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Abstract: The effect of carbon monoxide (CO) co-adsorption on the dissociation of water on 

the Ni(111) surface has been studied using density functional theory. The structures of the 

adsorbed water molecule and of the transition state are changed by the presence of the CO 

molecule. The water O–H bond that is closest to the CO is lengthened compared to the 

structure in the absence of the CO, and the breaking O–H bond in the transition state 

structure has a larger imaginary frequency in the presence of CO. In addition, the distances 

between the Ni surface and H2O reactant and OH and H products decrease in the presence of 

the CO. The changes in structures and vibrational frequencies lead to a reaction energy that 

is 0.17 eV less exothermic in the presence of the CO, and an activation barrier that is 0.12 eV 

larger in the presence of the CO. At 463 K the water dissociation rate constant is an order of 

magnitude smaller in the presence of the CO. This reveals that far fewer water molecules 

will dissociate in the presence of CO under reaction conditions that are typical for the 

water-gas-shift reaction. 

Keywords: water adsorption; water dissociation; nickel; water gas shift reaction;  

CO; H2O; DFT 
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1. Introduction 

The water gas shift (WGS) reaction, CO + H2O → CO2 + H2, is important in many industrial 

processes, including methanol synthesis and production of hydrogen for use in, e.g., fuel cells. It is also 

one of the most important reactions in gasification, where carbonaceous materials are converted to a 

gaseous product that can be used to produce energy or other desirable chemicals [1–5]. The efficiency of 

the WGS reaction is enhanced in the presence of transition metal catalysts such as nickel, which is 

widely used due to its high heat conductivity, high catalytic conversion and its capability to be 

manufactured in different shapes [6–9]. 

Due to its industrial significance, several experimental and computational investigations have 

focused on the WGS reaction. Bond et al. proposed a modified route for the gold-catalyzed WGS 

reaction mechanism by thermal decomposition of a carboxyl species [10]. Steady-state WGS kinetics 

were determined on ceria-supported Pd, Pt and Rh catalysts by Gorte et al.; they found that the ceria 

structure significantly affects the results [11]. Shekhar et al. have investigated the promotional effect of 

alkali additives (Na, Li and K) on the WGS reaction for Pt/Al2O3 and Pt/TiO2 catalysts. They showed 

that the active platinum remains in the metallic state and that the promotion by alkali is due the 

modification of the support properties [12]. A density functional theory (DFT) study together with 

experimental data for the WGS reaction catalyzed by Pt were provided by Gokhale et al. They predicted 

that that the most significant reaction channel proceeds via a carboxyl intermediate while formate acts 

only as a spectator species [13]. Furthermore, Cordeiro et al. studied the role of the step sites in the WGS 

reaction catalyzed by Cu and found that the associative route through the carboxyl intermediate assisted 

by co-adsorbed OH is favored in the presence of steps [14]. 

The four mechanisms that have been suggested for the WGS reaction are the redox, formate, 

associative and carbonate mechanisms [15–27]. Previous first principles calculations showed that the 

most probable reaction mechanisms are the carboxyl and redox mechanisms, and that the rate-limiting 

step is water dissociation [14,15,28–33].  

The catalytic dissociation of water is also important in many other industrial processes, such as steam 

methane reforming (SMR; CH4 + H2O → CO + 3H2) where nickel is frequently used as catalyst. The 

SMR reaction involves the conversion of a hydrocarbon fuel (or an alcohol) into another fuel containing 

higher heating value. The SMR reaction is widely implemented for production of hydrogen or other 

useful products [34–36]. The water dissociation is believed to be one of the rate controlling elementary 

reaction steps in the SMR reaction [37].  

The catalytic dissociation of water has been widely studied using both experimental and 

computational techniques. For example, hydroxyl radical production following Ni-catalyzed water 

dissociation has been investigated experimentally by Keiser et al. [38]. The hydroxyl radicals were 

monitored using laser-induced fluorescence and the barrier for their desorption was estimated at 

different temperatures and pressures. Fajín et al. studied water dissociation on metal surfaces using DFT. 

They predicted that the nickel surface could be effective for catalyzing water dissociation, that the 

activation barrier is 0.71 eV and the reaction energy is −0.37 eV [33]. The binding energies, preferred 

adsorption sites and configurations for water and its dissociation products (OH and H) were determined 

over a number of surfaces, including Ni(111), by Phatak et al. They found that dissociation of H2O to 

OH and H is exothermic on Ni(111) and the activation and reaction energies are 0.96 eV and −0.2 eV, 
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respectively [39]. Several studies have also focused on fundamental aspects of water dissociation on 

metal surfaces, such as the vibrational modes of the molecular and dissociated water [40–44]. 

In addition to the WGS reaction discussed above, interaction of CO with transition metal surfaces is 

of importance in many catalytic reactions, such as the oxidation of carbon monoxide, CO methanation 

and Fischer-Tropsch synthesis [45]. These interactions, including the interactions between adsorbed CO 

and H2O, have been investigated over Ni(111) [46–48]. For example, high resolution electron energy 

loss spectroscopy (HREELS) measurements by Ellis et al. revealed strong interaction between H2O and 

CO adsorbed on Ni(100), where the co-adsorbed CO changes the water OH stretching properties [49]. 

DFT calculations by Lin et al. yielded a reaction energy of −0.11 eV and an activation barrier of 0.79 eV 

for water dissociation in the presence of CO [50]. This reaction energy is less exothermic than those 

obtained in the absence of CO (−0.37 and −0.2 eV, see above) and the activation barrier lies between the 

values obtained in the absence of CO (0.71 and 0.96 eV). These, and other co-adsorption studies of 

reactive chemical species on transition-metal catalysts, [51–54] are essential for a more complete 

understanding of heterogeneous catalysis. 

The present contribution extends these previous investigations by using DFT to perform a 

comparative study of the dissociation of water on a Ni(111) surface in the absence and presence of  

co-adsorbed CO. This is the first time that these systems have been studied using the same models and 

computational methods, and is important since, if the co-adsorbed CO affects the reactant, transition 

state or product relative energies or vibrational frequencies, then the water dissociation rate will depend 

on the presence of CO. For example, the rates may be different for the reaction in a CO-rich WGS and 

when water dissociates in other processes when CO is not present. In addition, molecular-level 

understanding of the water dissociation mechanism which, as discussed above, is a key elementary  

step in a number of important reactions such as WGS and SMR, will assist in designing more  

effective catalysts. 

2. Results and Discussion 

2.1. Adsorption Sites and Energies 

The top (t), hollow hcp (h) and hollow fcc (f) sites on the Ni(111) surface are shown in Figure 1. 

Geometry optimization of the reactants and products was performed on the sites that have previously 

been shown [50] to yield the lowest energy structures (i.e., the most favorable sites). The lowest energy 

structures in the absence and presence of CO are shown in Figures 2 and 3, respectively, and details of 

these structures are shown in Table 1. The * in these figures and table indicates that the specie is 

adsorbed on the surface.  

In the absence of CO, the preferred adsorption site for water is the top site (t) via the O atom. The 

adsorption energy is −0.27 eV (−0.36 eV without zero point vibrational energy [ZPVE] correction). Both 

of the OH and H products favor the hollow fcc site (f) and, similarly to the water molecule, the OH is 

adsorbed via the O atom. The adsorption energy of these products is −5.83 eV (−6.23 eV without  

ZPVE correction). 

  



Int. J. Mol. Sci. 2013, 14 23304 

 

Figure 1. Top (t), hollow hcp (h) and hollow fcc (f) sites on the Ni(111). 

 

Figure 2. Minimum energy structures of the reactant, transition state and product for the 

H2O
*
 → OH

*
 + H

*
 reaction. 

 

Figure 3. Minimum energy structures of the reactant, transition state and product for the 

H2O
*
 + CO

*
 → OH

*
 + H

*
 + CO

*
 reaction. 
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Table 1. Adsorption energies (eV), vibrational frequencies (cm
−1

) and structural parameters 

(Å) of reactants and products with and without co-adsorbed carbon monoxide. 
a
 

Species Adsorption site     
      

  Vibrational frequencies dsurf-mol 
b
 Bond length 

c
 

H2O
* t −0.36 −0.27 

3723, 3612, 1558, 489, 427, 227, 

172, 122, 84 
H2O: 2.157 

O–Ha: 0.979; 

O–Hb: 0.978 

OH*+H* OH: f; H: f −6.23 −5.83 
3712, 1220, 952, 776, 546, 502, 

387, 290, 248 

OH: 1.950; 

H: 1.655 
O–Ha: 0.973 

H2O
*+CO* H2O: t; CO: f −2.38 −2.32 

3721, 3412, 1662, 1566, 737, 

516, 379, 349, 322, 306, 226, 

190, 149, 128, 76 

H2O: 2.114; 

CO: 1.903 

O–Ha: 0.990; 

O–Hb: 0.975; 

C–O: 1.213 

OH* + H* + CO* 
OH: f; H: f;  

CO: f 
−7.99 −7.63 

3704, 1761, 1253, 972, 740, 567, 

520, 415, 395, 322, 299, 277, 

246, 166, 122 

OH: 1.923; 

H: 1.646; 

CO: 1.872 

O–Ha: 0.974; 

C–O: 1.195 

a For the adsorption energies (Eads); “e” and “°” denote the uncorrected and ZPVE-corrected values, respectively; b Shortest distance 

between any atom of the adsorbate(s) and any metal atom on the surface; c Letter “a” shows the O–H bond nearest the CO and “b” the other 

O–H bond.  

The presence of the CO does not affect the preferred adsorption sites. The favored adsorption site for 

water is the top site (t) via the O atom and for carbon monoxide it is the hollow fcc site (f) via the C atom. 

The adsorption energy is −2.32eV (−2.38 eV without ZPVE correction). All of the products prefer the 

hollow fcc site (f), where the OH is adsorbed via the O atom and CO via the C atom. The adsorption 

energy is −7.63 eV (−7.99 eV without ZPVE correction).  

The calculations performed for the higher surface coverages yielded similar results to those presented 

above. For example, for 1/4 monolayer (only water) and 1/2 monolayer (co-adsorbed water and CO) 

coverages, the reactant adsorption energies are −0.20 eV (−0.26 eV without ZPVE correction) and  

−2.43 eV (−2.35 eV without ZPVE correction), respectively. 

Although the presence of the CO does not affect the preferred adsorption site, it does affect the 

reactant geometry. In the absence of the CO the lengths of the O–H bonds in the water molecule are 

almost the same (0.98 Å) while, in the presence of CO, the O–H bond closest to the CO molecule is 

0.015 Å longer than the other bond. This larger bond length is probably due to interactions between this 

H atom and the CO molecule (the distance between this H and the O on the CO is just 1.88 Å), although 

the charge density on this H atom is the same as the charge density on the other H atom. This is also 

reflected in the vibrational frequencies where the asymmetric stretching mode is lowered by  

200 cm
−1

 (from 3612 to 3412 cm
−1

 in the absence and presence of CO, respectively). The presence of the 

CO does not have a significant effect on the OH product geometry or vibrational frequency. 

The co-adsorbed CO also affects the distance between the reactant and products with the Ni surface 

(defined as the shortest distance between any atom of the adsorbate and any metal atom on the surface). 

The distance between the H2O and the surface decreases from 2.157 Å to 2.114 Å when the CO is 

present, for OH the decrease is from 1.950 Å to 1.923 Å, and for H the decrease is from 1.655 Å to 1.646 Å. 

The reason that the presence of the CO molecule decreases the height of the reactant and products above 

the surface is probably due to electron transfer from the CO to the Ni surface. In the presence of the CO 

the total charge density on the uppermost Ni atoms is 0.63 e more than in the absence of the CO. This 

increases the interaction strengths (and hence decreases the bond lengths) between the surface and the 
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adsorbants, which is also seen by an increase in the charge density on the H2O, OH and H adsorbants by 

0.01, 0.04 and 0.03 e, respectively.  

2.2. Transition States and Reaction Energies 

Table 2 shows the data of the transition states together with reaction rate constants at 463 K, which is 

typical for low-temperature processes that include the WGS reaction [55]. The activation energy (Ea) 

without co-adsorbed CO is 0.75 eV (0.96 eV without ZPVE correction) and in the presence of CO it 

increases to 0.87 eV (1.09 eV without ZPVE correction), respectively. The activation energy in the 

absence of CO is in agreement with that obtained by Fajín et al. (0.71 eV). Similarly, the value 

determined in the presence of CO is similar to the value of 0.79 eV reported by Lin et al. The same trend 

is found for higher coverages. For the 1/4 and 1/2 monolayer surfaces the activation barrier in the 

absence of CO is 0.69 eV (0.87 eV without ZPVE correction) and in the presence of CO it is 1.18 eV 

(1.39 eV without ZPVE correction). Hence, the presence of CO increases the activation energy at both 

surface coverages. 

Table 2. Activation energies (eV), vibrational frequencies (cm
−1

), reaction rate constant at 

463 K (s
−1

), reaction energy (eV), length of the breaking OH bond at the transition state and 

its imaginary frequency (cm
−1

), with and without co-adsorbed carbon monoxide. 
a 

Species   
    

  Vibrational modes k       
        

  dO–H 
Imaginary 

frequency 

H2O
* → OH* + H* 0.96 0.75 

3653, 837, 748, 677, 

432, 393, 167, 71 
2.03×104 −0.30 −0.41 1.559 797 

H2O
* + CO* → OH* + H* + CO* 1.09 0.87 

3623, 1726, 921, 765, 

690, 465, 400, 377, 324, 

282, 162, 147, 136, 105 

1.76×103 −0.05 −0.17 1.560 817 

a For the activation energies (Ea), “
e” and “°” denote the uncorrected and ZPVE-corrected values, respectively. 

The length of the breaking O–H bond is not significantly influenced by CO co-adsorption, and its 

(imaginary) vibrational frequency is increased by only 20 cm
−1

. This means that the reaction barrier is 

slightly narrower in the presence of the CO. However, this effect is not as significant as it is for the  

water reactant, where the presence of the CO decreased the asymmetric vibrational mode frequency by 

200 cm
−1

.  

Unlike the length and frequency of the breaking bond, the reaction rate constant changes considerably 

when CO is present, decreasing from 2.03 × 10
4
 s

−1
 to 1.76 × 10

3
 s

−1
. The rate constant in the absence of 

CO is smaller than the value of 7.1 × 10
4
 s

−1
 obtained by Fajín et al. [33]. This may be due to the 

convergence criteria, since repeating the above calculation, but with coarser convergence criteria of  

10
−5

 eV for the total energy and 10
−2

 eV/Å for the forces acting on ions, yields the same result as that 

reported by Fajín et al. 

The reaction energy (Ereact), which is the difference between the product and reactant energies, is 

significantly affected by the presence of co-adsorbed CO. In the absence of CO Ereact = −0.41 eV  

(−0.30 eV without ZPVE correction) which is 0.24 eV more exothermic than the reaction energy in the 

presence of CO, which is −0.17 eV (−0.05 eV without ZPVE correction). The reaction energy calculated 
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in the absence of CO is similar to that obtained by Fajín et al. (−0.31 eV). Similarly, the calculated 

reaction energy in the presence of co-adsorbed CO is similar to the value of −0.11 eV obtained by  

Line et al. [33,50]. 

A comparison of the reaction profiles with and without adsorbed carbon monoxide is shown in  

Figure 4. As discussed above, the co-adsorbed CO increases the activation barrier by 0.12 eV and 

decreases the exothermicity by 0.24 eV. A possible reason for the larger activation energy is that the CO 

(and Ni surface) induces a larger change in the structure of the water molecule when going from reactant 

to transition state. To investigate these we performed single point energy calculations on the water 

molecule (in vacuum) in its reactant and transition state structures. It was seen that this does not explain 

the trends seen in Figure 4, since the energy of the water molecule in the transition state structure is 

lower than the energy in the reactant structure, and hence it is changes in the CO, Ni surface or 

interactions between the water-CO-Ni that lead to the increase in energy at the transition state. Similarly, 

calculations comparing the energies of the reactant water and product H and OH structures showed that 

this cannot explain the decrease in exothermicity in the presence of the CO. In fact, when comparing the 

H2O and (H + OH) energies the reaction is endothermic when using the structures from the both systems 

(in the absence and presence of the CO). 

Figure 4. Reaction profiles for the water dissociation with (dashed line) and without  

(solid line) co-adsorbed CO. 

 

These calculations were repeated but where the CO molecule was included (together with the water 

molecule). This was done to ascertain whether it is changes in the CO molecule and/or interactions 

between the H2O and CO that leads to an increase in the transition state energy compared to the energy of 

the reactant. Once again, the H2O-CO energy (in the vacuum) of the transition state structure was lower 

than the energy of the reactant structure, and the reaction is more exothermic than that when using the 

structures from the system that does not contain CO (thus opposite to what is observed in Figure 4). 

Hence, it is the interplay between all three components—the H2O, CO and Ni surface—that leads to 

the reaction profiles seen in Figure 4. As discussed above, the presence of the CO on the surface leads to 

stronger interactions between the Ni surface and the H2O reactant and H and OH products. The larger 

activation energy and decreased exothermicity indicates that the stability induced by the surface in the 

presence of CO is larger for the reactant than for the transition state and product structures. 
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Figure 5 shows the effect of temperature on the reaction rate constant. The data is also shown in its 

Arrhenius form in the inset to the figure. The difference in reaction rate constants in the absence and 

presence of CO increases with increasing temperature, showing that it becomes even more important to 

consider the effect of CO co-adsorption at higher temperatures. 

Figure 5. Temperature dependence of the reaction rate constant for the water dissociation 

reaction with and without co-adsorbed carbon monoxide. The Arrhenius format of the data is 

shown in the inset. 

 

3. Methods and Models 

The calculations were performed with the Vienna ab initio simulation package (VASP) [56–59] using 

spin polarized DFT. The Perdew-Burke-Ernzerhof generalized gradient approach (GGA-PBE) [60] to  

the exchange-correlation potential was implemented and the projector-augmented wave method  

(PAW) [61,62] was applied to the basis set to account for the effect of the core electrons in the valence 

electron density. A 600-eV cutoff for the plane waves expansion was applied and a 4 × 4 × 1 

Monkhorst-Pack grid of k-points [63] was used for the numerical integration in reciprocal space. As 

shown previously [50] smaller Brillouin zone (BZ) sampling intervals (5 × 5 × 1 and 6 × 6 × 1) and 

higher cutoff energies (700 and 800 eV) show insignificant differences in the energies of the  

optimized structures (less than 0.01 eV). Hence, the cutoff and Monkhorst-Pack grid used here yield 

converged results. 

The surface orientation, as well as steps and defects on the surface, could affect its catalytic properties 

and reactions energies [14,64]. The face-centered cubic (fcc) nickel, Ni(111), is the most stable Ni 

surface and is therefore commonly used in computational studies of heterogeneous catalytic  

reactions [65–69]. This surface was also used in the present work, where periodic boundary conditions 

were imposed in two directions to model a semi-infinite crystal surface. Tests showed that a Ni(111) 

surface containing 4 × 4 unit cells in each layer, and with five layers that are separated by an equivalent 

volume of vacuum in the surface perpendicular direction, yield converged results in a computationally 

tractable time. The two bottom layers of the slab were fixed to maintain the bulk crystal structure, and 

the three upper layers were free to relax. This periodic box size, which yields a 1/16 monolayer coverage 

for the water in the absence of CO and a 1/8 monolayer for the co-adsorbed CO and water, prevents 

interactions between the surface atoms and adsorbates with their periodic images. Higher surface 
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coverages, including 1/4 and 1/2 monolayer, were also investigated to elucidate if the trends reported 

here are sensitive to the surface coverage.  

The conjugate-gradient (CG) method was used to obtain the geometry optimized structures of the 

adsorbates on the surface. The convergence criteria were 10
−6

 eV for the total energy and 10
−3

 eV/Å for 

the forces acting on the ions.  

Transition states were identified using an improved version of the nudged elastic band (NEB) 

method, called climbing-image NEB (CI-NEB) [70,71]. In this method, the lowest energy reactant and 

product configurations are selected as the initial and final states, and 6 images were placed along the 

minimum energy path (MEP). A −0.5 eVÅ
−2

 spring force constant between images was used. Due to 

computational constraints, a smaller set of k-points (2 × 2 × 1) and a lower energy cutoff (400 eV) was 

used to relax all the images until the maximum force acting on an atom was less than 0.01 eV. Single 

point energy calculations at the transition state using 4 × 4 × 1 k-mesh and 600 eV cut off showed that the 

activation energy differs from that obtained with the less accurate settings by at most 0.02 eV. 

Vibrational frequencies were calculated at all stationary points to ensure that they were minimum 

energy (zero imaginary frequencies) or transition states (one imaginary frequency) geometries, as well 

as to determine the zero point vibrational energies (ZPVEs) and partition functions. The frequencies 

were determined by diagonalizing a finite difference construction of the Hessian matrix using 

displacements of 0.01 Å (only the adsorbates were allowed to move). 

The adsorption energies (Eads) of the reactants and products were calculated from Equation (1). 

Eads = Esurf + adsorbate – Esurf – Eadsorbate (1) 

where Esurf is the total energy of the Ni(111) surface, Eadsorbate is the total energy of the isolated, geometry 

optimized adsorbate(s) in the gas phase and Esurf + adsorbate is the total energy of the surface-adsorbate(s) 

system. Results of Eads where ZPVE corrections are excluded (    
 ) and included (    

 ) are given below 

for the sake of completeness and to show the importance of this correction. 

The water dissociation rate constant (k) was estimated using transition state theory [72], i.e.,  

Equation (2). 

      
   

 
  

  

 
  

   
    (2) 

where kB is Boltzmann’s constant, T is the absolute temperature, h is Planck’s constant and Ea is the 

activation energy from the ZPVE corrected energies. q and q
#
 are the partition functions for the reactant 

and the transition state respectively. Similarly to previous studies [14,33,73], the partition functions have 

been calculated assuming harmonic vibrations. Although this approximation may well affect the 

quantitative results presented here, it is not expected to affect the trends. 

The effect of the CO on the reactant, transition state and product geometries was analyzed using the 

atomic charge densities. These calculations were performed using 2 × 2 unit cells in each layer, since 

these cells yield the same geometric and energetic trends as the larger unit cells. The charge density on 

each ion in the relaxed structure is calculated by integrating the valence charge density within the 

Wigner-Seitz spheres around each atom. This radius is selected such that the total volume over all atoms 

is approximately 100% and that the ratios of the atomic radii is equal to that of the ionic  

radii [74]. The present calculations use a 8 × 8 × 1 k-point meshes and Wigner-Seitz radii equal to  
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1.4 Å for Ni, 1.29 Å for carbon, 1.11 Å for oxygen and 0.7 Å for hydrogen. Altering these radii by up to 

10% does not change the trends reported here. 

4. Conclusions 

The effect of CO co-adsorption on water dissociation over the Ni(111) nickel surface has been 

studied using DFT calculations. The results show that the co-adsorption of CO alters the geometry of the 

adsorbed reactant water molecule. The O–H bond that is closest to the CO is lengthened and weakened. 

In addition, the distance between the reactants and products with the surface decreases in the presence of 

the co-adsorbed CO. These changes result in a dissociation energy that is 0.24 eV less exothermic in the 

presence of the CO.  

The results also show that the activation energy for water dissociation increases by 0.12 eV in the 

presence of the co-adsorbed CO. In addition, the breaking O–H bond at the transition state has a slightly 

larger imaginary vibrational frequency in the presence of the co-adsorbed CO. These changes (including 

changes in the reactant geometries and vibrational frequencies) lead to a considerable decrease in the 

rate constant when CO is present. At typical low-temperature process conditions of 463 K, the rate 

constant in the presence of CO is approximately twelve times smaller than in the absence of CO,  

and this difference increases with increasing temperature. Hence, it is important to account for  

co-adsorbed CO when Ni-catalyzed water dissociation occurs in a CO-rich environment. 
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