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Aging of mice can be tracked by DNAmethylation changes at specific sites in the genome.
In this study, we used the recently released Infinium Mouse Methylation BeadChip to
compare such epigenetic modifications in C57BL/6 (B6) and DBA/2J (DBA) mice. We
observed marked differences in age-associated DNAmethylation in these commonly used
inbred mouse strains, indicating that epigenetic clocks for one strain cannot be simply
applied to other strains without further verification. In B6 mice age-associated
hypomethylation prevailed with focused hypermethylation at CpG islands, whereas in
DBA mice CpG islands revealed rather hypomethylation upon aging. Interestingly, the
CpGs with highest age-correlation were still overlapping in B6 and DBAmice and included
the genes Hsf4, Prima1, Aspa, and Wnt3a. Notably, Hsf4 and Prima1 were also top
candidates in previous studies based on whole genome deep sequencing approaches.
Furthermore, Hsf4, Aspa, and Wnt3a revealed highly significant age-associated DNA
methylation in the homologous regions in human. Subsequently, we used pyrosequencing
of the four relevant regions to establish a targeted epigenetic clock that provided very high
correlation with chronological age in independent cohorts of B6 (R2 = 0.98) and DBA (R2 =
0.91). Taken together, the methylome differs extensively between B6 and DBA mice, while
prominent age-associated changes are conserved among these strains and even in
humans. Our new targeted epigenetic clock with 4 CpGs provides a versatile tool for
other researchers analyzing aging in mice.
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INTRODUCTION

Precise measurement of aging is a prerequisite to identify parameters that may attenuate the aging
process. It is fascinating that the DNA methylation (DNAm) patterns change in a highly
reproducible and seemingly organized manner during aging of the organism (Fraga et al., 2005;
Orozco et al., 2014). This epigenetic modification at the cytosine residues of CG dinucleotides
(CpGs) impacts on chromatin organization, transcription factor binding, and gene expression. It is
therefore anticipated that age-associated DNAmmight be of immediate functional relevance for the
aging process, albeit this remains to be proven. Today, epigenetic clocks are considered to be the most
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accurate biomarker for age predictions and there is sound
evidence that they also capture aspects of biological aging that
are independent from chronological age (Marioni et al., 2015; Bell
et al., 2019).

More than ten years ago, the first epigenetic aging signatures
have been identified for humans using Infinium BeadChip
methylation datasets (Bocklandt et al., 2011; Koch and
Wagner, 2011). This microarray platform provides DNAm
levels at single CpG resolution (Bibikova et al., 2011)—first on
the 27k BeadChip for about 27,000 CpGs, then with the 450k
BeadChips for 450,000 CpGs, and currently with the EPIC
BeadChips for 850,000 CpGs. With the advent of a rapidly
growing number of such datasets, and with improved
bioinformatics approaches, epigenetic age-predictors that
correlated very well with chronological age were developed for
humans (Hannum et al., 2013; Horvath, 2013; Weidner et al.,
2014). The development of the bead-array based aging clocks for
mice was somewhat trailing the development of human clocks,
because BeadChip platforms were initially not available for non-
human species (Wagner, 2017; Gujar et al., 2018). Only recently,
new tools became available that made the BeadChip technology
also applicable to other mammals, such as the Mammalian
Methylation array that can measure about 36,000 highly
conserved CpGs across mammalian species (Arneson et al.,
2022). Furthermore, Illumina has recently released a Mouse
Methylation BeadChip for measurement of more than 285,000
CpGs across the mouse genome. So far, research with this new
microarray platform with respect to aging clocks has not yet been
published.

Several other methods are available to analyze whole genome
DNAm patterns (Blueprint-consortium, 2016). Whole genome
bisulfite sequencing (WGBS) might give the most comprehensive
insight, since it addresses theoretically all CpGs in the genome.
However, due to the limited sequencing coverage for specific CpG
sites, analysis of age associated CpG sites may be difficult (Zhou
et al., 2019). In addition, the method is costly and integration of
many datasets remains a challenge. Reduced representation
bisulfite sequencing (RRBS) enriches for areas of the genome
with a high CpG content to reduce the costs but not all CpGs are
analyzed across the samples. Since the Infinium BeadChip
technology was not available for non-human species the first
epigenetic clocks for mice and other mammals were initially
derived from WGBS and RRBS data (Petkovich et al., 2017;
Stubbs et al., 2017; Wang et al., 2017). Based on these
sequencing profiles, we have previously selected three age-
associated CpGs in the genes Prima1, Hsf4, and Kcns1 for
targeted DNAm analysis with pyrosequencing to facilitate
precise estimation of chronological age in murine blood
samples (Han et al., 2018; Han et al., 2020). This targeted
signature indicated that epigenetic aging is accelerated in the
shorter-lived DBA/2J (DBA) as compared to the commonly used
C57BL/6 (B6) mice. A systematic comparison how age-associated
changes in DNAm patterns vary between these inbred mouse
strains is not yet available.

In this study, we utilized the Mouse Methylation BeadChip to
compare age-associated DNAm profiles in blood cells from B6 or
DBA animals. The age-related changes varied significantly

between these strains, which might partly be attributed to
general differences of their methylome. Despite these
differences, there was also a large overlap of age-associated
DNAm that was then used to train an epigenetic clock for the
Mouse Methylation BeadChip with 105 CpGs. Notably, several of
the top candidate CpGs revealed also age-associated DNAm in
corresponding human genomic regions. Based on these results,
we introduce a further optimized and thus more reliable 4 CpG
pyrosequencing-based epigenetic clock for mice.

MATERIALS AND METHODS

Murine Blood Samples
Blood samples from DBA/2J and C57BL/6 mice were collected at
the University of Ulm by submandibular bleeding (100–200 μL)
of living mice or postmortem from the vena cava or from the
heart, for both training and validation sets. All mice were
accommodated under pathogen-free conditions. The
experiments were approved by the Regierungspräsidium
Tübingen, Germany.

Mouse Methylation BeadChip and Data
Processing
Genomic DNA was isolated using a Qiagen QIAamp DNA Mini
and Blood Mini Kit (Qiagen, Hilden, Germany) and measured
with a NanoDrop2000 spectrophotometer (Thermo Scientific,
Wilmington, United States). 500 ng per sample of isolated DNA
was bisulfite converted and hybridized with the Infinium Mouse
Methylation BeadChip (Illumina Inc., San Diego, CA,
United States), from 12 C57BL/6 mice for the training set (all
female), additional 12 C57BL/6 mice for the validation set (all
female) and 12 DBA/2J mice (6 male, 6 female). The platform
interrogates more than 285,000 methylation sites per sample at
single-nucleotide resolution. The association to CpG islands,
shelve, and shore regions was taken from the Illumina
BeadChip annotation. Raw data from IDAT files was read and
processed in R with the ENmix package, and the beta values were
normalized using the ENmixD method (ENmix background
correction and RELIC dye-bias normalization) (Xu et al.,
2016). Probes with detection p-values > 0.01 or more than
10% of NA values were filtered out. One sample with more
than 10% missing values was not considered for further analysis.
Furthermore, CpGs on X and Y chromosomes were not
considered for epigenetic clocks. Probe-type bias adjustment
was performed with the Regression on Correlated Probes
method (Niu et al., 2016). Initially, quantile normalization for
ENmixD was included, which provided a similar selection of age-
associated CpGs. However, since this normalization regimen
masked the general shifts in age-associated DNAm, we
pursued without quantile normalization. To identify
significantly differentially methylated CpGs between B6 and
DBA mice, the Wilcoxon rank-sum test with Bonferroni-
correction (p < 0.01) for the total amount of CpGs in the
Mouse Methylation BeadChip was used, after removing the
probes in X and Y chromosomes, cross-reactive probes, and
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probes with single nucleotide polymorphism (SNP). The
methylation profiles are available at the Gene Expression
Omnibus (GEO accession number: GSE200527).

Selection of Age-Associated CpGs and
Derivation of the 105 CpG Predictor.
In this study, the initial selection of relevant CpGs was based on
the slope of linear regressions of DNA methylation and
chronological age to filter for CpGs that have large changes in
absolute DNAm levels. Since the twomouse strains have different
life expectancy, we normalized the data according to the sex and
strain of the mice (Yuan et al., 2009). The CpGs were then filtered
independently for B6 and DBA mice by the slope (greater than
30%). The slope of the correlation for each CpG was calculated:

slopeCpG � ∑(xi − �x) · (yi − �y)

∑(xi − �x)2

Where xi is the normalized age of the sample i, �x is the mean
normalized age of the samples, yi is the normalized beta value of
the sample i for the CpG, and �y is the mean of the normalized
beta values of the CpG. The overlap of the CpGs with slopes >30%
in both mouse strains was 105 CpGs. Since the sample number
was not sufficient to generate a multivariable model for this
relatively large signature we used age-estimations for the
individual CpGs with linear models using the normalized beta
values (slope and intercept with age). The average of all these
single-CpG estimations was considered as the final age
prediction.

Identification of Human Homolog Regions
Homology alignments of human andmurine genomes for the 105
CpGs were performed with the Ensembl genome browser with
121 nucleotide windows. A MATLAB script was used to find
CpGs in the Illumina HumanMethylation450 BeadChip (450k)
that were located either inside these homolog regions (categorized
as “homolog”) or we determined the distance in base pairs (bp) to
the center of the closest homolog region (categorized as
“distance”). To further investigate age-associated changes at
these CpGs the GSE40279 dataset was employed (Hannum
et al., 2013). Data was analyzed with the R package
GEOquery. Beta-values were used to determine the Pearson
correlation with chronological age for all CpGs. The p-value of
the correlations (α < 0.01) was estimated with a t-test for linear
correlation with Bonferroni-correction for the total amount of
CpGs on the 450k array.

Pyrosequencing
Genomic DNA (about 500 ng) was bisulfite converted with the
Zymo Research Group EZ DNA Methylation Kit (Zymo
Research, Irvine, United States). Primers were designed with
PyroMark Assay Design 2.0 software (Metabion, Planegg-
Martinsried, Germany; Supplementary Table S1). One of the
PCR primers was biotinylated. Age-associated regions were
amplified using the PyroMark PCR Kit (Qiagen, Hilden,
Germany) with manufactures instructions: 1 µL (approximately
25 ng) of the CT-converted DNA sample was used, with 12.5 µL

of the Pyromark MasterMix 2X, 2.5 µL of Coral Load 10X, 0.4 µL
of MgCl2, 1.3 µL of forward and reverse primers each and 6 µL of
nuclease-free water (25 µL in total per tube). The PCR settings
were: initial activation (95°C, 15 min), followed by 50 cycles of
denaturation (95°C, 30 s) + annealing (56°C, 30 s) + extension
(72°C, 30 s), and one cycle of final extension (72°C, 10 min).
Pyrosequencing was then performed on the PyroMark Q48
Autoprep system using the PyroMark Q48 Advanced Reagent
Kit according to the manufacturer instructions: 10 µL of
amplified sample was sequenced with manual primer loading
with 2 µL of sequencing primer. The results were analyzed using
PyroMark Q48 Advanced software. The pyrosequencing reads
covered neighboring CpGs (Aspa and region 1: 2 CpGs; Wnt3a,
Prima1, and Kcns1; 3 CpGs; Tbc1d16 andHsf4: 4 CpGs) and their
position (pos) was numbered consecutively in the direction of
sequencing. For the final selection of a multivariate regression
model, the sklearn package in Python was used to identify the
combination of 4 CpG sites from different amplicons that
minimizes the MAD.

RESULTS

Infinium Mouse Methylation Analysis
To investigate age-associated DNAm with the Mouse
Methylation BeadChip, we used blood samples of 12 B6 mice
(11–117 weeks old) and 12 DBA mice (6–109 weeks old) and we
detected that the proportion of methylated CpGs decreases with
age (Supplementary Figure S1). Pearson correlation between age
and DNAm levels revealed that there was more age-associated
hypomethylation than hypermethylation, and this age-associated
demethylation was more pronounced in B6 than in DBA mice
(Figure 1A). In B6 mice, age-associated hypermethylation was
enriched in CpG islands, whereas hypomethylation was rather
associated with shore, shelf, and open-sea regions. In contrast, in
DBA mice there was rather age-associated hypomethylation at
CpG islands, indicating that there are pronounced differences in
age-associated DNAm patterns between these mouse strains.

With the aim of selecting candidate CpGs for epigenetic clocks
with most prominent changes in DNAm levels in both strains, we
filtered on the slopeCpG > 0.3 or < -0.3 in linear regression with
age: 505 CpGs reached this threshold for B6 mice and 324 CpGs
for DBA mice. 105 CpG were in the overlap of both strains
(Figure 1B). As anticipated, these CpGs also revealed overall high
Pearson correlation with age. When we directly compared the
age-associated DNAm between B6 and DBA mice, it became
evident that there are marked differences in age-associated
DNAm. Several CpGs with positive age-associated DNAm in
one strain revealed negative age-associated DNAm in the other
strain, and vice versa (Figure 1C). Thus, there may even be
antagonistic age-associated DNAm changes among mice from
distinct strains.

We reasoned that a generally applicable epigenetic clock for
mice should focus on the intersection of age-associated DNAm
across different mouse strains. Our predictor was therefore
trained for B6 mice but based on the 105 overlapping CpGs
that also revealed marked age-associated DNAm changes in DBA
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mice (Figure 1D). The signature based on single-CpG linear
predictions was trained on the above mentioned DNAm profiles
of the 12 B6 mouse blood samples. The list of 105 CpGs with the
slope and intercept for the predictions can be found in
Supplementary Table S2. For validation, we analyzed an
additional set of 12 B6 mouse blood samples (7–91 weeks old;
one sample with >10% missing values was removed from the
analysis). The age predictions correlated with chronological age
(R2 = 0.60) with amean average error (MAE) of 18.14 weeks and a
mean absolute deviation (MAD) of 16.77 weeks. In analogy, the
predictor was applied to the 12 DBA mouse blood samples that
were initially considered for the selection of age-associated CpGs
but not for training of the model. Despite the different
background, the predictor gave relative precise estimates for

the DBA cohort (R2 = 0.96; MAE = 7.11 weeks; MAD =
7.57 weeks).

Comparison of DNA Methylation Profiles in
C57BL/6 and DBA/2J Mice
The marked differences in age-related DNAm prompted us to
directly compare the methylome of the two mouse strains.
Therefore, we first performed a pairwise correlation of all
CpGs on the Mouse Methylation BeadChip for each of the
individual samples. The DNA methylation profiles of B6 and
DBA correlated particularly within the strains in two clear
clusters, independent of mouse age, indicating that there are
marked differences in their methylome (Figure 2). Furthermore,

FIGURE 1 | Age-associated DNA methylation differs between mouse strains. (A) Pearson correlation of DNAm versus age (R) for CpGs on the Mouse Methylation
BeadChip. Histograms are depicted for different genomic regions (CpG islands, shores, shelves, and open sea) in either B6 or DBAmice. The black dotted line marks no
correlation; the red dotted line represents the median of all the CpGs in the respective genomic category. (B) Venn diagram of the CpGs with slopeCpG > 0.3 or < −0.3 in
linear regressions of age with DNAm. (C) Comparison of Pearson correlation (R) between age and DNAm in B6 and DBA mice. CpGs that reached the threshold in
slopeCpG had also high correlations. Notably, several CpGs revealed opposite correlation with age in both mouse strains. (D) Epigenetic age predictions based on the
overlapping 105 age-associated CpGs (MAE = median absolute error; MAD = mean absolute deviation; numbers in weeks).
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17,718 CpGs revealed significant differential methylation
(adjusted p-value < 0.01) between B6 and DBA mice. Thus,
the methylome of the two inbred mouse strains differs
extensively.

Tracking of Homologous Age-Related CpG
Sites Between Mouse and Human.
In order to investigate if age-associated DNAm across B6 and
DBA mice are also preserved in human, we utilized DNAm
profiles of 656 human blood samples for comparison
(GSE40279; 19–101 years old). When analyzing age-associated

CpGs in relation to specific genomic regions we observed
enrichment of hypermethylation in CpG islands
(Supplementary Figure S2), as described before (Christensen
et al., 2009). Homologous regions between human and mice were
then identified with Ensembl. Out of the 105 overlapping CpGs in
B6 and DBA, 83 were located in a region in the mouse genome
with a homolog in the human genome. Only 14 CpGs in these
homolog regions were also found in the HumanMethylation450
BeadChip, of which seven showed a significant age-methylation
correlation in the human homolog region (Table 1;
Supplementary Table S2). Furthermore, age-associated hyper-
and hypomethylation was consistent in both mouse strains and

FIGURE 2 | Correlation matrix of DNAmethylation profiles. Pearson correlation of DNAm at all CpGs (here also including X and Y chromosome) demonstrated that
samples clustered consistently according to the mouse strain, independent of donor age. Sample names indicate mouse strain (B6: C57BL/6; DBA: DBA/2J), sex (M:
male, F: female), and age in weeks.
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humans for all of the seven selected CpGs. These genomic regions
with inter-species conserved age-associated DNA methylation
changes were located in the genes aspartoacylase (Aspa), WNT
family member 3A (Wnt3a; cg21934230), heat shock
transcription factor 4 (Hsf4) and a disintegrin and
metalloproteinase with thrombospondin motifs 6 (Adamts6).

The homologous genomic regions of Aspa, Wnt3a and Hsf4
comprised several neighboring CpGs on the Mouse Methylation
BeadChip and the HumanMethylation450 BeadChip. The highest
correlated CpGs in these genes were at only few bases apart at the
homologous sequences and they revealed similar age-associated
hyper- or hypomethylation across species (Figure 3). Notably,
the corresponding human region for ASPA was already selected
as one of three CpGs in our previous aging signature (Weidner
et al., 2014). Furthermore, Hsf4 was one of the three CpGs in our
previous aging signature for mice (Han et al., 2018). In addition,
two CpGs in the gene proline rich membrane anchor 1 (Prima1;
cg31044702 and cg31044701) were amongst the top candidates in
B6 and DBA (Supplementary Table S2) and this region was also
in our previous three CpG signature (Han et al., 2018). Thus, the
Mouse Methylation BeadChip identified very similar regions as
previous selected from RRBS data (Petkovich et al., 2017), as well
as conserved age-associated regions between mice and human.

Pyrosequencing-Based Age Prediction
Model
Finally, we investigated if the top candidate CpGs that were
selected with the Mouse Methylation BeadChip would also
provide robust and reliable assays for targeted analysis with
pyrosequencing. To this end, the list of 105 CpGs was ranked
by mean R2 between B6 and DBA mice to then select “Region1”
(cg42528232) that is not associated with a specific gene, Aspa
(cg29748675), and TBC1 Domain Family Member 16 (Tbc1d16,
cg30271979). Furthermore, the top CpGs with homologies in
human were considered (Aspa, cg29748675;Wnt3a, cg29601161;
and Hsf4, cg46095458), as well as Potassium Voltage-Gated
Channel Subfamily S Member 1 (Kcns1), and Prima1 that
were derived from our previous signature (Han et al., 2018).
For all these seven regions we established a pyrosequencing assay
that comprised a total of 21 CpGs. When we analyzed an
independent set of 15 B6 mice (10–125 weeks; Supplementary

Table S3) all CpGs revealed very high correlation with age (R2 >
0.8 for each CpG analyzed; Supplementary Figure S3).

To identify the best combination of these age-associated CpGs
with regard to MAD of age-predictions, we analyzed every
possible multivariate regression model with combinations of 4
CpG sites from different amplicons. The best multivariate model
for age-prediction included the variables α (Aspa pos1,
cg29748675), ß (Hsf4 pos3, 5 bp upstream cg46095458), γ
(Wnt3a pos2, 9 positions upstream cg29601161) and δ
(Prima1 pos1, cg31044702):

Predicted ageB6in weeks � 167.4533 + 1.2421α + 0.9824β

− 1.3110γ − 1.6088δ

This model was validated with an independent set of B6 mice
(age range 7–115 weeks; Supplementary Table S3) and the
results revealed very high precision of epigenetic age
predictions (R2 = 0.98, MAE = 5.03 weeks, MAD = 5.69 weeks;
Figure 4A). Furthermore, the predictor gave high precision,
without clear offset, in DBA mice (n = 12; R2 = 0.91, MAE =
10.7 weeks, MAD = 11.84 weeks; Figure 4B). The DNAm levels
of the selected CpG sites showed similar association with age in
both mouse strains with consistently very high correlations (R2 >
0.89) (Supplementary Figure S4). To determine the impact of
the sex of mice, we performed a Mann-Whitney U test in the B6
training and validation sets and there was no significant impact of
sex on epigenetic age-predictions (p-value = 0.33; Figure 4C).

DISCUSSION

For development of epigenetic clocks, the Infinium BeadChip
technology has proven to be highly efficient for cost-effective
integration of multiple datasets. As such platforms were initially
not available for non-human species, there have been even
attempts to use the Human EPIC BeadChip to investigate
potentially conserved CpGs in mice (Gujar et al., 2018). Our
exploratory study demonstrates that the Mouse Methylation
BeadChip provides reliable insight into age-associated DNAm
inmice. It was striking to see that the top candidates derived from
RRBS and the microarray analysis (such as Prima1 and Hsf4) did
indeed overlap (Han et al., 2018). These novel results thus further

TABLE 1 | Homologous CpGs in mouse and human with high age-methylation correlation.

CpG ID
(Mouse
BeadChip)

Location
in mice
(mm10)

Gene R B6 R DBA Homologous
location
in human
(GRCh37)

Homologous
CpG Human
Methylation

450

R human p-value
human

cg29748675 11:73324349 Aspa −0.94 −0.99 17:3379534:3379655 cg02228185 −0.57 4.49 · 10–57
cg29601161 11:59283020 Wnt3a −0.94 −0.97 1:228202533:

228202658
cg21934230 −0.35 2.83·10–20

cg46095458 8:105270995 Hsf4 0.94 0.95 16:67199792:67199917 cg04235075 0.25 1.43·10–10
cg29601160 11:59282958 Wnt3a −0.91 −0.98 1:228202592:

228202736
cg21934230 −0.35 2.83·10–20

cg29748676 11:73324412 Aspa −0.91 −0.98 17:3379471:3379592 cg02228185 −0.57 4.49·10–57
cg46095446 8:105270822 Hsf4 0.93 0.95 16:67199615:67199736 cg04235075 0.25 1.43·10–10
cg32016143 13:104398027 Adamts6 −0.92 −0.94 5:64558563:64558684 cg21878650 −0.36 1.21·10–21
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substantiate the quality of previous RRBS measurements
(Petkovich et al., 2017; Meer et al., 2018).

Our 105 CpG aging signature for the Mouse Methylation
BeadChip can be easily adapted by other scientists. It was trained
and tested on blood samples and will probably have a big offset in
other tissue. These CpGs were selected by the slope of linear

regression with age–this criterion favors high absolute DNAm
changes with age. We reasoned that this is advantageous for later
targeted analysis and to be less susceptible to normalization and
inter-study variability. Either way, all selected CpGs had also a
high correlation with chronological age, which is commonly
applied as filter criterion in other studies (Weidner et al.,

FIGURE 3 | Homologous regions in Aspa,Wnt3a and Hsf4 for mice and human. (A) Association of DNAm level (%) and chronological age in the training sets of B6
(n = 12) and DBA (n = 12) mice for the CpG cg29748675 (Aspa), cg29601161 (Wnt3a), and cg46095458 (Hsf4). (B) Genomic location of these CpGs in the Mouse
Methylation BeadChip (top) and HumanMethylation450 (bottom). The X-axis indicates the location of each CpG in the sequence of the corresponding gene. For Aspa
and Wnt3a, the horizontal axis for human is inverted (end to start position, from left to right), according to the homology alignment with mouse. Sequences with
homology are indicated in green and the Pearson correlation (R) of DNAm with age is presented for each CpG on the BeadChips. CpGs with significant age-associated
changes (α = 0.01 after Bonferroni correction) are highlighted with more intense color. (C) Association of DNAm (%) and age in a dataset of 656 human blood samples
(GSE40279; HumanMethylation450 BeadChip).
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2014). In the future, a higher number of measurements will surely
enable alternative selection methods, e.g. with elastic net, and
multiple variable models. In analogy to human second generation
epigenetic clocks, it may even be possible to trainmurine clocks to
capture also other physiological parameters than age alone
(Levine et al., 2018). This may provide a better integrative
measure of biological age than age-associated DNAm alone.

Larger signatures that comprise hundreds of CpGs may be
more robust than targeted assays that only consider one or few
CpGs, since they reflect a broader epigenetic pattern (Meer et al.,
2018; Thompson et al., 2018; Wagner, 2022). BeadChip
technology makes large signatures easily applicable since all
relevant CpGs are addressed in each sample. However,
adaptation and integration of different microarray datasets
remains a major hurdle and age-predictors may become
outdated if a BeadChip release is discontinued (Ori et al.,
2021). It may therefore be advantageous to rather focus on
individual CpGs by targeted methods, such as pyrosequencing,
digital droplet PCR or barcoded amplicon sequencing (Wagner,
2022). These methods give very precise and reproducible results
on single CpG level and facilitate fast and more cost-effective
analysis (Wagner, 2022). Notably, all 21 CpGs covered by our
pyrosequencing assay provided very high correlation with age in
all training and validation cohorts (R always >0.8). Our four CpG
epigenetic age prediction model (R2 = 0.98) thus now
outperforms our previously published three CpG signature (R2

= 0.95) (Han et al., 2018). Other methods for age prediction in
mice have reported lower correlations (R2 from 0.64 to 0.91) with
a higher number of CpG sites (9–582), although their sample size
for training was substantially higher (n = 48–893) (Simpson and
Chandra, 2021). In the future, it will be important to further
validate the precision of methylation based age-predictions on
larger cohorts.

We did not observe a significant effect of gender on our
pyrosequencing based epigenetic clock in B6 mice, which is in
line with previous studies (Stubbs et al., 2017; Han et al., 2018). In
human, it has been demonstrated epigenetic clocks tick faster in
men than in woman (Horvath et al., 2016). It is conceivable that
mouse strains with larger gender-associated differences in life

expectancy or alternative epigenetic clocks would reveal clear off-
sets in male and female mice.

Our study exemplifies that methylomes of different mouse
strains differ extensively. It was striking that in B6 mice age-
associated hypermethylation was enriched at CpG islands, whereas
in DBA mice CpG islands become rather hypomethylated upon
aging. Furthermore, age-associated changes were often divergent in
both mouse strains. The DNAm profiles of B6 and DBA clearly
clustered together and a substantial fraction of CpGs on the
microarray revealed significant differences. This is in line with
previous reports on DNAm differences of mouse strains (Orozco
et al., 2014; Gujar et al., 2018) and even sub-strains (Sandoval-
Sierra et al., 2020). Within the inbred mouse strains there was
relatively little epigenetic variation–the inter-individual changes
appear to be much less pronounced than in a wild type population.
Thus, training of epigenetic clocks within cohorts of one mouse
strain, such as B6 and DBA, might correspond to clocks trained on
samples that were longitudinally taken from one genetic individual,
with much less inter-donor variation. This might also explain, why
our signatures provide relevant and highly reproducible results
albeit they were only trained on a relatively small set of samples.

It has been suggested that epigenetic clocks are overall
accelerated in mice belonging to strains with shorter life spans
(Sandoval-Sierra et al., 2020). We have previously demonstrated
that our three CpG epigenetic clock was accelerated in DBA as
compared to B6, which seemed to reflect the shorter life
expectancy (1.87 versus 2.42 years) (Han et al., 2018).
Moreover, this epigenetic aging clock was accelerated in blood
of B6 mice with a congenic DBA version of an age-associated
locus on chromosome 11 (Brown et al., 2020). However, the
results of our current study indicate that differences in age
predictions might also be attributed to the different epigenetic
makeups in mouse strains. While some CpGs clearly suggest
accelerated epigenetic aging in DBA it may be antagonistic at
other sides (e.g. in Aspa and Wnt3a). For inter-strain
comparisons it may therefore be advantageous to consider a
wide range of mouse strains to derive an epigenetic clock that
is universally applicable across different mouse strains. In
addition to various mouse strains also wild type mice should

FIGURE 4 | Four CpG epigenetic clock based on pyrosequencing. (A)Chronological age versus predicted age with the 4 CpGmodel in the B6 training (n = 15) and
validation sets (n = 16). (B) The same 4 CpG predictor was then applied to DBA mice (n = 12). (C) The deviations of predicted and chronological age (delta age) were
plotted for B6 mice (26 female and 5 male). There was no significant difference between male and female samples (p-value = 0.33).
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be integrated into such analysis in the future. If such age-
associated DNAm changes are even available for multiple
different tissues, the signatures might be further trained for an
improved multi-tissue mouse aging clock (Thompson et al.,
2018). Focusing on conserved age-associated DNAm between
murine strains will provide the means to investigate if epigenetic
clocks are really accelerated in a specific mouse strain, or if
predictions are skewed by the different methylome.

Finally, it is remarkable how some regions exhibit
conservation of the age-associated changes in DNAm - not
only in different strains, but even across different species. The
locus inWnt3a was previously shown to be age-related in human
(Brunt et al., 2012; West et al., 2013). Interestingly, the human
homolog CpG site ASPA (cg02228185) is exactly the same CpG
that we selected for our human blood three CpG predictor
(Weidner et al., 2014), which was meanwhile used by many
other groups (Salameh et al., 2020). The fact that the highest
correlated CpGs in the genes Aspa, Wnt3a and Hsf4 are within a
few bases in mouse-human homology alignment suggests that
these specific regions have conserved age-associated methylation
patterns across species. In this regard the recently described
Mammalian Methylation BeadChip provides a powerful tool
(Arneson et al., 2022). It will be interesting to use this
platform to better understand how site-specific DNAm
changes are conserved across strains and species. What makes
these evolutionary conserved regions so special, and if they are
mechanistically linked to the aging process needs to further
evaluated. Furthermore, a larger sample size is needed to
further validate the high precision of our new epigenetic clock
for mice in future studies.
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