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A B S T R A C T

Globally, gastric cancer is the third leading cause of death from tumors. Prevention and individualized treatment
are considered to be the best options for reducing the mortality rate of gastric cancer. Artificial intelligence (AI)
technology has been widely used in the field of gastric cancer, including diagnosis, prognosis, and image analysis.
Eligible papers were identified from PubMed and IEEE up to April 13, 2022. Through the comparison of these
articles, the application status of AI technology in the diagnosis of gastric cancer was summarized, including
application types, application scenarios, advantages and limitations. This review presents the current state and
role of AI in the diagnosis of gastric cancer based on four aspects: 1) accurate sampling from early diagnosis
(endoscopy), 2) digital pathological diagnosis, 3) molecules and genes, and 4) clinical big data analysis and
prognosis prediction. AI plays a very important role in facilitating the diagnosis of gastric cancer; however, it also
has shortcomings such as interpretability. The purpose of this review is to provide assistance to researchers
working in this domain.
1. Background

Globally, gastric cancer is the third leading cause of death from tu-
mors [1]; however, the incidence rates vary widely on the basis of re-
gions. Gastric cancer is diagnosed histologically after endoscopic biopsy
and staged using computed tomography, endoscopic ultrasound, positron
emission computed tomography, and laparoscopy [2]. Endoscopic ul-
trasound is most beneficial in identifying early gastric cancer (EGC) [3].
Endoscopy and minimally invasive techniques can be used in the treat-
ment of EGC [2]. The literature suggests that the survival rate of patients
with EGC is high if they can obtain an accurate early diagnosis and
prediction of postoperative complications [4, 5]. Artificial intelligence
(AI) technology has been widely used in the field of gastric cancer,
including diagnosis, prognosis, and image analysis. The purpose of this
review is to provide a general understanding of AI to doctors who are
involved in the diagnosis of gastric cancer, clarify the current state and
role of AI in such diagnosis, and offer some guidance for research in
related fields. Eligible papers were identified from PubMed and IEEE up
to April 13, 2022, using the terms “artificial intelligence” and “gastric
cancer”. The filtering criteria are shown in Figure 1, duplicates were
excluded by reference manager software (Endnote). Through the com-
parison of these articles, the application status of AI technology in the
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diagnosis of gastric cancer was summarized, including application types,
application scenarios, advantages and limitations. In this review, we have
introduced the current status of AI in gastric cancer based on four aspects:
1) accurate sampling from early diagnosis (endoscopy), 2) digital path-
ological diagnosis, 3) molecules and genes, and 4) clinical big data
analysis and prognosis prediction (Figure 2.).

2. Development history of AI

AI, a technical science that studies and develops theoretical methods
and applied systems for simulating the functioning and extension of
human intelligence, was already mentioned in the 1950s [6]. As a type of
machine intelligence, AI has cognitive functions similar to those of
human beings, including learning and problem solving [7]. The promise
of AI in healthcare is ripe, and AI will reshape medicine broadly in the
coming years, improving the experience for clinicians and patients [8].

Machine learning (ML), one of the cores of AI, can automatically build
mathematical algorithms based on given data (called training data) and
make predictions or decisions without human instructions [9]. Currently,
ML methods such as Bayesian networks, linear discriminants, support
vector machines (SVMs), and artificial neural networks (ANNs) have
been widely used in medical domains, such as radiology, neurology,
ecember 2022
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Figure 1. The PRISMA flowchart.

Figure 2. The consort diagram of this manuscript.
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orthopedics, pathology, ophthalmology, and gastroenterology [10].
ANNs are ML models that are proposed on the basis of modern neuro-
science. They attempt to process information by simulating the pro-
cessing and memory of the human brain neural network, and have solved
many complex problems of pattern recognition, thus resulting in the
concept of deep learning (DL) [11].

DL technology has rapidly gained attention as an optimal ML method,
and the application of artificial intelligence (AI) in medicine has been
enthusiastically explored. DL has been widely used in medicine [12, 13,
14], especially in cancers such as skin cancer [15], breast cancer [16],
and gastric cancer [17, 18].

3. Accurate sampling from early diagnosis (endoscopy)

Magnifying endoscopy, which is usually combined with narrow
spectrum imaging such as narrow band imaging [19], flexible spectral
imaging color enhancement, and blue laser imaging, is a common
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method for the clinical diagnosis of gastric cancer [20, 21, 22]. However,
the clinical personnel who conduct endoscopic diagnostic examinations
require considerable professional knowledge and experience. Approxi-
mately 10% of upper gastrointestinal cancer cases (including gastric
cancer) are not detected through endoscopy [23].

Researchers have attempted to use AI to assist in the endoscopic
diagnosis of gastric cancer to address the problem of missed diagnosis by
endoscopic doctors due to inexperience or fatigue (Table 1). A con-
volutional neural network (CNN) is one of the most commonly used AI
models and has been used to automatically distinguish between
cancerous and noncacerous regions under endoscopy, with accuracy
between 86–92.5% [1, 24, 25, 26]. The accuracy of these AI methods is
equivalent to or even better than that of experienced endoscopists, which
implies that such techniques can provide substantial assistance in
decision-making. Furthermore, the sensitivity can be as high as 100% if
needed [27], which implies that the detection rate is comparable to that
of themost experienced endoscopists. This has important implications for



Table 1. The application of AI in accurate sampling from early diagnosis (endoscopy).

References Year Disease Algorithm Endoscopic No. of cases Results

Kubota et al. 2012 Gastric cancer Back propagation Conventional endoscopy 344 Accuracy, 64.7%,

Miyaki et al. 2013 MGC Logistic regression Magnifying endoscopy with FICE 46 Accuracy, 85.9%; Sn, 84.8%; Sp, 87.0%

Miyaki et al. 2015 EGC SVM Magnifying endoscopy with BLI 100 The SVM output value was significantly different

Shichijo et al. 2017 HP CNN Conventional endoscopy 397 Accuracy, 88.9%; Sn, 87.4%; Sp, 87.7%

Itoh et al. 2018 HP CNN Conventional endoscopy 139 Sn, 86.7%; Sp, 86.7%

Hirasawa et al. 2018 Gastric cancer CNN Conventional endoscopy 77 Sn, 92.2%; Sp, 98.6%

Sakai et al. 2018 EGC CNN Conventional endoscopy 9650 images Accuracy, 87.6%

Kanesaka et al. 2018 EGC SVM Conventional endoscopy 207 images Accuracy, 96.3%; Sn, 98.3%; Sp, 96.7%

Wu et al. 2019 EGC DCNN EGD 9151 images Accuracy, 92.5%; Sn, 94.0%; Sp, 91.0%

Zhu et al. 2019 EGC CNN Conventional endoscopy 993 images Accuracy, 89.16%; Sn, 76.47%; Sp, 95.56%

Wu et al. 2021 EGC DCNN & DRL EGD 1050 Accuracy, 84.7%; Sn, 100%; Sp, 84.3%

BLI: blue-laser imaging; CNN: convolution neural network; DCNN: deep convolution neural network; DRL: deep reinforcement learning; EGC: early gastric cancer; EGD:
esophagogastroduodenoscopy; FICE: flexible spectral imaging color enhancement; HP: helicobacter pylori; MGC: mucosal gastric cancers; SVM: support vector machine;
Sn: sensitivity; Sp: specificity.
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the screening of EGC, although more time is required to rule out
false-positive cases.

In addition to CNNs, SVM is often used in the AI diagnosis of gastric
cancer. An SVM-based analysis systemwas used to quantitatively identify
gastric cancer from images obtained through magnifying endoscopy. The
SVM output value for the tumor region was significantly different from
that of other regions [28]. The endoscopists could diagnose early gastric
cancer with the aid of a computer-aided diagnosis (CAD) system based on
SVM, with an accuracy of 96.3%, positive predictive value of 98.3%,
sensitivity of 96.7%, and specificity of 95% [29].

The utility of AI in the endoscopic diagnosis of gastric cancer is not
only in detection, but also characterization. The computer-aided pattern
recognition system [30] and the convolutional neural network
computer-aided detection (CNN-CAD) system [31] were used to identify
the depth of the wall invasion of gastric cancer and screen patients using
endoscopic images. The results showed that the overall accuracy rate of
the pattern recognition system was 64.7%, and the diagnostic accuracy
was 77.2%, 49.1%, 51.0%, and 55.3% for the T1, T2, T3, and T4 stages,
respectively. The accuracy was 68.9% in T1a (mucosal invasion) staging
and 63.6% in T1b (submucosal invasion) staging [30]. Comparatively
speaking, CNN seems to have an advantage in this respect. The CNN-CAD
system showed higher accuracy (89.2%) and specificity (95.6%) than the
pattern recognition system when determining the invasion depth of
gastric cancer. This result was even significantly superior to that of
experienced endoscopists [31].

In addition, chronic gastritis associated with Helicobacter pylori (HP)
can cause mucosal atrophy and intestinal metaplasia, both of which could
increase the risk of gastric cancer [32]. Therefore, the accurate diagnosis
of HP infection is also crucial for the early diagnosis and prevention of
gastric cancer. A CNN system capable of recognizing the specific features
of gastric endoscopy images was developed to detect HP infection early,
thus preventing gastric cancer. The accuracy of these systems was
83.1–87.7% and the maximum sensitivity and specificity were 88.9%
and 87.4%, respectively [33, 34]. The accuracy of the CNN-aided system
was significantly higher than that of the endoscopists, and it was more
efficient. This proved that the AI-assisted diagnosis of HP infection is
feasible and expected to promote and improve the early diagnosis of
gastric cancer.

However, AI needs to incorporate the decision-making processes of
endoscopists, because when they look at the gastric mucosa, they do not
just judge by color or shape. In the near future, we should discuss how to
shape the interaction between the endoscopist and AI [35].

4. Digital pathological diagnosis

Whole slide imaging (WSI) which digitizes a slide to produce whole
slide images on a screen, is a disruptive technology that has led to
3

significant advances in digital pathology diagnosis over the past decade
[36]. Based on the WSI, AI has been widely used in digital pathology, such
as pathological diagnosis [37], histological classification [38], and histo-
logical prediction [39] (Table 2). The area under the curve for the
CNN-CAD system in the pathological diagnosis of gastric cancer was 0.89,
the sensitivity was 0.778, the specificity was 0.995, the overall accuracy
was 0.989, and the positive and negative predictive values were 0.822 and
0.994, respectively. The CNN-CAD system achieved the same classification
results as pathologists [37]. For the three-tier classification (positive for
carcinoma or suspicion of carcinoma, caution for adenoma or suspicion of
a neoplastic lesion, or negative for a neoplastic lesion), the overall
concordance rate of the AI image analysis software was 55.6%
(1702/3062), and the kappa coefficient was 0.28 (95% confidence inter-
val, 0.26–0.30; fair agreement) [38]. In addition, deep residual learning
can predict microsatellite instability directly from hematoxylin-eosin
(H&E) histology images without additional genetic or immunohisto-
chemical tests. This approach has the potential to provide broader
immunotherapy to patients with gastrointestinal tumors [38]. Other
studies have shown that deep learning models of WSIs can not only help
pathologists detect diagnoses but also help oncologists explore new prog-
nostic factors, especially those that are difficult to calculate manually [40].

In addition to histological H&E staining images, gastric smears
stained by the Papanicolaou technique were also the most important
source of training data for AI models of gastric cancer, especially in early
research. Karakitsos et al. conducted a series of studies based on gastric
smears stained by the Papanicolaou technique. Initially, they collected 23
cases of cancer, 19 of gastritis, and 58 of ulcers, and used morphometry
and the backpropagation (BP) algorithm in artificial neural networks
(ANNs) to identify benign and malignant gastric lesions with an overall
accuracy of 97.3% [41]. Subsequently, they compared the accuracy of
two different ANNs, which were based on BP and a learning vector
quantizer, for identifying benign and malignant gastric lesions based on
nuclear morphological and textural data. They proved that the overall
accuracy of both ANNs exceeded 97%, with more than 97% of the benign
cells and more than 95% of the malignant cells being properly classified
[42]. Next, they investigated the potential value of ANNs for the
discrimination of benign lesions from malignant gastric lesions, and the
results indicated that the ANNs may offer useful information concerning
the potential of malignancy in gastric cells [43].

Algorithms have also been one of the focal points of gastric cancer AI
in recent years. Sharma et al. proposed an introductory CNN architecture
for two computerized applications, namely, cancer classification based
on immunohistochemical response and necrosis detection based on the
existence of tumor necrosis in the tissue. This CNN architecture
demonstrated favorable results, with an overall classification accuracy of
0.6990 for cancer classification and 0.8144 for necrosis detection [44].
Song et al. detected gastric cancer using a CNN with the DeepLab V3



Table 2. The application of AI in Digital Pathological Diagnosis.

References Year Disease Algorithm Image type No. of
cases

Results

Karakitsos
et al.

1996 Gastric cancer Back
propagation

Papanicolaou 100 Accuracy, 97.3%

Karakitsos
et al.

1997 Gastric cancer BP & LVQ Papanicolaou 120 Accuracy, >97%

Yoshida et al. 2018 Gastric cancer MIL H&E 3062 Overall concordance rate, 55.6%

Wang et al. 2019 Gastric cancer CNN H&E 124 Accuracy, 98.9%; Sn, 77.8%; Sp, 99.5%

Kather et al. 2019 MIS of gastric cancer CNN H&E 1554 AUC for MSI detection, 0.81

Wang et al. 2021 MLNs of gastric
cancer

Deep learning H&E 1164 Accuracy, 96.9%; Sn, 98.5%; Sp, 96.1%

Ba et al. 2022 Gastric cancer Deep learning H&E 110 WSI Pathologists with DL had higher sensitivity than without. (90.63% vs. 82.75%, P
¼ 0.010)

AUC: area under curve; BP: back propagation; CNN: convolution neural network; H&E: hematoxylin-eosin staining; MIL: multi-instance learning; MLNs: metastatic
lymph nodes; MSI: microsatellite instability; WSI: whole slide imaging.

Table 3. The application of AI in genes.

References Year Disease Algorithm Target of detection No. of cases Results

Ishii et al. 2013 Gastric cancer (2 subtypes) Bayesian network gene expression profile 46 Accuracy of the classifier, 100%

Yan et al. 2013 Gastric cancer DM & ML feature genes 216 Sn, >90%; Sp, >90%

ctDNA: circulating tumor DNA; DM: data mining; ML: machine learning; MRD: molecular residual disease.
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architecture and achieved a sensitivity of 99.6% and an average speci-
ficity of 80.6% on 3212 WSI real-world test datasets digitized by 3
scanners. Moreover, 1582 WSI samples from two other medical centers
were selected to further verify the generalization ability of the algorithm
[45]. Qu et al. presented a novel stepwise fine-tuning-based deep
learning scheme for gastric pathology image classification. They estab-
lished new types of target-correlative intermediate datasets to further
boost the performance of state-of-the-art deep neural networks and
alleviate the insufficiency of well-annotated data. The results congru-
ously demonstrated the feasibility and superiority of the proposed
scheme for boosting the classification performance [46].

To be clear, AI cannot replace the breadth and contextual knowledge
of pathologists, but only a combination of the two can best represent the
advantages of AI. Ai assistance has indeed improved the accuracy and
efficiency of pathologists in the diagnosis of gastric cancer. Pathologists,
in turn, understand the impact of false positives and false negatives on
patients, enabling them to optimize diagnostic points of operation to
meet more personalized clinical needs. The aid of AI effectively reduces
the workload of pathologists, allowing them to spend more time on
difficult cases [47].

4.1. Molecules and genes

Molecular and genetic techniques are increasingly being used in the
diagnosis and prognosis of tumors. The identification of patients who are
at a high risk of gastric cancer can facilitate early intervention. For
Table 4. The application of AI in prognosis prediction.

References Year Disease Algorithm Prognosis prediction

Chien et al. 2008 Gastric cancer ANN, DT,
LR

Post-operative complication

Lai et al. 2008 Primary gastric
cancer

ANN Preoperative prediction of
tumor staging

Jagric et al. 2010 Gastric cancer LVQNN Liver metastases after a gastric
cancer surgery

Liu et al. 2018 EGC Data
mining

Non-invasive screening

ANN: artificial neural networks; DT: decision tree; EGC: early gastric cancer; LR: logi

4

example, in treatment-targeted patients with localized gastric cancer,
circulating tumor DNA-detected molecular residual disease can identify
high-risk patients with recurrence and facilitate intensive research on
neoadjuvant therapy to improve survival [48]. More detailed molecular
signatures can also be used to tailor treatments to each patient, and the
response to targeted therapies can be more effectively predicted to
maximize efficacy and avoid overtreatment [49].

AI has been widely used in this domain (Table 3). A classifier can be
built to distinguish the gene expression profiles of each subtype of gastric
cancer, to guide medical treatment for different subtypes or to predict
prognosis [50]. Multiple algorithms can also be integrated to establish a
complete and systematic data mining model for identifying biomarkers
based on gene expression data, and to identify the biological character-
istics of gastric cancer with the gene characteristics obtained from the
prediction model [51].

4.2. Clinical big data analysis and prognosis prediction

AI is also often used in clinical big data analysis and prognosis pre-
diction, such as the integration of patient history, clinical nursing data,
pathology, and imaging data, which have been used for data analysis and
mining (Table 4). Complex cases should be treated in a multidisciplinary
manner, combining gastroenterology, radiology, pathology, medicine,
surgery, and radiation oncology [3]. In gastric cancer, for example, AI has
been used to predict complications after gastrectomy to significantly
reduce postoperative mortality and morbidity [5], strengthen early
No. of
cases

Results

521 ANN was a better technique than DT and LR

121 Accuracy, 81.82%

213 Sn, 71%; Sp, 96.1%

618 Accuracy, 77.84%; AI can effectively evaluate the risk of EGC and assist
clinicians in improving the diagnosis and screening of EGC.

stic regression; LVQNN: learning vector quantization neural networks.
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diagnosis and screening to improve the survival and quality of life of EGC
patients [4], predict the preoperative staging of tumors by using clini-
copathological datasets and genetic susceptibility tests [52], and predict
tumor recurrence in patients with gastric cancer to develop specific
treatment and follow-up strategies [53].

5. Conclusion and future prospects

With the rapid development of digital pathology and ML technology,
the application of AI in the diagnosis of gastric cancer is becoming
increasingly extensive. AI has been used in many cases, including
endoscopic diagnosis, identification of the depth of wall invasion, his-
tological diagnosis and classification, gastric smear diagnosis, molecular
and genetic, and prognosis prediction. The applications of AI technology
in gastric cancer have demonstrated accuracy and diagnostic efficiency
that are equivalent to or even superior to those of general pathologists.
However, AI will not replace the breadth and contextual knowledge of
pathologists; rather, only through their combination may pathologists’
accuracy and efficiency in gastric cancer diagnosis be improved.

However, researchers have found that AI technology still has many
problems, such as black boxes [54, 55, 56], a lack of high-quality datasets
[54], and the generalization of AI models [56]. Future AI research of this
kind will likely focus on how to solve these problems.

First, AI algorithms lack a common understanding of their inner work-
ings. The challenge of interpreting and understanding how complex AI
models make decisions is one of themajor obstacles to the clinical adoption
of DL algorithms, also known as the black box problem. DL has defects such
as selection bias, overfitting, and spectral bias (class imbalance), which
might affect the accuracy. AI algorithms of DL such as CNN models have
shown a lack of interpretability, in which graph neural networks (GNN)
have an advantage [57]. In the future, GNNs can be expected to have more
applications in the diagnosis of gastric cancer. Especially when medical AI
models gain new insights beyond current human knowledge, the inter-
pretability of GNNwill help researchers master these new insights to better
understand the biological mechanisms behind disease.

Furthermore, there are often data issues associated with using AI. For
example, there are few high-quality datasets available for training and
validation. We can consider the federated learning (FL) method to solve
the problem of insufficient data [58]. FL is a multidistributed joint
learning technology that can learn among multiple databases and obtain
a high-precision system by transferring system parameters from the
central database under the premise of limited data sharing. Using
federated learning, we can effectively develop accurate weakly super-
vised deep learning models from distributed data silos without direct
data sharing and its associated complexity, while also maintaining dif-
ferential privacy using random noise generation.

The last important question is the generalization of AI models and
medical decision support tools. AI models with a single source of data
may not perform well when faced with data from other sources. In
addition, to improve generalization, AI models can be trained and veri-
fied with datasets from different sources. For complex cases, multidisci-
plinary data such as gastroenterology, radiology, pathology, internal
medicine, surgery, and radiation oncology can also be incorporated into
the comprehensive analysis of AI. On the other hand, AI technology is
increasingly relying on substantial computing power and massive data
support, which are not always accessible to researchers. Under such
circumstances, it can be predicted that the specialization of AI technology
(single disease or even single subtype) for gastric cancer (even for
medicine) may be a feasible option.
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