-mediated proliferative, trophic, contractile,
and antiproliferative effects are supported by complex
networks of signaling pathways. Not all of them are si-
multaneously active in every oxytocin responsive cell; the
blend of oxytocin responses that occur in any given cell
depends on the specific cell type as well as on the spe-
cific plasma membrane domains in which the receptor is
located [158].

Such complex couplings of OTR to a diversity of in-
tracellular cascades represent a double advantage with
regards to physiological cellular reactions. First, it pro-
vides for a fine-tuned control of all biochemical processes
evoked by OTR stimulation. Indeed, the more steps there
are in the signaling cascade, the more checkpoints there
are to verify that each phase of the pathway has been
correctly completed. Then, OTR activation leads to par-
allel signaling pathways that can converge on a common
target. This redundancy is either important to amplify the
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initial signal or to supply an additional similar cascade in
case the main cascade is impaired.

In terms of therapeutic consequences, the diversity
of OTR signaling is extremely challenging. The coupling
of OTR to different G proteins exhibiting opposite ef-
fects renders the definition of “agonist” and “antagonist”
rather questionable. All OTR ligands have putatively the
potential to stimulate dual signaling responses. Therefore,
an “agonist” or “antagonist” can only be defined rela-
tive to the cellular context (e.g., cell type, stage of devel-
opment, phosphorylation level, receptor subtype expres-
sion/trafficking level). The ability to design compounds
that can discriminate between many diverse pathways
and predominantly activate a specific intracellular re-
action will be at the heart of future OTR-based drug
strategies.

Future Perspectives

Over the last years, ligand screening assays and stud-
ies of GPCRs have benefited from the development of
fluorescent agonists and antagonists, particularly in the
field of vasopressin and oxytocin signaling pathways. Flu-
orescent oxytocin agonists present quite high affinities
and a strong selectivity for the human oxytocin receptor
[159]. They appear to be useful tools to investigate re-
ceptor localization, desensitization and internalization of
the oxytocin receptor ligand. Furthermore, they can be
used to perform fluorescence recovery after photobleach-
ing (FRAP) to track the diffusion of substances in tissues
or cells. In addition, they are suitable for ligand-receptor
interaction and structural organization studies, using flu-
orescence quenching, fluorescence polarization and fluo-
rescence resonance energy transfer (FRET) [50]. As safe,
very sensitive, homogenous and fast methods, they are
considered as a strong basis for high-throughput screen-
ing experiments [160].

Using bioluminescence resonance energy transfer
(BRET) techniques, Zingg’s group was able to demon-
strate that the oxytocin receptor interacts with other
GPCRs coexpressed in myometrial cells [161]. Het-
erodimerization with the 2 adrenergic receptor (82AR)
was also supported by BRET experiments. The authors
also obtained evidence that this interaction has functional
consequences: S2AR antagonists are able to allosterically
modulate oxytocin receptor signaling and oxytocin recep-
tor trafficking and, vice versa, an oxytocin antagonist can
modulate B2AR signaling (personal communication).

Therefore, the development of drug design to target
oxytocin signaling pathways may need to consider joint
therapies with compounds being able to target several
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Figure 2 Schematic diagram of OTR-linked signaling pathways. Oxytocin
receptor (OTR) activation leads to three different GTP-binding protein
mechanisms. The major mechanism is mediated by the G,/PLC/InsPs path-
way. When oxytocin binds to OTR, it activates Gaq/11 and then phospholi-
pase C (PLC), which induces the cleavage of PIP2 to inositoltrisphosphate
(InsP3) and diacylglycerol (DAG). InsP5 induces Ca?* release from Ca?*
stores via InsPsR and, in some cells, causes Ca®*-induced Ca?* release
(CICR) via the ryanodine receptor (RyR). The activation of G4 also causes
membrane depolarization*, which, in turn, activates VGCCs and then facil-
itates Ca®* entry through VGCCs. Thus, increased cytosolic Ca* ([Ca*];)
stimulates CaMK after binding to the Ca** binding protein Calmodulin.
The Ca?*/CaM complex then activates CaMK and causes various cellular
responses, such as smooth muscle contractions, or induces the activation
of several different types of enzymes, such as NOS or PI3K. DAG causes
protein kinase C (PKC) activation and also various cellular responses. Addi-
tional pathways activated through the OTR include the MAP-kinase (MAPK)
and the Rho kinase pathways. The increased transcription of COX2 medi-
ates the increased production and secretion of prostaglandins. The OTR-
mediated opening of Ca** channels is likely mediated through free Gg,
subunits. The OT receptorisknownto be coupled with the other G proteins,
G, and G;, both of which are linked with the AC pathway. The proliferative
effects involve MAPK-mediated activation of specific gene transcription.
The trophic effects are mediated via a PKC-mediated activation of eEF2.
Activation of the Rho and MAP kinase pathways, the increase in intra-

CNS Neuroscience & Therapeutics 16 (2010) e138-e156 © 2010 Blackwell Publishing Ltd

Cellular responses

cellular Ca** and the increased prostaglandin secretion all contribute to
the contractile effects. The antiproliferative effects observed in certain
cells types appear to be mediated via «i G protein subunits. For further
details, see the text and the references therein. The solid red lines and
broken blue lines indicate activation and inhibition, respectively. Abbre-
viations: VGCC = Voltage-gated Ca’* channel; InsP3R = InsP5 receptor;
RyR = Ryanodine receptor; PLC = Phospholipase C; DAG = Diacyl glyc-
erol; Ca**/CaM = Ca?*-calmodulin complex; CaMK = Ca**/Calmodulin-
dependent protein kinase; NOS = NO synthase; PLA, = Phospholipase A,;
COX2 = Cyclooxygenase 2; AC = Adenylate cyclase; PI3K = Phosphoinosi-
tide 3-kinase; ROK = Rho kinase. #The G; mediated anti-proliferative effect
has been described as dependent on epidermal growth factor receptor
(EGFR) transactivation and mitogen-activated protein kinase (MAPK) acti-
vation via a PLC/PI3K/cellular sarcoma tyrosine kinase (c-Src)-dependent
pathway that ultimately leads to a sustained activation of the cell cycle
inhibitor [158].* The mechanisms of the oxytocin-induced membrane de-
polarization have been explored in various types of neuronal cells, and
they are classified as follows:

1. Suppression of voltage-gated K* currents

2. Activation of non-selective cationic currents

3. Activation of sustained Na*-dependent currents (could be the same
as 2)

Inhibition of GABA4 receptors (this would depolarize if GABA acts as a
tonic inhibitory modulator).
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types of receptors at the same time or to consider sub-
stances involved in the oligomerization process of the
oxytocin receptors.

Concluding Remarks

The story of oxytocin begins right before pregnancy, con-
tinues during birth and later, travels from the brain to
the heart and throughout the entire body, triggering or
modulating a full range of physiological functions and
emotions: happiness, attraction, love, affection, and ha-
tred after stress. These are all governed directly or indi-
rectly, at least in part, by oxytocin. With this review, we
aimed to highlight the newly discovered roles of oxytocin
by covering both basic science and the therapeutic ap-
plications of new oxytocin analogues, and we attempt to
summarize the recently discovered physiological effects
of oxytocin. The nonapeptide appears to play a central
role in social behavior, and emerging clinical trials seek
to assess and define its therapeutic potential in the treat-
ment of pathophysiological behaviors. Another promis-
ing therapeutic breakthrough in the next years could be
the development of oxytocin-based medications to treat
altered nociception. Though there is some evidence for
the involvement of oxytocin in pain, a certain amount
of work still needs to be carried out, especially under-
standing the link between oxytocin and the DRGs. At
the periphery, oxytocin also seems to be a key compo-
nent in bone formation, glycaemia, male sexuality, car-
diac differentiation, and nonregulated cellular prolifera-
tion. Therefore, there is a strong impetus to develop and
establish new technological tools that will enable us to
uncover oxytocin and its possibilities. We report here,
for instance, major advances in the fields of transgenic
animal engineering and the synthesis of fluorescent ago-
nists and antagonists. Thus, we are now in a good posi-
tion to more completely screen oxytocin function at the
molecular, cellular and whole animal levels. Taken to-
gether, the insights gained from more than 100 years of
research indicate that the success story of the hormone
of “swift birth” will continue. The potential therapeutic
uses for oxytocin and more long-acting and specific ana-
logues of oxytocin are huge. Chemical, physiopatholog-
ical, psychological, philosophical and ethical studies will
reinforce the development of new drugs involving the use
of oxytocin, oxytocin agonists and antagonists for various
human disorders such as autism, premature ejaculation,
osteoporosis, diabetes and cancer.
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