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Abstract
There is a bidirectional relationship between periodontal disease (PD) and type 2 diabetes

mellitus (T2D). T2D may lead to ecological perturbations in the oral environment, which may

facilitate an altered microbiota. However, previous studies have been inconclusive in determining

the effect of T2D on oral bacterial profiles. Therefore, we aimed to evaluate the influence of T2D

on the ligature‐associated bacterial profile in a diabetic rat model with PD and investigated the

impact of blocking inflammatory pathways with antibodies targeting either Tumor Necrosis

Factor α (TNF‐α) or the receptor of advanced glycation end‐products (RAGE). A total of 62

Zucker obese rats (45 T2D) and 17 lean (non‐T2D) were divided into 4 treatment groups; lean

with PD, obese with PD, obese with PD and anti‐TNF‐α treatment, and obese with PD with

anti‐RAGE treatment. Periodontal disease was ligature induced. Ligature‐associated bacterial

profiles were analyzed using Human Oral Microbe Identification Microarray (HOMIM).

Ligature‐associated bacterial profiles differed between lean and obese rats. Furthermore,

treatment with antibodies against TNF‐α or RAGE had an impact on subgingival bacterial profiles.

T2D phenotypes are associated with different ligature‐associated bacterial profiles and

influenced by treatment with antibodies against TNF‐α or RAGE.
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1 | INTRODUCTION

Periodontal disease (PD) and type 2 diabetes mellitus (T2D) are

highly prevalent chronic inflammatory diseases (Taylor, 2001). Bio-

film‐mediated periodontal inflammation seems to be critical in peri-

odontal degradation (Gemmell, Yamazaki, & Seymour, 2002), as

bacterial alterations of the biofilm may be associated with an increased

risk of progressive disease (Darveau, 2010). The hyperglycemic state in

T2D increases the formation of advanced glycation end‐products

(AGE). AGE alter the immune response in T2D with up‐regulation of

pro‐inflammatory cytokines, e.g., Tumor Necrosis Factor‐α (TNF‐α)

(Ramasamy, Yan, & Schmidt, 2012), which in turn is believed to influ-

ence the progression of PD (Lalla & Papapanou, 2011). Furthermore,

T2D affects the oral environment with higher glucose levels and pro‐

inflammatory mediators in the gingival crevicular fluid, which have

been regarded key mechanisms for modifying the microbiota in T2D

patients (Engebretson et al., 2004; Ficara, Levin, Grower, & Kramer,

1975). Recent studies have demonstrated different bacterial profiles

of subgingival plaque in T2D patients with chronic PD as compared

to PD patients without T2D (Casarin et al., 2013; Zhou et al., 2013).

Furthermore, in the Oral Infections, Glucose Intolerance, and Insulin

Resistance Study, increasing colonization levels of periodontal

pathogens were observed with increasing prevalence of prediabetes

(Demmer et al., 2015). However, other studies have been not

demonstrated such changes of the microbiota (Taylor, Preshaw, &

Lalla, 2013).

Due to heterogeneity of microbial and host factors in human

subjects, it may be difficult to attribute specific bacterial associations

to disease status. Consequently, standardized animal models with

controlled diet, housing and microbial sampling may be preferable

for these studies (Kaye, 2012), which is why rat models with liga-

ture‐induced PD have been used frequently. Animal models with

both T2D and PD have increased inflammatory cytokine responses,

elevated oxidative stress, raised AGE levels, altered glucose metabo-

lism, and increased severity of PD (Pontes Andersen, Flyvbjerg,

Buschard, & Holmstrup, 2007). In addition to being a local irritant,

the ligature serves as a reservoir for bacteria, which mediates peri-

odontal tissue destruction (Bjornsson et al., 2003). Male Zucker

obese rats (ZOR) display a mutation in their leptin receptors and will

therefore develop obesity, hyperlipidemia and mild hyperglycemia.

Thus, Zucker obese rats are widely used in T2D studies (Chen &

Wang, 2005).

The development of high throughput molecular methods, primar-

ily based on analysis of the bacterial 16S rRNA gene, has enabled

comprehensive analysis of bacterial community changes in relation

to health and disease (Paster & Dewhirst, 2009). Thus, in the present

study, we used the Human Oral Microbe Identification Microarray

(HOMIM) for analysis of ligature‐associated bacterial profiles in a

rat model with T2D and PD. The aim of the study was to compare

ligature‐associated bacterial profiles in ZOR (T2D) to that of lean

non‐T2D Zucker rats. Furthermore, we compared ligature‐associated

bacterial profiles in ZOR treated with Etanercept (ETN), a TNF‐α

blocking antibody, or an antibody (ARA) blocking the receptor of

AGE (RAGE). We hypothesized that oral bacterial profiles in T2D rats

differ from that of non‐diabetic rats with impact of antibodies
targeting diabetes‐associated pro‐inflammatory cytokines and anti-

bodies targeting RAGE.
2 | MATERIALS AND METHODS

The present study was undertaken as part of a group of studies on

experimental PD and T2D in rats, the additional results are presented

elsewhere (Grauballe, Ostergaard, Schou, Flyvbjerg, & Holmstrup,

2015; Grauballe, Ostergaard, Schou, Flyvbjerg, & Holmstrup, 2016).

2.1 | Animals

The present study was undertaken as part of a group of studies on

experimental PD and T2D in rats, and the additional results are pre-

sented elsewhere (17;18).

Four week old male ZORs (HsdHlr:ZUCKER‐Lepr fa/fa n=45) and

lean controls (ZUCKER‐Lepr fa/+n= 17) (Harlan Laboratories, Livermore,

USA) were included. Animals were housed in pairs and kept at a con-

stant temperature (21°±1°C). Cages were placed in a room with an arti-

ficial light cycle (dark 7.00 p.m. to 7.00 a.m.) and a humidity of 55±5%.

To avoid spontaneous PD (Bjornsson et al., 2003), the animals

were bred on Teklad 7089 Diamond Soft Bedding (Harlan Laborato-

ries, Livermore, CA, USA). The rat pups were placed on the special bed-

ding before they were 15 days old, with free access to food (Purina

#5008, LabDiet, St. Louis, MO, USA) and water. The animals had one

week of acclimatization before start of the experiments.

A license to perform the study was obtained from the Ethical

Committee for Animal Research, Department of Justice, Copenhagen,

Denmark (J.no. 2012‐15‐2934‐00455).

2.2 | Experimental design

PD was induced by placing ligatures around the cervix of 2nd upper

molars under general anaesthesia (Dormicum, Vetapharma, Leeds, UK

and Hypnorm, Roche, Basel, Switzerland, 0.20 ml/100 g body weight).

Before PD was induced, all rats were examined to exclude rats with

pre‐existing PD (defined by probing depths >0.5 mm) (Bjornsson

et al., 2003). Each week, PD induction was checked under general

anesthesia and loose or lost ligatures were replaced as previously

described (17; 18).

The study was designed with the following groups:

1. Lean, normoglycemic control rats (non‐T2D + PD); LPD (n=17):

control animals with PD. Subcutaneous saline injections 3 times

a week as placebo throughout the study.

The obese rats were randomly divided into three groups:

1. Obese (T2D + PD); Obese animals with PD. OPD (n=15):

Subcutaneous saline injections 3 times a week as placebo

throughout the study.

2. Obese (T2D + PD) + ETN (anti‐TNF‐α); Obese animals with PD.

OPDE (n=15): Subcutaneous injections of 0.5 ml of 0.78 mg/ml

ETN (Wyeth, Glostrup, Denmark) 3 times a week throughout the

study.
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3. Obese (T2D) + PD) + ARA (anti‐RAGE); Obese animals with PD.

OPDAR (n=15): Intraperitoneal injections of 0.8 ml of 1.25 g/l

ARA 3 times a week throughout the study.

At baseline an Oral Glucose Tolerance Test (OGTT) was performed

in all groups. The following day antibody treatment was initiated. One

week later, PD was induced under general anaesthesia. Body weight

and blood glucose levels were recorded at baseline and each week.

At week 4, food and water consumption and urine and feces pro-

duction were measured in 12 randomly selected rats from each group,

which were placed in metabolic cages (TECNIPLAST, Buguggiate, Italy)

for 20 h. At week 5, final OGTTs were performed and at the end of

week 5, all rats were euthanized under general anaesthesia with pento-

barbital (Glostrup Apotek, Glostrup, Denmark) (100 mg/kg intra‐peri-

toneal) (Grauballe et al., 2015). Rats were decapitated and ligatures

were removed with sterile forceps and both ligatures from each rat

were put into one sterile tube containing MagNa pure bacteria lysis

buffer (Roche, Mannheim, Germany) and stored at −80°C until DNA

isolation.
2.3 | DNA isolation and HOMIM analysis

DNA isolation from subgingival ligatures was performed according to

manufacturer's specifications, using the protocol Pathogen Universal

200 (Roche, Mannheim, Germany). Extracted DNA was stored at

‐80°C until analyzed by the Human Oral Microbe Identification

Microarray (HOMIM). The laboratory procedures of HOMIM have

been presented in detail (Colombo et al., 2009). Briefly, HOMIM is a

molecular method using two consecutive polymerase chain reactions

(PCR) and a subsequent DNA‐DNA hybridization for identification of

around 300 human oral bacterial species. Thus, fluorescence‐labeled

single stranded PCR products are captured by complementary single

stranded oligonucleotide‐probes (18‐20 bases long), printed on a cus-

tomized array, as the probes target highly variable areas of the phyloge-

netically informative 16S ribosomal RNA gene. Initially, the quality of

the PCR products were assured using an agarose gel with comparison

of positive and negative control samples. In addition, the quantity and

quality of DNA was measured by using a NanoDrop 8000 Spectropho-

tometer (Thermo Scientific, Waltham, Massachusetts, USA). Thus, only

samples with a DNA content >10 μg/l and a 260/280 ratio of >1.8 were

further analyzed. Data were collected using an Axon 4000B scanner,

and crude data analysis was performed with Genepix 6 software

(Molecular Devices, Sunnyvale, CA, USA). Mean fluorescence intensity

was calculated for each probe and normalized by values from positive

universal probes, negative controls and buffer spots. A semi‐quantita-

tive HOMIM‐value from 1 to 5 was calculated for each probe. In this

study the newest version of HOMIM (version 5) was used. Further anal-

ysis and generation of microbial profiles were carried out using the

HOMIM online tool (http://bioinformatics.forsyth.org/homim/

(accessed on 15th of October, 2015)).
FIGURE 1 Photographs of ligature‐induced PD. (a) LPD (lean with
periodontal disease), (b) OPD (obese with periodontal disease), (c) LC
(lean without periodontal disease), (d) OC (obese without periodontal
disease)
2.4 | Statistical analysis

All data were checked for normality using QQ‐plots. Data from meta-

bolic cages are presented as mean ± SD, and groups are compared
using one‐way ANOVA followed by Tukeys multiple comparisons test.

For these analyses a p‐value < 0.05 were considered as statistically sig-

nificant. Bacterial profiles were compared between groups at probe

level, using information of frequency (mean presence) and levels (mean

HOMIM‐value) from each probe included on the HOMIM microarray

as endpoints. These analyses were performed with Mann‐Whitney test

and Kruskal‐Wallis test when two groups and three groups were com-

pared respectively, and results were adjusted according to Benjamini‐

Hochberg's correction for multiple testing (Hochberg & Benjamini,

1990). For comparisons at probe level, only an adjusted p‐value

< 0.01 was considered statistically significant to further minimize the

risk of type 1 errors. Principal component analysis was used for visual-

izing differences in bacterial community profiles. All analyses were per-

formed using the statistical software packages of Graphpad Prism 5

(San Diego, CA, USA) and MeV 4_8_1 (Saeed et al., 2006).
3 | RESULTS

All data concerning anti‐TNF‐α (Grauballe et al., 2015) and anti‐RAGE

(Grauballe et al., 2016) treatment on periodontal and glycemic status

has been presented elsewhere. In brief, periodontal bone support in

the obese groups (T2D) was decreased except for the OPDE group

which could not be separated from the lean LPD group (non T2D).

(Grauballe et al., 2015).Treatment with anti‐RAGE had no influence

on periodontal support, compared to that of the control group

(Grauballe et al., 2016). Furthermore, anti‐TNF‐α treatment signifi-

cantly improved the insulin resistance (Grauballe et al., 2015), and

anti‐RAGE significantly improved both glucose tolerance and insulin

resistance compared to the control group (Grauballe et al., 2016).
3.1 | Animals

A total of 10 rats died during the study period due to either general

anesthesia or failed glucose gavage into the trachea. Thus a total of

52 animals completed the entire study; from which 51 ligatures were

successfully collected (One set of ligatures from one rat in the OPDE

group was lost during collection). Morphometric presentation of ani-

mals is shown in Figure 1a‐d. In addition, 47 recordings from metabolic

cages were performed (one recording was discharged due to wrong

assembly of the cage). Data from metabolic cages (production of urine

and stool, consumption of food and water and weight gain) are

http://bioinformatics.forsyth.org/homim/
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presented in Table 1. In brief, only inconsiderable differences were

observed on all parameters recorded. Urine production was signifi-

cantly lower in the LPD group compared to OPD group (P<0.01), but

no difference could be detected in the obese (T2D) groups (OPD,

OPDE and OPDAR).
3.2 | General findings from HOMIM

From a total of 51 samples, positive identification of the target of 50

probes was recorded (25 probes recognizing a bacterial taxon and 25

probes recognizing a bacterial cluster), meaning that 13% of the 383

targets identified by the HOMIM technology were recorded in this

cohort of samples. The mean number of targets identified in the total

cohort was 16, with a range from 8 to 27. Seven different phyla were

identified (Firmicutes, Proteobacteria, Enterobacteria, Actinobacteria,

Bacteroidetes, Fusobacteria and Spirochetes). Firmicutes was the pre-

dominant phylum identified accounting for 60% of the total probe sig-

nal recorded, and the predominant genus was Streptococcus

accounting for 34% of the total probe signal. No differences in mean

number of probes identified or phylogenic distribution between the

four subgroups were observed. A complete list of probes present on

the HOMIM microarray is presented in Supplementary material 1,

and information of frequency and mean‐HOMIM values in the total

amount of samples and in each of the four groups of probes identified,

is listed in Supplementary material 2.
3.3 | The ligature‐associated microbial community
profile differs between LPD and OPD

Principal component analysis showed different bacterial community

profiles between OPD (n=11) and LPD (n=14). There was an almost

complete separate clustering of samples from the two groups based
TABLE 1 Means and standard deviation of stool, urine, food con-
sumption, water consumption, and weight gain during placement for
20‐hours in metabolic cages

Group LPD OPD OPDE OPDAR

Stool (g)

Mean 18.09 21.47 21.09 18.58

Std. Deviation 3.26 3.48 2.91 3.91

Urine (ml)

Mean 8.23** 13.96** 11.73 12.48

Std. Deviation 1.64 6.43 4.28 2.41

Food consumption (g)

Mean 30.8 35.6 34.47 32.52

Std. Deviation 5.37 2.75 4.43 7.38

Water consumption (ml)

Mean 24.08 25.12 24.73 27.46

Std. Deviation 3.46 6.76 5.07 4.95

Weight gain (g)

Mean 4.16 3.14 3.26 4.29

Std. Deviation 3.03 5.91 7.32 3.43

LPD (Lean+periodontal disease) n = 12, OPD (Obese+periodontal disease) n
= 11, OPDE (obese+periodontal disease+Etanercept treatment) n = 12,
OPDAR (obese+periodontal disease+RAGE antibody treatment) n = 12.

**P < 0.01
on the principal component analysis of the dataset accounting for

37.6% of the variation in the cohort analyzed (Figure 2a). Comparison

at taxon/cluster level showed that the bacterial cluster Lactobacillus

gasseri/Lactobacillus johnsonii HOT 615/819 was significantly more

frequently identified in samples from OPD (adjusted p‐value<0.01).

In addition, Haemophilus parainfluenzae was also identified more fre-

quently in the OPD group (adjusted p‐value<0.05). Furthermore, sev-

eral bacterial taxa and clusters were recorded with differences in

frequency between the two groups, although these observations were

non‐significant when adjusted for multiple dependent assumptions.

The 10 most decisive probes (recognizing 6 bacterial taxa and 4 bacte-

rial clusters) are presented in (Figure 2b).
3.4 | Major differences in bacterial community
profiles between OPD and antibody treated ZOR
(OPDE and OPDAR)

The bacterial community profile of OPD (n=11) was compared to the

bacterial community profiles of OPDE (n=13) and OPDAR (n=13),

respectively. As seen in (Figure 3a‐b) the samples from OPD clustered

almost completely separate from the antibody treated diabetes groups

based on component 2 accountable for 14.9% and 16.5% of the math-

ematical variation in the two datasets respectively. The two bacterial

taxa Kingella oralis and Streptococcus downei were identified signifi-

cantly more often in the OPD group than in the two antibody treated

groups (adjusted p‐value<0.01). In addition, the species Lactobacillus

fermentum was identified more often in the OPDE and OPDAR group

than in the untreated group (adjusted p‐value <0.05). Furthermore, dif-

ferences at taxon/cluster level were observed between groups,

although insignificant. The 10 most decisive probes (recognizing 5 bac-

terial taxa and 5 bacterial clusters) based on differences in frequency

are presented in (Figure 3c).
4 | DISCUSSION

The aim of the present investigation was to compare ligature‐associ-

ated bacterial profiles in rats with T2D to that of lean rats. The main

finding was that ligature‐associated bacterial profiles were linked to

T2D, and that treatment with an antibody targeting either TNF‐α or

RAGE had an impact on bacterial profiles. To the best of our knowl-

edge, this is the first study to investigate if antibodies targeting pro‐

inflammatory cytokines have an impact on the oral microbiota in a

rat model with PD and T2D.

Some limitations apply to the results presented in this study. Exper-

imental PD in rats is based upon subgingival placement of ligatures that

facilitate accumulation of bacteria, which in turn initiate periodontal

inflammation (Graves, Fine, Teng, Van Dyke, & Hajishengallis, 2008;

Pontes Andersen et al., 2007). Thus, subgingival placement of the liga-

ture increases biofilm formation, and a direct comparison between liga-

ture‐induced PD in rats and naturally occurring PD in humans is not

possible (Graves et al., 2008). It is, however, interesting that while

trauma from the ligature obviously play a role in periodontal disease pro-

gression in the PD rat model, a study in germfree rats showed that no

bone loss occurred in the absence of biofilm accumulation (Rovin,



FIGURE 2 Ligature‐associated bacterial profiles in LDP (lean) and OPD (T2D) groups. (a) Principal component analysis displaying component 1
(x‐axis) and component 2 (y‐axis) accountable of 49.6 % of the total mathematical variation of the dataset. Blue: LPD, Red: OPD. (b) Presence of
predominant taxon/cluster in % of total samples. White bars: LPD. Black bars: OPD. *: adjusted p‐value<0.05, **: adjusted p‐value<0.01, #: adjusted
p‐value>0.05
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Costich, & Gordon, 1966). Thus, progressive bone loss in the ligature‐

induced PD model in rats seems to be dependent on bacterial accumu-

lation and subsequent colonization, which suggests that the model is

suitable for studies on subgingival bacterial profiles in PD.
FIGURE 3 Ligature‐associated bacterial profiles in the OPD (T2D), OPDE
analysis is visualized by component 1 (x‐axis) and component 2 (y‐axis) acc
Blue: OPD, Red: OPDE. (b) Principal component analysis showing componen
mathematical variation of the dataset. Blue: OPD, Red: OPDAR. (c) Presenc
White bars: OPDE, Dotted bars: OPDAR. *: adjusted p‐value<0.05, **: adju
Since sterile silk 4.0 ligatures were used to induce PD, disparities

in frequency of ligatures being replaced and lost, and variation of

subgingival placement of ligatures may account for variation in PD

and biofilm composition in each group. However, in this study the
(anti‐TNF‐α) and OPDAR (anti‐RAGE) groups. (a) Principal component
ountable of 35.5 % of the total mathematical variation of the dataset.
t 1 (x‐axis) and component 2 (y‐axis) accountable of 64.0 % of the total
e of predominant taxon/cluster in % of total samples. Black bars: OPD,
sted p‐value<0.01, #: adjusted p‐value>0.05



30 GRAUBALLE ET AL.
same frequency of lost ligatures was observed in each group (data

not shown).

Moreover, bacterial identifications in this study are based on data

generated by HOMIM, which is a molecular technique developed for

analysis of human oral bacterial species. Therefore, the organisms

identified must be interpreted with caution and consequently the ter-

minology “‐like species” is used as in previous reports (Duarte, Tezolin,

Figueiredo, Feres, & Bastos, 2010; Rober, Quirynen, Haffajee,

Schepers, & Teughels, 2008). Furthermore, bacterial species with

genotypes different from the 300 present in HOMIM are not likely rec-

ognized, and bacteria recognized on the microarray may show pheno-

types different from human bacteria (Fournier et al., 2001).

Obviously, contemporary molecular methods developed for analy-

sis of human bacteria might not be ideal for analysis of rat‐associated

bacteria. However, since few to none methods are developed specifi-

cally for analysis of rat‐associated bacteria, this might be the most fea-

sible and cost‐effective choice, even though the composition of the

oral biofilm in rats with experimental PD is likely different from that

of humans with PD. It is therefore noteworthy, that a study performed

on Wistar rats using DNA‐DNA hybridization, reported positive identi-

fication of 25 out of 40 pre‐selected human bacterial species, including

some bacteria from the red complex (Duarte et al., 2010). Interestingly,

6 bacterial species identified in the aforementioned investigation were

also identified in this study. However, in the present study

periopathogens from the red complex (Socransky, Haffajee, Cugini,

Smith, & Kent, 1998) were not detected, which is in line with another

study in a diabetes type 1 rat model (Claudino et al., 2012).

Notably, Veillonella parvula‐like species were found in all samples

analyzed in this study (Supplementary material 2). In humans, V.

parvula is known to be an early colonizer establishing an environment

for late colonizers including the human periodontal pathogen

Fusobacterium periodonticum. F. periodonticum‐like species were

detected in high proportions in this study. Studies have suggested that

colonization by Fusobacterium spp. is essential for colonization of peri-

odontal pathogens (Kolenbrander et al., 2006). It is therefore notewor-

thy that culture‐based techniques have been used to demonstrate that

high proportions of Fusobacterium‐like species is associated with the

presence of a matured biofilm in rats (Isogai, Isogai, Sawada, Kaneko,

& Ito, 1985). Essentially, this reinforces the assumption that

subgingival ligatures initiate periodontal disease in rats by acting as a

scaffold for biofilm formation and maturation. On another note, Rothia

spp. has been reported to constitute a predominant part of the indige-

nous rat oral microbiome (Manrique et al., 2013), which is conflicting

with data from the present study, in which Rothia spp. were not

detected. This finding suggests that Rothia spp. might associate with

oral health in rats. However, as different samples (supragingival vs.

subgingival) were collected and various molecular methods (pyrose-

quencing vs. HOMIM) employed for bacterial analysis in the two inves-

tigations, future studies are warranted.

Ideally, analysis of T2D‐associated bacterial alterations should be car-

ried out in humans. However, the main limitation with this approach is that

the complex interplay between PD and T2D can make it difficult to distin-

guishwhether any observed differences in subgingival bacterial profiles are

due to PD status or the result of diabetic state (Taylor et al., 2013). On the

other hand, the main advantage of using animal models is that selected
aspects of a complex interaction between diseases may be studied in a

controlled manner. It is therefore interesting that while comparable levels

of PD were identified, highly significant differences in the diabetic state

was present in the lean (LPD) group compared with the T2D (OPD) group

(17;18). Thus, differences in ligature‐associated bacterial profiles in the

LPD and OPD group (Figure 2a‐b) were most probably a result of the

increased inflammatory state in theOPD group. In line, these findingswere

further reinforced as selective treatment with anti‐TNF (OPDE group) or

anti‐RAGE (OPDAR group) antibodies positively influenced the OPDE

group and OPDAR group towards a healthier diabetic phenotype (17;18),

which in turn displayed ligature‐associated bacterial profiles different

from that of theOPD group (Figure 3a‐c). Notably, these findings suggest

that improvement of the diabetic state in antibody‐treated obese rats

had an impact on the composition of ligature‐associated bacterial profiles

in T2D, which was returned towards that of the lean animals.

In the present study, treatment with anti‐TNF‐α was associated

with a bacterial profile different from that of the OPD group, which

is interesting, since atypical infections have been reported in humans

receiving anti‐TNF‐α (ETN) treatment. (Ellerin, Rubin, & Weinblatt,

2003). Furthermore, T2D has been reported to associate with an

altered microbiological profile in the gut of humans, and this change

has been proposed essential for the development of T2D (Qin et al.,

2012). In line, in an animal study of female ZOR, the glycemic status

was demonstrated to have an impact on the microbiota in the caecum

with increased number of lactobacilli, which is parallel to the findings in

the present study of the oral bacterial profile (Romo‐Vaquero et al.,

2014). On another note, a study using HOMIM‐analysis showed

that the bacterial profile is altered in Crohn's disease in humans

(Docktor et al., 2012). Collectively, these findings illustrate that

disease‐associated bacterial profiles may have the potential as future

biomarkers for identification of chronic diseases like T2D.

In conclusion, the present study demonstrates that the composition

of ligature‐associated bacterial profiles in a ratmodel is influenced by the

diabetic state of the animal. Furthermore, treatment with anti‐TNF‐α or

anti‐RAGE had an impact on both the diabetic state of the animals and

ligature‐associated bacterial profiles. Future studies could be performed

using next‐generation sequencing technologies addressing the specific

microbiota associated with health and disease in diabetic rats.
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