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Novel Quantum Criticality in Two 
Dimensional Topological Phase 
transitions
Gil Young Cho & Eun-Gook Moon

Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-
electron wave-functions, and divining them is one of the most significant ways to advance 
understanding in condensed matter physics. Our focus is to investigate an unconventional class of the 
transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo 
relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the 
electronic energy dispersion along one direction behaves like a relativistic particle, linear in momentum, 
but along the other direction it behaves like a non-relativistic particle, quadratic in momentum. Various 
physical systems ranging from TiO2-VO2 heterostructure to organic material α-(BEDT-TTF)2I3 under 
pressure have been proposed to have such anisotropic dispersion relation. Here, we discover a novel 
quantum criticality at the phase transition by incorporating the 

r
1  long range Coulomb interaction. 

Unique interplay between the Coulomb interaction and electronic critical modes enforces not only the 
anisotropic renormalization of the Coulomb interaction but also marginally modified electronic 
excitation. In connection with experiments, we investigate several striking effects in physical 
observables of our novel criticality.

Quantum criticality and topology are two of the main impetuses of modern condensed matter physics. 
Self-similarity of many-electron wave-functions associated with quantum criticality1–3 unveils emergent univer-
sality of physical observables, and topology of the electronic wave-functions manifests itself as various fascinating 
topological insulators and associated quantized responses4–7. The two striking characteristics of the wave-function 
are naturally and inevitably intertwined at topological quantum phase transitions.

Long-range 
r
1  Coulomb interaction between electrons induces striking screening effects near the topological 

phase transitions. Electronic critical modes and the Coulomb interaction are intrinsically correlated, so 
non-trivial quantum criticality usually appears8–13. For example, quasi-particles lose their stability due to the 
Coulomb interaction and the ground state becomes quantum critical non-Fermi liquid with emergent full rota-
tional symmetry in quadratic band touching semimetals, which is near three dimensional (3d) topological 
insulator8.

In two dimensions (2d), the Coulomb interaction becomes more special. It is because the Coulomb potential 
originally lives in 3d but electrons are confined in 2d. Thus the electrons in 2d feels the dimensionally different 
interaction, originating from 3d. Since correlation and fluctuation are enhanced in lower dimensions, one may 
expect stronger interplay between the Coulomb interaction and critical modes in a topological phase transition, 
and indeed we find the novel quantum criticality in a class of 2d topological quantum phase transitions.

Conventional 2d topological phase transitions between two topologically distinct insulators are described by 
the pseudo-relativistic Dirac fermion theory σ σ σ( ) = + + ,kH v k v k MD

x x
x

y y
y z  with Pauli matrices in band 

index spinor space. Here the topological nature of the transition is captured by the change in the Berry curvature 
of the wave-function depending on the sign of M, and different patterns of opening up band gaps at separate 
Dirac points represent different topological insulator phases when supplemented with proper symmetries. The 
long-range Coulomb interaction at the critical point ( = )M 0  induces intriguing logarithmic modification of the 
Dirac velocities, so not only rotational symmetry at the critical point emerges but also important interaction 
effects appear whose structure has been extensively studied in literature14,15 in connection with charge-neutral 
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mono-layer graphenes. We emphasize that the isotropic 
r
1  Coulomb interaction dominates microscopic anisot-

ropy of electrons in this case.
Here we focus on a different class of the topological phase transitions whose electronic Hamiltonian is

σ σ( ) = + . ( )kH vk Ak 1x
x

y
y2

With a tuning parameter m, energy spectrum of σ= ( ) −kH H m y is ( ) = ± + ( − )± kE v k Ak mx y
2 2 2 2 . The 

two phases are determined by the sign of the tuning parameter. With a positve A and <m 0, energy spectrum is 
gapped, so the ground state is an insulator. On the other hand, with >m 0, the zero-energy points appear at two 
points in momentum space, = ± = ±⁎k ky y

m
A

. By expanding the Hamiltonian (1) near these points, we obtain 
σ σ( ) = ++ pH v p v px

x
y y

y around the point = ( , + )⁎k p k px y y  with = ⁎v Ak2y y . Thus the ground state is a 2d 
Dirac semimetal. Thus, it is clear that our model Hamiltonian describes a phase transition between a (either top-
ological or trivial) insulator and a Dirac semimetal in 2d.

The Hamiltonian (1) has been suggested in various physical systems, ranging from TiO2-VO2 oxide hetero-
structures16–18 and the organic material α-(BEDT-TTF)2I3 under pressure19–21 to optical lattice systems22–24. For 
example, in the oxide heterostructure TiO2-VO2 layers16–18, there is a metal-insulator transition as the number of 
layers is changed. At the certain number of layers, the first-principle band structure calculation16–18 reveals that 
there should be the anisotropic semimetal (1). Furthermore, the structure of the Hamiltonian (1) is similar to that 
of the notorious quantum criticality problem with Fermi surfaces in 2d25–30 whose scaling of the dispersion along 
the radial direction to the Fermi surface is linear in momentum while that along the perpendicular direction is 
quadratic in momentum. Due to the similarity in dispersions, we expect that our analysis might shed some light 
on understanding the quantum criticality with Fermi surfaces despite of the finite density of states in the Fermi 
surface case.

In this work, we show, by using the systematic renormalization group (RG) method, that the long range inter-
action strongly changes the nature of the eigenstates of the non-interacting Hamiltonian. We find a novel quan-
tum criticality characterized by both anisotropically renormalized and marginal Coulomb interactions which is 
in sharp contrast to other quantum criticalities. The anisotropic marginal quantum criticality is out of intricate 
interplay between the long range Coulomb interaction in 2d and the critical electron modes, and we emphasize 
its striking properties by calculating physical observables.

Models with Coulomb Interaction
We start with the theory incorporating the electron Hamiltonian with the long-range 

r
1  Coulomb interaction,

  





∫

∫ ∫

τψ φ ψ

τ φ φ φ ω

= +

= ((∂ + ) + (− ∇))

= ∇ = ( , ) ,
( )

ψ φ

ψ τ

φ ω,

†

q q

d xd ie H i

d xd 1
2

1
2 2q

2

2 2 2

where φ mediates Coulomb interaction between electrons ψ. The short-hand writing ∫ ∫=ω
ω

π, ( )q
qd d

2

2

3
 is used. 

Hereafter, all integrations are defined with the short-distance (or high-energy) ultra-violet (UV) cutoff. (− ∇)H i  
is the Fourier transformation of ( )kH  (1), and the bare gauge boson propagator ( ) =,

− q qgb 0
1  represents the 

long-range 
r
1  Coulomb interaction. For future convenience, we introduce a dimensionless coupling constant, the 

fine structure constant α =
π

e
v2

2

2 , which measures the “strength” of Coulomb interaction.
We investigate the stability of the theory by the lowest order perturbation calculation, in particular, by calcu-

lating the bosonic self-energy whose Feynman diagram representation is in Fig. 1(a),

∫ ω ωΠ( , Ω) = 

( + , + Ω) ( , )


.

ω,
q k q ke g gTr

k f f
2

(a) (b)

Figure 1.  Diagrams for (a) the boson self-energy Π(q) and (b) the fermion self-energy ωΣ ( , )kf . Here the 
dotted line represents the boson propagator ( , Ω)qgb  and the solid line represents the fermion propagator 

ω( , )kg f .
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ω ω( , ) = − + ( )− k kg i Hf
1  is used. It is straightforward to evaluate the integral (see the supplementary informa-

tion I for detail), and we find that

( )α ξ ξΠ( ) = − , = ,
( )

q q G
Aq

v q2 3q qy
y

x

2

where ( )ξG q  is the function of the dimensionless parameter ξq. Hereafter, we drop the frequency dependence in 
the boson self-energy since we are only interested in the instantaneous Coulomb interaction. The full functional 
form of ξ( )G  is not important. Thus we will not present it here and plot it only in the supplementary information 
I. Instead, the asymptotic behavior of Π( )q  in each direction is extracted

( )α α
Π( , ) = − , Π , = − ×q c v q

A
q

c
q0

2
0

2x
x x

y
y

y

with the numeric constants ≈ . , ≈ .{ }c c2 7 2 5x y . Notice that the boson self-energy is independent of the UV 
cutoff which signal a novel quantum criticality in our system.

It is clear that the perturbation becomes more important than the original bare term along = ˆq q xx ,

( , ) Π( , ) ,,
−

~ ~g q q q q0 0b x x x x0
1

in the limit →q 0. Thus we conclude that the action (2) is unstable under the fermion-gauge boson coupling.
The instability from the perturbative calculation often indicates the presence of the stable strong-coupling 

fixed point which can be accessed by large-N f  analysis with the number of fermion flavors N f . The large-N f  
analysis starts with adding the bosonic self-energy to the boson bare term,

 ∫ ( φ ω→ − Π( ) ( , ) .φ ω,
q q qN1

2q f
2

The schematic representation of the inverse of the corrected boson propagator ( ) = − Π( )− q q qg Nb f
1  is

α
( ) +






+






.

( )

− ~q qg
N

c q c
v q

A2 4
b

f
y y x

x1

The limit α → 0 recovers the unstable bare action (2), and we investigate the opposite limit α → ∞Nf  where 
we drop the bare term ( )~ q .

Using this corrected boson propagator, we calculate the fermion self-energy in Fig. 1(b)

Σ ω δ µ σ δ µ σ− ( , ) = (Λ, ) + (Λ, ) ,k v k A kf x
x

y
y2

obtained by expanding the self-energy near =k 0 with the UV and IR cutoffs, µΛ, . Straightforward calculation 
gives

δ
µ

δ
µ

=




Λ 



, =





Λ 



,

v
v

J
N

A
A

J
N

2 log
2

logx

f

y

f

with the two dimensionless constants, ≈ . , ≈ .J J0 18 0 03x y  (see supplementary information III for detail). We 
notice that the instantaneous nature of the Coulomb propagator enforces no vertex correction through the Ward 
identity.

Therefore, the RG flow equations, i.e., beta functions, for v and α can be derived by changing the ratio, =
µ
Λ el,

α α= , = − ,
( )

dv
dl

J
N

v d
dl

J
N

2 2
5

x

f

x

f

near the strong-coupling fixed point. It is clear from the RG equations that the fine structure constant α decreases 
with the anomalous dimension of the velocity, J

N
2 x

f
. This concludes that the strong-coupling fixed point is 

unstable.
Our controlled analysis near the two extreme limits (standard perturbation and large-N f  analysis) clearly 

shows that both the fixed points are unstable. Then it is obvious that the stable fixed point should be in the inter-
mediate regime, which is difficult to access in a fully controlled way. Thus, we study the fixed point with the 
standard momentum-shell RG and check a posteriori its validity by self-consistency.

In the momentum-shell RG analysis, we remark that the non-analytic dependence q  of the Coulomb interac-
tion does not receive correction from integrating out higher-momentum modes. Thus, we first keep the seemingly 
irrelevant κ


~ qx

2 term in the boson action,
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 ∫ κ φ ω→ ( + ) ( , ) .φ ω,


q qq1
2q x

2 2

It turns out that the following three dimensionless parameters determine the RG flows

α
π

γ κ β α
γ

= , =
Λ
, = .

( )


e
v

A
v2 3 6

2

2

2 3

Evaluating Feynman diagrams in Fig. 1 gives the renormalized action   ′ = ′ + ′ψ φ. Here, we use the cutoff 
scheme such that we integrate along the ŷ-directional momentum (Λ , Λ)

−e l  with l 1 after integrating out the 
x̂-direction momentum and frequency. On integrating out the higher-momentum modes, three parameters are 
renormalized as

δ α γ δ α γ δκ
κ

β= , = , =


v
v

F l A
A

F l l[ ] [ ]1 2

We find that the functions γ,F [ ]1 2  are non-negative near γ = 0 whose specific forms are illustrated in supple-
mentary information IV. The RG flow equations of α γ β, ,{ } are

α α γ

γ γ β α γ γ

β β β α γ γ

= − ,

= ( − + ( − )),

= ( − + ( − )).
( )

d
dl

F

d
dl

F F

d
dl

F F

[ ]

3 2 [ ] [ ]

3 [ ] 2 [ ] 7

2
1

2 1

1 2

The two fixed points are, α γ β( , , ) = ( , , ),( , , )0 0 0 0 0 3 , and it is easy to show that the former is unstable and the 
latter is stable. At the stable fixed point α γ β( , , ) = ( , , )0 0 3 , the boson propagator receives a large anomalous 
scaling dimension, which can be understood as β( + ) ≈ →

β=
l q q e q1 x x

l
x3

2 2 3  (because −e l2  is the scaling 
factor of )qx . Such large anomalous dimension indicates that the momentum-shell RG is not controlled and a 
priori not reliable.

At the stable fixed point, the effective bosonic action becomes

 ( )∫ κ φ ω= + ( , ) ( )φ ω,
q qq1

2 8k
f

x
2

which is very similar to the large-N f  calculation with one important difference; a new coupling constant κ( ) with 
UV cutoff scale naturally enters in contrast to the large-N f  calculation where the coefficient of qx  is ~ v

A
 (see 

equation (4)) which depends on the other parameters α, ,v A{ }. Here the new dimensionful parameter κ appears 
in the bosonic part at the intermediate coupling regime.

With this intuition in hand, we investigate the stability of the new fixed point by taking equation (8) as the bare 
boson action and performing the momentum-shell RG near this fixed point. Remarkably, we find that the velocity 
v and inverse mass A receives the same corrections at the fixed point

 δ α
µ

δ α
µ

= ⋅




Λ 



, = ⋅





Λ 



,

v
v

A
A

log logf f

The same correction is another evidence for our fixed point to be stable since the ratio v
A

 appearing in the 
boson self-energy Π( )q  becomes constant. Notice that the remarkable same correction also appears in Fermi 
surface quantum criticalities with very different physical reasons which also supports stability of our fixed point26. 
It is manifest that the gapless excitation structure of our system is completely different from that of Fermi surfaces 
(lines) in 2d. Only nodal point excitation appears in our system. However, the low energy scaling structures of the 
two systems are same considering the patch theory of Fermi surfaces in 2d ; one momentum direction has linear 
scaling while the other one has quadratic scaling. We believe this unexpected similarity is the source of the similar 
behaviors in the beta functions. It would be very intriguing to find more similarity and difference of two systems’ 
quantum criticalities, which we leave for future work.

The beta functions around the novel fixed point are

α α α α= − , = ⋅ , = ⋅ ( )
d
dl

C dv
dl

C v dA
dl

C A 9f f f
2

where  ≈ .0 8f  calculated in the supplementary information V.
We remark that the hard momentum cutoff scheme is only used for simplicity and illustration. It is shown that 

our results are independent of cutoff schemes in the supplementary information VIII.
The above RG flow structure (9) is unique to this fixed point. The beta functions contain the fine structure 

constant α in contrast to those of the large-N f  calculation (5) in which α is absent, and here both ,v A receive the 
same logarithmic corrections, which are proportional to α. Thus, the fine structure constant α decreases and the 
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fermion only receives the logarithmic corrections, which indicates the fixed point is stable. Naturally, as in 
mono-layer graphene, marginal Fermi liquid behaviors are expected with higher order corrections31.

Based on the calculations and intuitions, a schematic RG flow can be deduced as in Fig. 2 which summarizes 
our main results. Our controlled calculation shows the non-interacting critical point (Non-Int.) and the strong 
coupling fixed point (S) are unstable and the RG flow comes out of the both points and flow into the intermediate 
fixed point (QC), which is characterized by the definite anisotropic scaling of bosons and electrons and the single 
logarithmic corrections to velocity and inverse mass.

Experimental Signatures
We now investigate the physical consequences of both the anisotropy and marginal irrelevance of the renormal-
ized Coulomb potential at the novel intermediate critical point.

First of all, with the beta functions of v and A (9), we can find logarithmic corrections to all physical quantities. 
The parameters ,v A{ } at the temperature scale T are

α α( ) =




+











, ( ) =





+











.

( )
v T v C E

T
A T A C log E

T
1 log 1

10f f0
0

0
0

Here E0 is the bandwidth or the UV cutoff of the theory (1). v0 and A0 are the bare parameters at the highest 
energy scale ~E0. The logarithmic corrections in ,v A{ } may be observed in quasi-particle experiments as in 
graphene, for example, angle resolved photo-emission spectroscopy (ARPES)32 or quantum oscillation.

Furthermore, thermodynamic quantities such as specific heat and compressibility also show logarithmic cor-
rections. Specific heat and compressibility of the unstable free electron fixed point are ( ) = ≈∂ ( )

∂
. /

C Tv
E T

T
T

v A
0 38 3 2

0 0
 

and κ( ) = ≈µ
µ

µ

∂ ( , )
∂

→

.T n T T
v A0

0 07

0 0
 in which ( )E T  is the (thermal-averaged) energy density per volume as the 

function of temperature T and µ( , )n T  is the density of the electron per volume as the function of chemical 
potential μ and temperature T. But at the novel fixed point, the logarithmic corrections give

( ) ( )( ) ( )α
κ

α
( ) ≈

.

+

, ( ) ≈
.

+

,

( )

/

/ /
C T T

v A
C

T T

v A C

0 38

1 log

0 07

1 log 11

v

f
E
T f

E
T

3 2

0 0
3 2

0 0

3 2
0 0

at the temperature T by following the reference14.
Secondly, we can see the effect of the anisotropic renormalization of the gauge boson via the screening charge 

when a single impurity charge Z is introduced at =r 0. At the level of the linear response theory, the screening 
charge is ρ ( ) = ( )Π ( )q q qZDind 0 , in which ( )qD  is the propagator of the gauge boson. We are interested in the 
directional behaviors of the screening charge and hence define the integrated screening charges 

∫ ρ( ) = ( )
−∞

∞ rQ x dyx ind  and ∫ ρ( ) = ( )
−∞

∞ rQ y dxy ind  along x̂  and ŷ . Here we will contrast the extremely  
different behaviors of the screening charges between the free fixed point and the non-trivial fixed point.

At the free fixed point, we ignore the corrections to the gauge boson propagator and use  
( ) =qD

q0
1 . Following the straightforward calculation in supplementary information VI, we find 

δ( ) ∝ − , ( ) ∝ − ( )Q x Q y Z yx
Z
x y  whose sign is the opposite of the impurity charge Z.

non-Int.Ins.

QC

Dirac

S

Figure 2.  Proposed RG flow. The horizontal axis is for the tuning parameter m of the quantum criticality 
equation (1) and the vertical axis is for the strength of Coulomb interaction. There are two stable fixed points, 
insulators (‘Ins’) and Dirac semimetal (‘Dirac’). The two unstable critical points are illustrated with dashed 
circles, non-interacting (‘Non-Int.’) and strong-coupling fixed point (‘S’). And the stable critical point is the 
filled circle (‘QC’). The critical point is characterized by the definite anisotropic scaling and the logarithmic 
corrections to mass and velocity. Near the fixed points (Ins, Dirac, QC), one-particle spectrum with the 
Coulomb interaction is illustrated.
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On the other hand, at the non-trivial anisotropic fixed point in which we use the renormalized boson propa-
gator κ( ) = +−q qD qxrem

1 , we find the asymptotic behaviors of the screening charges

( ) ( )α α
( ) ∝

+ ( / )
, ( ) ∝

+ ( / )
,

( )
Q x Z

x C x r
Q y Z

y C y r1 log 1 log 12
x

f
y

f0
2

0
2

where − ~r E0
1

0 is the UV cutoff. Here the sign of the screening charge is the same as the impurity charge Z, which 
is reminiscent of graphene case33.

From the above calculations, we see that the asymptotic scaling behaviors of the screening charges in distance 
from the impurity along x̂ and ŷ are surprisingly isotropic. The isotropic scaling in both the directions is origi-
nated from the facts that the scaling of ( )qDrem  is identical to that of Π ( )q0  and that µ µ( ), ( )v A{ } at the energy 
scale μ receive the same logarithmic corrections as (9). Hence this isotropic scaling behaviors are truly from the 
effects of interactions between the electrons and the gauge boson.

Discussion and Conclusion
The presence of the novel fixed point implies that the electrons and gauge bosons are strongly correlated. At 
low energy, electrons and gauge bosons affect each other, so the Coulomb interaction mediated by the bosons 
becomes anisotropic and electrons receive back-reaction from the renormalized anisotropic Coulomb inter-
action. Thus, the Coulomb interaction behaves differently from that of most critical systems where it enforces 
low-energy isotropy of electronic modes8,14,31,34. Also, notice that the ground state of our fixed point has margin-
ally well-defined quasi-particles as those in graphene, which is in contrast to non-Fermi liquids with non-zero 
anomalous dimensions. In Table 1, the comparison with other quantum criticality associated with topological 
phase transitions is summarized.

Our novel quantum criticality can be experimentally tested in the systems such as VO2-TiO2 heterostructure. 
Near the critical point, optical conductivity shows anisotropy inherited from the electron band structure. 
Straightforward calculation with current operators ψ σ ψ ψ σ ψ( , ) = ( , )† †j j Akx y

x
y

y  gives

σ σ(Ω) ∝
Ω
, (Ω) ∝ Ω ,

( )
1

13xx yy

upto logarithmic corrections from the Coulomb interaction (see the supplementary information VII). However, 
as shown in the previous section, the screening charge due to the charged impurity, which can be measured in 
principle by scanning tunneling microscopy (STM), shows qualitatively isotropic behaviors. Such discrepancy 
between the two experiments is a smoking gun of the novel quantum criticality in addition to thermodynamics 
quantities such as specific heat.

It is worth to mention that disorder scattering in the non-interacting electrons (1) is relevant35, so our results 
work better for cleaner samples. We expect that there will be an intriguing interplay between the anisotropic 
Coulomb interaction and impurity scattering at the novel critical point, which we leave for the future problem.

In conclusion, we have investigated the quantum criticality of the anisotropic semimetal which can be thought 
as the critical point between topological insulators and Dirac semimetal in two spatial dimensions. At the 
low-energy limit, we found the novel fixed point out of the interplay between critical electron modes and the 
long-range 

r
1  Coulomb interaction. The non-trivial anisotropic renormalization of the Coulomb interaction and 

the logarithmic corrections manifest at various physical quantities including screening charge when the impurity 
charge is introduced. Surprisingly we have shown that the scaling behavior of the screening charge in distance 
from the impurity is isotropic despite of the underlying anisotropic nature of the system.

Note added : After the completion of the paper, we became aware of the independent work by H. Isobe, B.-J. 
Yang, A. Chubukov, J. Schmalian, and N. Nagaosa [ref. (36)]. Similarity and differences between our work and 
theirs are discussed in supplementary information.
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