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We aim to construct a hypoxia- and immune-associated risk score model to predict the
prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). By unsupervised
consensus clustering algorithms, we generate two different hypoxia clusters. Then, we
screened out 682 hypoxia-associated and 528 immune-associated PDAC differentially
expressed genes (DEGs) of PDAC using Pearson correlation analysis based on the
Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression project (GTEx) dataset.
Seven hypoxia and immune-associated signature genes (S100A16, PPP3CA, SEMA3C,
PLAU, IL18,GDF11, and NR0B1) were identified to construct a risk score model using the
Univariate Cox regression and the Least Absolute Shrinkage and Selection Operator
(LASSO) Cox regression, which stratified patients into high- and low-risk groups and were
further validated in the GEO and ICGC cohort. Patients in the low-risk group showed
superior overall survival (OS) to their high-risk counterparts (p < 0.05). Moreover, it was
suggested by multivariate Cox regression that our constructed hypoxia-associated and
immune-associated prognosis signature might be used as the independent factor for
prognosis prediction (p < 0.001). By CIBERSORT and ESTIMATE algorithms, we
discovered that patients in high-risk groups had lower immune score, stromal score,
and immune checkpoint expression such as PD-L1, and different immunocyte infiltration
states compared with those low-risk patients. The mutation spectrum also differs between
high- and low-risk groups. To sum up, our hypoxia- and immune-associated prognostic
signature can be used as an approach to stratify the risk of PDAC.

Keywords: pancreatic ductal adenocarcinoma, microenvironment, hypoxia, immune, prognosis
INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is such a devastating cancer that it accounts for the
seventh biggest number of cancer deaths worldwide (1). Curative surgery remains the only potential
cure for PDAC, but over 80% of them lose the opportunity with an advanced stage at the first
diagnosis. Chemotherapy and radiotherapy for advanced PDAC patients have limited success due to
the cancer microenvironment surrounding the tumor (2). Therefore, the prognosis of PDAC
patients is extremely poor, with a 5-year overall survival (OS) rate of only 5% (3). Regarding the
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critical situation, the most urgent thing is to discover prognostic
signature for PDAC patients, which will enable stratification of
patients and precise treatment.

Hypoxia, as a major feature of cancerous microenvironment,
exists in most malignancies, affecting carcinogenesis and
developing tumorigenesis (4). The rapid proliferation of
pancreatic tumors can easily cause oxygen stress and gradually
form a hypoxic microenvironment (5). The hypoxic PDAC
microenvironment has the following characteristics, including
a median oxygen level of less than 0.7% and the activation of
related genes involved in angiogenesis and glycolysis (6, 7).
Under hypoxia, different various molecules and signaling
pathways are activated compared with normoxia, including
hypoxia-inducible factor-1a (HIF-1a) (8), which mediates cell
phenotypic changes. Kong et al. found that serine/threonine
kinase (STK33) as a downstream regulator of HIF-1a can
regulate the progression of pancreatic cancer, which reveals a
part of the PDAC–hypoxia axis (9). Since hypoxia could affect
the prognosis of PDAC patients through induction of malignant
phenotypes such as invasion and drug resistance (10),
discovering more signature genes in the PDAC–hypoxia axis is
a necessity. More importantly, taking the microenvironment as a
whole may offer new perspectives.

Known as being hypoxic, PDAC is also recognized as an
immunosuppressive tumor, which with mutations in immune
checkpoints will affect the prognosis (11). Despite the limited
success of immune checkpoint inhibitors, such as anti-Programed
Death 1 ligand (anti-PD-L1) and anti-cytotoxic T lymphocyte-
associatedprotein 4 (anti-CTLA-4)monoclonal antibodies (12, 13),
the mechanism that underlies the complexity of PDAC immune
microenvironment deserves to be elucidated. For all we know, the
interaction between tumor cells and immune microenvironment
components is key to tumor progression and response to
immunotherapy (14, 15). Accumulating lines of evidence reveal
that hypoxia interacts directly or indirectly with the immune status
in the PDAC microenvironment (16, 17), yet the mechanism has
been under-investigated. Based on the fact that T-cell infiltration
(18), DC function (19), etc. are impaired under hypoxia, Yamasaki
et al. suggest in their review that immunotherapy can only be
successful if these hypoxia-immune interaction issues are addressed
properly (2).

All this evidence adds up to suggest that the interaction
between hypoxia and immune status has certain prognostic
significance for PDAC. The purpose of this study is to
construct the very first hypoxia- and immune-associated
prognostic signature model through systematic analysis in
hope for its future incorporation into the already existing
clinical staging system and an improvement of PDAC prognosis.
MATERIALS AND METHODS

Data Collection and Mining of mRNA
Profiles
The messenger RNA (mRNA) expression matrix and the related
clinical information were obtained from The Cancer Genome
Frontiers in Immunology | www.frontiersin.org 2
Atlas (TCGA) database (https://portal.gdc.cancer.gov/projects/
TCGA-PAAD/) and Genotype-Tissue Expression Project
(GTEx) database (https://www.gtexportal.org/), respectively.
In this study, specimens with no survival data were
eliminated. For further verification, the clinical data and
transcriptional information were obtained from PDAC
cases in the International Cancer Genome Consortium
(ICGC) database (https://dcc.icgc.org/releases/current/
Projects/PACA-AU/) and Gene Expression Omnibus (GEO)
database (GSE28735, https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc= GSE28735/; GSE62452, https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc= GSE62452/). To maintain the
comparability of different databases, FPKM (fragments per
kilobase of transcript per million fragments mapped) values
of RNA-Seq were log2 transformed. Among them, a total
of 364 PDAC samples with complete mRNA expression data
and corresponding clinical materials were selected for
subsequent analysis.

Unsupervised Clustering of Hypoxia-
Associated Differentially Expressed Genes
“ConsensusClusterPlus” R package, based on the k-means
machine learning algorithm, was used to perform an
unsupervised consensus clustering, which allows for dividing
or condensing cases to multiple different clusters, according to
the provided hallmarks or signatures. Besides, hallmark gene sets
summarize and represent specific well-defined biological states
or processes and display coherent expression. The set of hypoxia
hallmark genes (n = 200), which is classic and has been used for
the hypoxia-associated analysis of other tumors, was acquired
based on the Molecular Signatures Database (MSigDB, https://
www.gsea-msigdb.org/gsea/msigdb/). In detail, we used the
consensus clustering algorithm with 1,000 iterations by
sampling 80% of the data in each iteration. The optimal cluster
number was confirmed by the Item-Consensus plot, the
proportion of ambiguous clustering (PAC) algorithm, and the
relative change in the area under the cumulative distribution
function (CDF) curves. Two clusters (namely, “hypoxia-low” and
“hypoxia-high” groups) were selected for assessing hypoxia
status. Kaplan–Meier plots were performed for hypoxia-high
and hypoxia-low groups to compare their OS.

Determination and Annotation of Hypoxia-
Associated and Immune-Associated DEGs
By comparing gene transcription profiles of patients from TCGA
and GTEx database with R package “limma”, the overall DEGs
were identified (|fold change| >2, p < 0.05). Pearson correlation
was performed to select hypoxia-associated DEGs based on data
from overall DEGs and hypoxia hallmark genes with the
standard of Cor > 0.8 and p < 0.05. On the other hand, we
converged overall DEGs and immune hallmark genes as
immune-associated DEGs; the latter hallmark genes (n =
2,483) were extracted from the immunology Database and
Analysis Portal (ImmPort, https://www.immport.org/)
database. The potential functions of these hypoxia- and
immune-associated DEGs were then ascertained through Gene
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Ontology (GO) annotation and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment Pathway analysis by using
the “clusterProfiler” package in R; FDR < 0.05 was considered
statistically significant.

Construction and Verification of
Prognostic Signature Associated With
Hypoxia and Immune Characteristics
Wetook the intersectionbetween immune- andhypoxia-associated
DEGs, and selected those overlapped genes for univariate Cox
regression analysis. Then, they were processed with the Least
Absolute Shrinkage and Selection Operator (LASSO) in order to
avoid over-fitting and to delete those tightly correlated genes.
Tenfold cross-validation was employed to select the minimal
penalty term (l). After that, we established an immune- and
hypoxia-associated prognostic signature for the PDAC patients
implicating seven hypoxia- and immune-associated DEGs. The
formula of the risk score was constructed as follows:

Risk score =o
n

i=1
Coefi ∗ xi

where Coefi represents the coefficients and Xi represents the
normalized count of each hub genes. Based on the median risk
score, we stratified patients into either a high- or a low-risk
group. What is more, the OS and survival-dependent receiver
operating characteristic (ROC) curves at 1, 2, and 3 years of
prognostic value was performed in TCGA training set and also
robustly validated in the GEO and ICGC cohorts.

Independent Prognostic Value of
Signature Genes and Their Relationship
With Hypoxia Clusters
Hub genes that formed the prognosis signature were analyzed for
their independent prognostic value by univariate Cox regression
analysis. Relationship between risk score model and previously
constructed hypoxia clusters were analyzed using the R package
“pheatmap”. Owing to analyzing the survival conditions of the
prognosis signature, the optimal cutoff value was calculated using
the R package “survminer”, and the Kaplan–Meier plot of OS of
these hub genes was depicted as well.

Correlations Between Hypoxia-Associated
Gene Signature and Clinical Parameters
The subgroup analysis of individual signature genes in the
hypoxia- and immune-associated prognostic signature was
conducted based on patients’ clinical characteristics. Next, uni-
and multivariate Cox regressions were used to verify the
prognostic role of the hypoxia- and immune-associated gene
signature and select clinical factors. Then, a nomogram was
established using R package “rms” based on risk scores and
clinical factors with prognostic value (pathological N, primary
therapy and age). The predictive effect of the nomogram was
validated by assessing the discrimination and calibration plot. To
be clear, the calibration curve of the nomogram was plotted to
observe the nomogram prediction probabilities against the
observed rates.
Frontiers in Immunology | www.frontiersin.org 3
Gene Set Enrichment Analysis of the
Prognostic Risk Score Model
Gene set enrichment analysis (GSEA) provided by MsigDB was
adopted to determine the statistical significance of molecular
pathways as well as the consistent heterogeneities between high-
and low-risk groups. GSEA software by JAVA program was
downloaded from the official website (https://www.broadinstitute.
org/gsea/). The gene sets “h.all.v7.4.symbols.gmt” and
“c5.go.v7.4.symbols.gmt” were selected as the reference gene set.
A pathway with FDR q < 0.25 and p < 0.05 was defined as
statistically significant.

Relationships of Prognostic Gene
Signature With Immunocyte Infiltration
Based on RNA-seq expression matrix of PAAD, CIBERSORT and
ESTIMATE algorithms were carried out using R. CIBERSORT
algorithm (http://cibersortx.stanford.edu/) was applied in
analyzing the differences of immunocyte infiltration status
between the high- and low-risk group with regard to 22
immunocyte subunits. Estimation of Stromal and Immune cells
in Malignant Tumor tissues using Expression data (ESTIMATE)
algorithm was adopted to measure stromal level (stromal score),
immunocyte infiltration degree (immune score), and tumor purity
in respective PDAC samples as the exploration of risk score model
for immune status grouping. Furthermore, the expression status of
common immune checkpoints was analyzed between high- and
low-risk groups by drawing boxplots.

Mutation Analysis of the Risk Score Model
The somatic mutation data were acquired from TCGA GDC
portal (https://portal.gdc.cancer.gov/). The R package “maftools”
was then utilized to draw a waterfall plot to depict the mutation
landscape in patients with the high- and low-risk group.

Statistical Methods
The independent Student’s t-test was used to compare the
continuous data with normal distribution, and c2 test for
categorical data was utilized for pairwise comparisons between
subgroups. The Kruskal–Wallis test (one-way ANOVA on ranks)
was performed to determine if there are statistically significant
differences between multiple groups. The Mann–Whitney U test
was used to compare differences between two independent groups
when the dependent variable is eitherordinal or continuous, but not
normally distributed. Kaplan–Meier analysis with a log-rank test
was used to compare the OS between different subgroups. All
statistical analyses were performed using the R programming
language (Version 4.0.3). A difference of p < 0.05 indicated
statistical significance unless specified otherwise.
RESULTS

Exploration of Hypoxia-Associated Genes
As the prognosis of PDAC patients with different levels of hypoxia
varies, we firstly performed unsupervised clustering analysis to
identify distinct hypoxia patterns and stratified patients into two
October 2021 | Volume 12 | Article 728062
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clusters (Figures 1A–C). Significant differences were detected
across these two clusters upon OS comparison (Figure 1D), in
which the patients inHypoxia Cluster 1 (hypoxia-high, with higher
extent of hypoxia) has poorer prognosis compared with patients in
Hypoxia Cluster 2 (hypoxia-low). This prompted us to continue to
explore the relationship between hypoxia levels and prognosis in
PDACpatients by looking intohypoxia-associated gene expression.

Identification and Annotation Hypoxia- and
Immune-Associated PDAC DEGs
By using the R package “limma”, we gathered a total of 5,364DEGs
comparing TCGA with GTEx (Figures 2A, B). Further
investigation of the relationship between PDAC DEGs and
hypoxia marker genes by Pearson correlation analysis showed
682 hypoxia- associated PDAC DEGs. By taking the intersection
of PDAC DEGs and 2,483 immune hallmark genes, we identified
528 immune-associated PDAC DEGs. GO and KEGG pathway
analysis of DEGs exhibits intriguing results. Some of the most
enriched pathways of hypoxic DEGs are immune-associated,
including “T cell activation”, “regulation of T cell activation”,
Frontiers in Immunology | www.frontiersin.org 4
“Lymphocyte differentiation”, and “Lymphocyte proliferation”
(Figures 2C–F), suggesting that the different hypoxic status
affecting PDAC prognosis may be related to the activation of
immune pathways.

Development and Validation of Hypoxia-
and Immune-Associated Risk Score Model
These hypoxia-associated DEGs were intersected with the
immune-associated DEGs, and altogether 72 overlapping genes
were screened for subsequent analysis (Figure 3A). By univariate
Cox regression analysis, we identified the 22 most relevant DEGs.
Afterwards, we chose seven genes for constructing the prognostic
signature via multivariate Cox regression analysis and LASSO
regression, aiming to stratify PDAC patients into two groups
with discrete OS, namely, high- or low-risk groups (Figures 3A–
C). Based on the median risk score, all cases were classified as
high- or low-risk group. According to Kaplan-Meier analysis
(Figures 3D, E, G, H, J, K), high-risk patients had remarkably
reduced OS relative to low-risk patients in different sets.
Additionally, 1-, 2-, and 3-year OS, based on the values of area
A B

C D

FIGURE 1 | Exploration of hypoxia-associated genes. (A) The Item-Consensus Plot represented the chosen optimal cluster number (k = 2) for hypoxia genes.
(B) Consensus values range from 0 to 1. (C) The corresponding relative change in area under the cumulative distribution function (CDF) curves when cluster number
changes from k to k+1. The range of k changed from 2 to 9, and the optimal k = 2. (D) Survival curves of patients in Hypoxia cluster-1 and cluster-2.
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under the curve (AUC) for TCGA PDAC cohort, GEO cohort,
and ICGC cohort are shown in Figures 3F, I, L.

Independent Prognostic Validation of
Seven Signature Genes
To gain insight into the independent prognostic value of the seven
signature genes in the risk model, we performed univariate Cox
regression analysis and found that five of them were harmful to
PDAC patients and two of them were beneficial to PDAC patients
(Figure 4A). On the clustering heat map of the seven genes, we
found that the risk model was consistent with the previously
Frontiers in Immunology | www.frontiersin.org 5
established hypoxia clustering, which somehow confirmed our
conjecture that hypoxia and immunity may interact in
influencing PDAC prognosis (Figure 4B). We went on to draw
the Kaplan-Meier survival curves to assess the prognostic value of
each signature gene, and the results were also consistent with
univariate Cox regression analysis (Figures 4C–I).

Correlation of Risk Models With Clinical
Characteristics
To investigate whether our risk model correlated with the clinical
characteristics of PDAC, we performed the Wilcoxon rank sum
A B

C D

E F

FIGURE 2 | Identification and annotation of DEGs. Heatmap (A) and volcano plot (B) of differentially expressed genes in PDAC based on data from TCGA and
GTEx. (C) The top 20 of GO analysis terms of hypoxia-associated DEGs. (D) The top 20 most enriched KEGG pathways of hypoxia- associated DEGs. (E) The top
20 of GO analysis terms of immune-associated DEGs. (F) The top 20 most enriched KEGG pathways of immune-associated DEGs.
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A B C

E FD

H IG

K LJ

FIGURE 3 | Construction and validation of risk score model. (A) LASSO coefficient profiles. (B) Selection of the tuning parameter (lambda) in the LASSO model by
10-fold cross-validation based on minimum criteria for OS. (C) Coefficient of the seven selected genes. (D–F) Construction of TCGA training set. (D) OS of TCGA
PDAC cohort. (E) Distribution of risk score and OS of TCGA training set. (F) Survival-dependent ROC curves validation at 1, 2, and 3 years of prognostic value of the
prognostic index in TCGA. (G–I) Construction of GEO validation set (GSE28735 and GSE62452). (G) OS of GEO PDAC cohort. (H) Distribution of risk score and OS
of GEO. (I) Survival-dependent ROC curve validation at 1, 2, and 3 years of prognostic value of the prognostic index in GEO. (J–L) Construction of ICGC validation
set. (J) OS of GEO PDAC cohort. (K) Distribution of risk score and OS of GEO. (L) Survival-dependent ROC curves validation at 1, 2, and 3 years of prognostic
value of the prognostic index in GEO.
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test and found that the high-risk group had amore advanced TNM
stageandhigher tumorgrade (Figures5A–H).Considering that the
prognostically relevant clinical characteristics differed between the
two risk groups, we further investigatedwhether the riskmodel had
similar or better predictive validity with other PDAC-independent
prognostic factors (Figures 5I, J). We built a nomogram to predict
patients’ OS with three independent prognostic factors including
age, primary therapy,N, and the risk score (Figure 5K). Calibration
plots presented that the nomogram might accurately estimate the
mortality (Figures 5L–N). The AUCs of the nomogram were 0.76,
0.80, and 0.82 for 1-year, 2-year, and 3-year OS (Figures 5O–Q).
The above results suggest that the riskmodel could eitherworkas an
independent prognostic factor or be integrated with existing
clinical indicators.

Enrichment Analysis of Hypoxia and
Immune Gene Sets in Risk Score Model
To further validate the function of the risk model in hypoxia and
immunity, we performed GSEA pathway enrichment analysis
and found that three hypoxia-associated gene sets were enriched
Frontiers in Immunology | www.frontiersin.org 7
in the high-risk group including WINTER_hypoxia_up,
HALLMARK_hypoxia, and HARRIS_hypoxia (Figures 6A–C).
Of the six immune-associated gene sets, three were enriched in
the high-risk group (Figures 6D–F) and the other three were
enriched in the low-risk group (Figures 6G–I). Because the
enrichment of the immune-associated gene set is more
complex compared with hypoxia-associated gene set, we need
further in-depth evaluation of this risk model regarding
immune status.

Relationship Between Risk Score Model
and Immune Infiltration
High-risk patients showed higher immunocyte infiltration
degrees of naïve B cells, CD4 memory resting T cells,
regulatory T cells (Tregs), resting NK cells, M0 macrophages,
resting dendritic cells, and activated dendritic cells, while the
low-risk group showed higher infiltration degrees of memory B
cells, CD8 T cells, follicular helper T cells, monocytes, M1
macrophages, M2 macrophages, resting mast cells, and
eosinophils (Figure 7A). The ESTIMATE score showed that
A B

C D E

G H I

F

FIGURE 4 | Independent prognostic validation of the seven signature genes. (A) Forest plot of univariate Cox regression analysis based on data from TCGA.
(B) Heatmap of hypoxia- and immune-associated DEGs by unsupervised clustering. The hypoxia cluster, risk group, and risk score as gene annotations were
correlated. (C–I) Kaplan–Meier survival of each hypoxia- and immune-associated DEGs expression based on data from TCGA.
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A B C D

E F G

I J K

L M N

O P Q

H

FIGURE 5 | Correlation of risk models with clinical characteristics based on TCGA PDAC cohort. The risk score was significantly correlated with T category (A),
stage (B), grade (C), and was not significantly correlated with primary therapy (D), tumor site (E), age (F), tumor size (G), and lymph node invasion (H). (I) Univariate
survival analysis and (J) multivariate survival analysis of clinical characteristics. (K) Nomogram predicting OS for PDAC patients. For each patient, four lines are drawn
upward to determine the points received from the four predictors. The sum of these points is located on the “Total Points” axis. Then, a line is drawn downward to
determine the possibility of 1-, 2-, and 3-year OS of PDAC. (L–N) The calibration plot for internal validation of the nomogram. The y-axis represents actual survival,
and the x-axis represents nomogram-predicted survival. (O–Q) The time-dependent ROC of the nomogram based on OS.
Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 7280628

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Prognostic Signature for PDAC
the high-risk group had lower stromal and immune scores
compared to the low-risk group (Figures 7C–H). In clinically
subgroup analysis, immune scores and stromal scores were
significantly lower in the high-risk group than in the low-risk
group in T3T4, Stage2, N1, and Grade2 (Figures 7I–P). The
immune checkpoint expression levels were also significantly
lower in the high-risk group than in the low-risk group
(Figure 7B). Combining these results, we found that different
risk groups of pancreatic cancer can accurately suggest the level
of immunity, and the overall level of immune response was lower
in patients in the high-risk group than in the low-risk group.
Frontiers in Immunology | www.frontiersin.org 9
Relationship Between Risk Score Models
and PDAC Mutations
An oncoplot showed the most frequently mutated PDAC genes in
the high-risk and low-risk groups (Figures 8A, B). The mutation
burden (TMB) is significantly higher in the high-risk groups.What
is more, four PDAC mutated genes (KRAS, TP53, SMAD4, and
TTN) were more frequently mutated and had a richer mutation
spectrum in the high-risk groups. The other six PDAC mutated
genes (CDKN2A, RNF43, MUC16, ATM, GNAS, and HMCN1)
were less frequentlymutated in the high-risk group than in the low-
risk group, and had a narrow mutation spectrum.
A B C

E FD

H IG

FIGURE 6 | Enrichment plots of hypoxia- and immune-associated gene sets from gene set enrichment analysis (GSEA). GSEA results showing gene sets in (A)
WINTER_hypoxia_up, (B) HALLMARK_hypoxia, and (C) HARRIS_hypoxia are differentially enriched in the high-risk group. Enrichment plots of immune-associated
gene sets from gene set enrichment analysis (GSEA). GSEA results showing gene sets in (D–F) are differentially enriched in the high-risk group while gene sets in
(G–I) are differentially enriched in the low-risk group.
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A B

C D E

F

I J

G H

K L

M N O P

FIGURE 7 | Relationship between risk model and immune status. (A) Analysis of the immunocyte infiltration degrees in both groups regarding 22 immunocyte subunits.
(B) Boxplots visualizing different immune checkpoint expression between high-risk and low-risk patients. (C–E) Estimation of risk score based on TCGA. The relationship
between the risk signature and Immune Score, ESTIMATE Score, and Stromal Score. (F–H) Scatter plot of Immune Score, ESTIMATE Score, and Stromal Score.
Analysis of different immune status (I–L) and stromal status (M–P) in high- and low-risk groups of TCGA PDAC cohort and its correlation with clinical features. (*p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001; ns, p > 0.05)
Frontiers in Immunology | www.frontiersin.org October 2021 | Volume 12 | Article 72806210

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chen et al. Prognostic Signature for PDAC
DISCUSSION

The PDACmicroenvironment contains various factors including
hypoxia, immune cell infiltration, and fibrosis (20). Hypoxia
enhances PDAC proliferation, metastasis, and resistance to
radiotherapy and chemotherapy (21). Meanwhile, the immune
microenvironment of PDAC also affects tumor progression (22).
Considering the development of a prognostic strategy, targeting a
single factor may be insufficient to classify PDAC patients, and
we discussed in this study the possibility that PDAC hypoxia and
immune microenvironment together will elucidate prognosis
of PDAC.

Prognosis was worse in our highly hypoxic cluster (Hypoxia
Cluster 1), which is in line with a similar theory of Chiou et al,
who claims BLMP1, induced by hypoxic microenvironment,
can damage prognosis of PDAC by promoting metastasis
through regulating hypoxia-associated gene expression (23).
Liu et al. found that the anti-cancer factor CF129 is poorly
expressed in the hypoxic microenvironment and thus fails to
ubiquitinate p53 protein, which in turn leads to worse
prognosis (24).

Due to the complexity of hypoxia and immune activity within
the tumor microenvironment (TME) (25), we conducted GO
and KEGG pathway analysis for hypoxia-associated DEGs and
discovered that several immunoregulatory pathways were
enriched. Among them, T-cell activation was hampered by
hypoxia-induced myeloid-derived suppressor cells (MDSC) in
colorectal cancer (26). Lymphocytes were affected by tumor-
derived exosomes in the context of hypoxia, which subsequently
regulates MDSC function in a miR-21/PTEN/PD-L1 axis in oral
squamous cell carcinoma (27). Importantly, there are also
hypoxia-associated pathways enriched in immune DEGs. ECM
transcriptional program dysregulation is correlated with the
activation of TGF-b signal in cancer-associated fibroblasts and
is linked to immunosuppression in immunologically active
Frontiers in Immunology | www.frontiersin.org 11
tumors (28). Together with these researches, our result linked
hypoxia with immunity.

With LASSO analysis, we identified seven signature genes
(S100A16, PPP3CA, SEMA3C, PLAU, IL18, GDF11, and
NR0B1). Fang et al. revealed that S100A16 promotes PDAC
progression through FGF19-mediated AKT and ERK1/2
signaling (29). Li et al. demonstrated that S100A16 induces the
EMT to promote the metastasis of PDAC, which is mediated by
TWIST1 and STAT3 signal (30). Zhuang et al. found that
overexpression of S100A16 was significantly associated with a
higher T stage, advanced histologic grade, and worse prognosis,
and may impair the infiltration and cytolytic activity of CD8+ T
cells through focal adhesion-Ras-stimulating signal pathway
(31). As for IL-18 being a double-edged sword, it alone
promotes carcinogenesis, but when combined with NF-kb
inhibitor, it exhibits an anti-tumor effect (32). Sun et al.
believed that the feedback loop of NF-kb signal and its
downstream IL-18 is the key to understanding PDAC
metastasis (33). Xu et al. demonstrated that overexpression of
SEMA3C is correlated with poor prognosis of PDAC patients by
activating ERK1/2 signaling pathway (34). For PPP3CA, PLAU
together with the other two “nice” genes identified by us,
mechanistic studies of good quality are rare, which provide
underlying targets for experimental design to uncover
molecular mechanisms. Importantly, the risk score model is
correlated with previously established hypoxia clusters, which
strengthened the link between hypoxia and immunity. The
nomogram incorporating the seven-gene signature and
clinicopathological parameters showed great prognostic
potency, which may enable clinicians to determine an
individual patient’s prognosis. In other studies of this field,
Yan et al. identified a four-gene signature (LYRM1, KNTC1,
IGF2BP2, and CDC6) significantly associated with progression
and prognosis of pancreatic cancer (35). More recently, Feng
et al. also discovered a seven-gene signature (ASPH, DDX10,
A B

FIGURE 8 | The mutation frequency of genes in patients with PDAC from TCGA database. Correlation between the high-risk group (A) and the low-risk group (B)
with mutations is presented. Each column represented individual patients. The upper barplot showed TMB. The number on the right indicated the mutation
frequency in each regulator. The right barplot showed the proportion of each variant type.
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NR0B2, BLOC1S3, FAM83A, SLAMF6, and PPM1H) for
prognosis prediction of PDAC patients (36). No overlap was
identified between the seven-gene prognostic signature we
developed and those previously defined. Besides, the
methodology of signature construction we adopt is a more
unsupervised and unbiased way. To our knowledge, this is the
first prognosis signature risk score model ever built containing
both key factors of PDAC microenvironment, hypoxia, and
immunity. Taken together, our prognostic signature was
identified to be superior or comparable to the previous
defined signatures.

By GSEA, we discovered that all four hypoxic gene sets were
enriched in the high-risk group, confirming that pancreatic
cancer is a hypoxic tumor (37). Interestingly, half of immune
genes were enriched in the high-risk group. To be specific, Cave
et al. reported that inactivation of TGF-b1-Smad2/3 signaling in
PSCs strongly reduced the aggressiveness of PDAC cells by
rescuing L1 cell adhesion molecule (L1CAM) (38). Yamamoto
et al. reported that in PDAC, major histocompatibility complex
class I (MHC-I) molecules are selectively targeted for lysosomal
degradation by an autophagy-dependent mechanism (39). The
other half of immune gene sets were enriched in the low-risk
group. Akce et al. summarized characteristics of chimeric antigen
receptor (CAR) T-cell therapy, which utilizes genetically
engineered T cells that are redirected to specific cancer-
associated antigens to elicit potent cytotoxic activity (40).
Burger et al. summarized that B cells and BCR-related kinases,
such as BTK, play a role in the microenvironment of PDAC,
which could be targeted to achieve great anticancer activity (41).
All of the mentioned gene sets regardless of their enrichment
status are contributing to our promising prognostic risk
score model.

The different expression profile from CIBERTSORT in our
risk score model is highly consistent with current studies on
immune cell infiltration. Gunderson et al. discovered that in the
mature tertiary lymphoid structure-positive group, a sign of
misery prognosis, patients have higher expression of naïve B
cell (42). Ma et al. demonstrated that the combination of anti-
PD-1 inhibitory and anti-OX40 agonist antibodies reduces the
proportion of regulatory T cell in PDAC (43). Induced
pluripotent stem cell-based cancer vaccine could also reduce
immunosuppressive CD4+ T regulatory cells (44). Notable is the
extinct higher proportion of resting memory CD4+ T in our
high-risk group, which is consistent with the finding of resting
central memory CD4+ T cells that predicted a worse prognosis
from Gu et al. (45). Spear et al. demonstrated in a murine study
that B-cell memory infiltration is an immunostimulatory factor
that might support the adaptive antitumor immune response
(46), which is consistent with its high expression in our low-risk
group. Taken together, our risk score was correlated with the
immunosuppressive microenvironment of the tumor.

In the ESTIMATE analysis, we found that both the
immune score and the stromal score were higher in the lower-
risk group, which is easy to comprehend because of the
consensus that PDAC is an immunosuppressive tumor with
low immunogenicity while being extra malignant (47). To be
Frontiers in Immunology | www.frontiersin.org 12
specific, a tumor with lower immune score is correlated with
higher risk score in T3, T4, and Stage II PDAC with regional
lymph node metastasis, which is consistent with the finding of
Yamasaki et al. that larger tumors are more likely to develop
hypoxia and metastasis through hypoxia-related pathways (2).
The stroma scores are high in both groups. According to Gorchs
et al., carcinoma-associated pancreatic fibroblasts (CAFs) co-
inhibit effector CD4+ and CD8+ T cells to damage immunity
(48). Our risk score model is able to accurately stratify patients
according to their immune microenvironment.

Immune checkpoint assays showed lower levels of immune
checkpoint expression in the high-risk group (49). Considering
that current immunotherapy against immune checkpoints in
pancreatic cancer constantly fails to achieve satisfactory efficacy,
we believe that this may be related to the low level of immune
checkpoint expression in high-risk patients (47). Interestingly,
though not significant, the stroma score in the low-risk group is
higher, which, according to Gorchs et al., is because CAFs could
induce the expression of immune checkpoints on CD4+ and
CD8+ T cells (48). The silver lining is, for the low-risk score
patients, who have high immune checkpoint expression, they
could benefit from immunotherapy. What is more, there’s a
synergistic effect when a combinatorial approach of
immunotherapy in conjunction with other modalities is being
exploited (50). In this case, we believe combining hypoxia and
immunity not only serves as a prognostic classifier but could
guide treatment.

The limitations of our work are as follows: Firstly, since all
information and tissues were obtained retrospectively from public
databases, the two independent external validations we performed
cannot cover all variations of PDAC cases from all relevant regions.
Secondly, since the number of TCGApancreatic cancer cases is not
large enough, some statistical differences were not ideally
significant. Thirdly, since the external and internal part of a
tumor differs in microenvironmental characteristics, taking the
tumor as a whole may not be able to differentiate the hypoxic and
immune status of different tumor sites. For possible differences
within andoutside the tumor, theuse of single-cellRNAsequencing
combined with spatial transcriptomic analysis can be considered to
potentially address this issue. For the seriousness of scientific
research and the novelty of risk score model, we would love to see
our results going through more thorough validation in well-
designed multicenter prospective studies.
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