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Abstract

Radiation therapy has been a critical and effective treatment for cancer. However, not all cells are destroyed by radiation due to
the presence of tumor cell radioresistance. In the current study, we investigated the effect of low-dose radiation (LDR) on the
tumor suppressive effect of high-dose radiation (HDR) and its mechanism from the perspective of tumor cell death mode and
DNA damage repair, aiming to provide a foundation for improving the efficacy of clinical tumor radiotherapy. We found that
LDR pre-irradiation strengthened the HDR-inhibited A549 cell proliferation, HDR-induced apoptosis, and G2 phase cell cycle
arrest under co-culture conditions. RNA-sequencing showed that differentially expressed genes after irradiation contained
pyroptosis-related genes and DNA damage repair related genes. By detecting pyroptosis-related proteins, we found that LDR
could enhance HDR-induced pyroptosis. Furthermore, under co-culture conditions, LDR pre-irradiation enhances the HDR-
induced DNA damage and further suppresses the DNA damage-repairing process, which eventually leads to cell death. Lastly,
we established a tumor-bearing mouse model and further demonstrated that LDR local pre-irradiation could enhance the
cancer suppressive effect of HDR. To summarize, our study proved that LDR pre-irradiation enhances the tumor-killing
function of HDR when cancer cells and immune cells were coexisting.
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treatment of lung cancer, which has made it a very important
treatment for lung cancer.® Radiotherapy is available for all

Introduction

Lung cancer, the most prevalent and lethal form of cancer, is
the primary reason for cancer-related deaths in both men and
women around the world." A total of 19.3 million new in-
stances of cancer and about 10 million cancer-related deaths
globally are reported by GLOBOCAN 2020. Lung cancer
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accounts for 14% of all new cases and 18% of all cancer deaths
worldwide, making it the malignancy with the greatest fatality
rate.® Non-small cell lung cancer (NSCLC) and small cell lung
cancer (SCLC) have historically been considered the 2 main
kinds of lung cancer.” Currently, there are various treatments
for lung cancer, including surgery, chemotherapy, immuno-
therapy and radiotherapy.” Radiotherapy has advanced sig-
nificantly in recent years and played a crucial part in the

3 Department of Orthopedics, The First Hospital of Jilin University,
Changchun, China
* Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China

Received 3| October 2023; accepted 21 March 2024

Corresponding Author:

Hui Gao, NHC Key Laboratory of Radiobiology, School of Public Health, Jilin
University, Changchun, China.

Email: 4669 1600@qq.com

@ @ Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use,

reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE
and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).


https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/15593258241245804
https://journals.sagepub.com/home/dos
https://orcid.org/0000-0002-5281-073X
https://creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
mailto:46691600@qq.com

Dose-Response: An International Journal

stages of lung cancer treatment, and more than half of patients
require at least 1 radiotherapy session for cure or remission.
Tumor radiotherapy has advanced greatly, yet the rate of 5-
year survival for cancer patients continues to be below av-
erage, and a major reason for this is the radioresistance of
cancer cells.” The mechanisms of tumor cell radioresistance
involve many aspects, including DNA damage repair® and
pyroptosis.” Therefore, it is significant to find ways to reduce
tumor cell radioresistance from the mechanism of tumor cell
radioresistance to improve the effectiveness of clinical tumor
radiotherapy.

At present, the role of low-dose radiation in tumor ra-
diotherapy has attracted extensive attention from scholars.
Low-dose radiation (LDR) is referred to as a dose below
which harmful health consequences cannot be produced. It
was originally established by the UN Scientific Committee on
Atomic Radiation as less than 200 mGy for low linear energy
transfer (LET) radiation or 50 mGy for high LET radiation.'®
LDR can be found everywhere in our lives, such as natural
radiation in our life like food and soil, as well as in clinical
treatment equipment.'' There is still much controversy in the
study of low doses of radiation. The “linear no-threshold”
model reckons that radiation is harmful to the body at any
dose. However, many studies of LDR in recent years have
shown that LDR can produce biological effects distinct from
those caused by high-dose radiation (HDR), and that LDR
may produce beneficial effects on the organism. According to
earlier research, LDR can also cause adaptive responses to
chemotherapeutic agents in normal cells.'? It was demon-
strated that LDR can protect normal tissues from the harmful
effects of radiation and drugs. Another study discovered that
LDR controlled the production of plasminogen activator
inhibitor-1 (PAI-1) to decrease radioresistance in NSCLC,"?
further demonstrating the potential value of LDR in tumor
therapy.

The primary way that radiation destroys tumor cells is by
causing DNA double-strand breaks (DSBs).'* However, tu-
mor cells have some DNA damage repair ability and can repair
damaged DNA, which leads to tumor recurrence and me-
tastasis. There are 2 major pathways for DSB repair: non-
homologous end-joining (NHEJ) and homologous
recombination (HR).'® Research has proven that silencing of
XRCC4 (a critical factor in the repair pathway for NHEJ)
increases the radiosensitivity of triple-negative breast cancer
cells.'® Targeted suppression of DNA-PKcs can cause an
accumulation of DNA damage, impairing NHEJ, and ren-
dering cells hypersensitive to radiation.'” Presently, with the
intensive research on DNA damage repair pathways, in-
creasing studies have found that targeted inhibition of DNA
damage repair in cancer cells can improve the radiosensitivity
of cancer cells and enhance the efficacy of tumor
radiotherapy.'®

Pyroptosis is a form of programmed cell death that com-
bines inflammatory and cell death features.'” There are var-
ious pathways of pyroptosis however, the most common

pathway is induced by NLRP3, caspase-1, and GSDMD.'**°
Inflammasomes are composed of sensor proteins, inflamma-
tory caspase, and adapter proteins that connect the two.*'
Inflammasome sensors include the NLR family such as
NLRP1, NLRP3, and NLRP4.% Caspases-1 can be activated
by the inflammasome and once triggered, they can activate
precursors of IL-1 and IL-18 and also cleave GSDMD,
causing cell pore formation and eventually leading to cell
death.*** In recent years, many studies have proved that
pyroptosis can inhibit tumorigenesis and progression. Treat-
ment of A549 and H1299 cells with polyphyllin VI (PPVI),
both of which showed reduced proliferative capacity and
increased dead cells, as well as increased NLRP3, GSDMD,
caspase-1, IL-1B, and IL-18 expression in both.”> Another
study showed that targeting NLRP3-mediated pyroptosis
could modulate the radioresistance of triple-negative breast
cancer, and increasing NLRP3 expression could enhance its
radiosensitivity.” Research on pyroptosis suggests that the
combination of targeted pyroptosis with other cancer therapies
could provide new ideas for cancer treatment.

The most common cancer that leads to death is lung cancer.
Radiation resistance of lung cancer cells reduces the efficacy
of radiotherapy and prevents complete eradication of lung
cancer. A key contributor to tumor cells’ radioresistance has
been identified as DNA damage repair. And pyroptosis has
been found to influence tumor development in recent years.
Previous studies on the combined exposure of LDR and HDR
mostly focused on adaptive responses. Up till now, no study
has been conducted to explore the effect and mechanism of
LDR in enhancing HDR killing tumor cells. In the present
study, we found that LDR enhanced the tumor inhibition of
HDR when tumor cells and immune cells coexisted and il-
lustrated its mechanism from the perspectives of pyroptosis
and DNA damage repair. These findings may provide new
insights and targets for improving the efficacy of clinical
cancer treatment.

Materials and Methods

Cells and Culture

A549 cells, H1299 cells, Hela cells, MCF-7, and Jurkat cells
were purchased from the Cell Bank of the Chinese Academy
of Sciences (Shanghai, China). RPMI-1640 media or DMEM
medium (Gibco, USA), 10% FBS (HyClone, USA), and 1%
penicillin/streptomycin (HyClone, USA) were used to culti-
vate the cells. All cells were grown at 37°C in a 5%
CO2 environment in a humidified incubator.

Experiments on Animals

Female BALB/c nude mice aged 6 weeks were purchased
from Beijing Huafukang under animal license number SYXK
(Ji) 2021-20003. PBS was used to make a cell suspension of
A549 cells. The concentration was 1 x 107 cells/mL. 100 uL of
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the cell suspension was injected into the leg of each mouse.
When the tumor volume reached about 200 mm?>, radiation
therapy was applied to the tumor. Following radiotherapy, the
tumor volume was assessed every 2 days, the mice were
executed after 21 d of irradiation, and the tumors were re-
sected. Tumor volume(mm?®) = length® (mm) x width (mm)/2.
The animal experiments were approved by the Medical Ethics
Committee of the School of Public Health, Jilin University
(2021-12-20).

Irradiation

An X-ray generator (model X-RAD320iX) was used to ir-
radiate both cells and animals at room temperature. For cell
irradiation, the LDR dose rate was .0134 Gy/min with an
irradiation dose of 100 mGy, the HDR dose rate was 1.02 Gy/
min with an irradiation dose of 20 Gy, and the interval between
LDR and HDR was 6 h for cell lines. For animal irradiation,
the LDR dose rate was .0134 Gy/min with an irradiation dose
of 100 mGy, the HDR dose rate was 1.98 Gy/min with an
irradiation dose of 20 Gy, and the interval between LDR and
HDR was 24 h for animals. In mice irradiation, both LDR and
HDR were localized. All irradiations of cells and animals were
single irradiations, not fractionated irradiations.

Reagents and Antibodies

Cell Counting Kit-8 (CCK8) (MCE, USA), Annexin V-FITC/
PI Apoptosis Detection Kit (Meilunbio, China), Elisa Kits
(Mlbio, China), TaKaRa Reverse Transcription Kit (TaKaRa,
Japan), Fluorescence Quantitation Kit (TaKaRa, Japan),
Pierce ECL Kit (Sigma, USA), TRIzol (Invitrogen, USA),
BCA Protein Quantification Kit (Beyotime, China), MCC950
(KKL MED, USA), The VND3207 was kindly provided by
Prof. Pingkun Zhou (Beijing Key Laboratory for Radiobiol-
ogy, Beijing Institute of Radiation Medicine, Beijing, China),
Primary antibodies against GAPDH, Cleaved-caspase-1,
GSDMD, DNA-PKcs and Ku80 (Abcam, USA), Primary
antibodies against NLRP3, XRCC4, BRCA1l and Rad51
(Bioworld, China), Secondary antibodies and fluorescent
secondary antibodies (Bioworld, China).

Co-culture Model

A co-culture model was created by adding an equivalent
number of logarithmic growth stage Jurkat cells after the
logarithmic growth stage A549 cells had adhered to the wall
and extended in the cell culture dishes (plates).**>’

Cell Viability Assay

Before receiving radiation treatment, 96-well plates contain-
ing 4000 A549 cells were cultivated for 12 hours. After 24 h of
irradiation, a mixture of medium and CCKS8 reagent was
prepared in a 10:1 ratio, and 100 mL of the mixture was added

to each well for 2 h of reaction. The absorbance was measured
using a microplate spectrophotometer (Tecan, Switzerland)
according to the instructions.

Apoptosis Assay

After 24 h of cell irradiation, cells were collected; washed with
cold PBS; 1x Binding Buffer, Annexin V-FITC, and PI were
added according to the instructions; left for 15 min protected
from light; and then 200 pL 1x Binding Buffer was added and
assayed by using flow cytometry (BD, USA).

Cell Cycle Assay

After 24 h of cell irradiation, the cells were collected; washed
with cold PBS; 150 uL of cold PBS and 300 pL of anhydrous
ethanol were added; fixed for 2 h; washed with cold PBS; PI
was added according to the instructions; and placed for 30 min
away from light and detected on the machine.

Enzyme-Linked Immunosorbent Assay

After irradiation of the co-culture model, the supernatants
were collected and the levels of IL-18, IL-1f, IL-32, and TNF-
o protein in the supernatants were assayed by using ELISA
kits according to the manufacturer’s instructions. In each
assay, the absorbance was detected at 450 nm using a mi-
croplate spectrophotometer (Tecan, Switzerland). Protein
concentrations in the supernatants were determined based on
standard curves for each plate.

Small-Interfering RNA and Transfection

A small-interfering RNA (siRNA) of human NLRP3 gene was
designed and synthesized. The sequence is as follows: sense
(5’-3’): GUGCGUUAGAAACACUUCATT; antisense (5°-
3’): UGAAGUGUUUCUAACGCACTT (GenePharma,
China). Cells were transfected using GP-transfect-Mate
transfection reagent according to the instructions.

Western Blotting

RIPA lysate was used to extract the total protein from cells and
tissues, and the protein content was assessed using the BCA
test. Adequate amounts of protein were detached by using
SDS-PAGE, conveyed by PVDF membrane, closed with 5%
non-fat milk, washed the membrane, incubated with primary
antibodies overnight at 4°C, washed the membrane, incubated
with secondary antibodies for 2 hours, washed the membrane,
and then detected using an ECL kit.

Immunofluorescence

Cells were washed, fixed for 15 min, the membrane was
ruptured, closed for 1 h, antibody was added and incubated
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overnight, the cells were washed again, fluorescent secondary
antibodies were added and placed them for 2 h away from
light, the cells were washed, sealing solution containing DAPI
was added, and photos were obtained using fluorescent
microscopy.

Quantitative Real-Time PCR

TRIzol was employed to extract RNA, and the RNA was used
to make cDNA in accordance with the instructions, and a qRT-
PCR assay was carried out using a TB-Green fluorescent
quantification kit. Table 1 contains a list of the qRT-PCR
primer sequences.

RNA-Sequencing Analysis

RNA was extracted using the TRIzol isolation method. For
RNA sequencing, samples were delivered to GeneChem. Data
analysis reports were provided by the company. Data analysis
reports were provided by the company. Heat map was redrawn
by using the Hiplot analysis website, and GO and KEGG
analyses were redone by using the Hiplot analysis website and
Sangerbox 3.0.

Statistical Analysis

The GraphPad Prism 8 program was used to statistically
evaluate the experimental data for this study, and the results
were expressed as means =+ standard deviation. GraphPad
Prism 8 is used for graphing. The outcomes of the experiment
were statistically analyzed using Student’s t-test. Differences
were considered statistically significant at P < .05.

Results

There is No Effect of LDR on the Tumor Suppression
Effect of HDR When lIrradiating Tumor Cells Alone

In the initial study, we evaluated the viability of A549 cells,
Hela cells, MCF-7 cells, and H1299 cells after irradiation via
the CCKS8 kit. There was no discernible difference in the
4 types of cells’ viability between the LDR+HDR group and
the HDR group (P > .05) (Figure 1A-1D). After that, we

Table I. Sequences of the qRT-PCR Primers.

examined the apoptosis in A549 cells, Hela cells, and MCF-7
cells after irradiation by using flow cytometry. We found that
among the 3 cell types, there was no discernible difference
between the LDR+HDR and HDR groups in terms of the rate
of apoptosis (P > .05) (Figure 1E-1G). Taken together, these
results suggest that LDR has no effect on the tumor sup-
pressive effect of HDR under the irradiation of tumor cells
alone.

LDR Could Enhance the Inhibitory Effect of HDR on
Tumor Cells Under Co-culture Conditions

Considering the theory of the immune excitatory effect of
LDR*® and the role of the tumor microenvironment after ir-
radiation,”” we designed the experiment of co-culture of tumor
cells with immune cells (Figure 2A). Subsequent experiments
will be conducted under co-culture conditions. Subsequently,
we assayed the viability of A549 cells after irradiation under
co-culture conditions. We found that the survival rate of
A549 cells was decreased after irradiation, and the LDR+HDR
group had a lower cell survival rate than the HDR group (P <
.05) (Figure 2B). We further assayed the apoptosis of
A549 cells after irradiation under co-culture conditions.
A549 cells had an increase in apoptosis after exposure to
radiation, and the LDR+HDR group had more apoptosis than
the HDR group (P < .01) (Figure 2C and 2D). After irradi-
ation, the proportion of G, phase cells obviously rose in both
the LDR+HDR and HDR groups, and LDR+HDR had a
higher proportion of G2 phase than the HDR group (P <.05),
according to our analysis of the cell cycle (Figure 2E and 2F).
In summary, these findings demonstrated that, in co-culture
conditions, LDR could enhance the inhibitory effect of HDR
on tumor cells and that LDR could make the HDR-induced
G2 phase cell cycle arrest more pronounced.

Pyroptosis and DNA Damage Repair May be
Potential Mechanisms

We used RNA sequencing to determine the mechanism by
which LDR pre-irradiation enhanced the inhibitory effect of
HDR on tumor cells under co-culture conditions. According
to the RNA sequence data, there were 692 differently

Genes Forward primers (5’-3’) Reverse primers (5’-3’)

Rad5| CAACCCATTTCACGGTTAGAGC TTCTTTGGCGCATAGGCAACA
BRCAI GAAACCGTGCCAAAAGACTTC CCAAGGTTAGAGAGTTGGACAC
DNA-PKcs CTGTGCAACTTCACTAAGTCCA CAATCTGAGGACGAATTGCCT
XRCC4 ATGTTGGTGAACTGAGAAAAGCA GCAATGGTGTCCAAGCAATAAC
Ku80 GCACTGACAATCCCCTTTCTG TCAATGTCCTCCAGCAAATCAAA
NLRP3 CGTGAGTCCCATTAAGATGGAGT CCCGACAGTGGATATAGAACAGA

GAPDH

ACGGATTTGGTCGTATTGGG

TGATTTTGGAGGGATCTCGC
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Figure I. Thereis no effect of LDR on the tumor suppression effect of HDR when irradiating tumor cells alone. (A) Cell viability of A549 cells
after irradiation was evaluated by using CCKS8 assay, n = 4 per group. (B-D) Cell viability of tumor cells after irradiation was evaluated by
using CCK8 assay, n = 5 per group. (E-G) The apoptosis rate of tumor cells after irradiation was detected by using flow cytometry, n = 3 per

group. All data are presented as the mean + SD.

expressed genes in the LDR group, 4854 in the LDR+HDR
group, and 5999 in the HDR group as compared to the
Control group (Figure 3A-3D). Heat map results suggest
that pyroptosis-related genes, such as GSDMD and IL-18,
had higher expression levels and the expressions of DNA
damage-repair-related genes XRCC4, BRCA2, and
XRCC2 were downregulated in the LDR+HDR group
compared with the HDR group (Figure 3E). GO enrichment
analysis revealed that the differential genes in the LDR
group were enriched in biological processes such as acti-
vation of immune response, double-strand break repair, and
regulation of cell cycle G2/M phase transition compared to
the Control group (Figure 3F). The LDR+HDR and HDR
groups’ differential genes were enriched in biological

processes such as regulation of inflammatory response, cell
cycle checkpoint, activation of the immune response, and
double-strand break repair (Figure 3G and 3H). KEGG
pathway analysis suggested that the LDR group was en-
riched for differential genes in pathways containing PI3K-
Akt signaling pathway, pathways in cancer, and cell cycle
(Figure 3I). And the pathways of differential gene en-
richment in the LDR+HDR group and HDR group included
human T-cell leukemia virus 1 infection, DNA damage
repair pathway, cell cycle, and TNF signaling pathway
(Figure 3J and 3K). The results of RNA sequence gave us
insight that DN A damage repair and pyroptosis may be the
mechanisms by which LDR pre-irradiation enhanced the
inhibitory effect of HDR on tumor cells.
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LDR Pre-irradiation Could Enhance HDR-induced
Pyroptosis Under Co-culture Conditions

Radiation can stimulate the secretion of pro-inflammatory
cytokines,® and pyroptosis is known as inflammatory
death. Heat map analysis of RNA-sequencing data indicated
that the LDR+HDR group had higher expression levels of the
pyroptosis-related genes GSDMD and IL-18 than the HDR
group (Figure 3E). Therefore, after co-culture cell irradiation,
we assayed protein expressions related to pyroptosis in
A549 cells. We found that NLRP3, GSDMD, and cleaved-
caspase-1 expressions were increased in the groups of
LDR+HDR and HDR after irradiation. Significantly, the LDR
+ HDR group showed higher expression than the HDR group
(Figure 4A). Then, we examined the expressions of IL-18, IL-
1B, TNF-0, and IL-32 in the supernatant. We found that the
LDR-+HDR group was all higher than the HDR group (Figure
4B-4E).

To confirm the role of pyroptosis even more, we con-
structed an NLRP3 low-expression model in A549 cells using
si-NLRP3 and the inhibitor. First, the effect of NLRP3 low
expression was tested by using Western blot; results indicated
that both si-NLRP3 and inhibitor could reduce the expression
of NLRP3 (Figure 4F and 4G). Subsequently, the NLRP3 low-
expressing A549 cells were co-cultured with Jurkat cells, and
we assayed cell survival after irradiation and found that the
LDR + HDR group and the HDR group had no significant
difference in cell survival (P> .05) (Figure 4H and 41). Further
detected pyroptosis-related proteins indicated that after si-
NLRP3 or inhibitor treatment, the LDR + HDR group no
longer had higher expression of pyroptosis-related proteins
than the HDR group (Figure 4J and 4K). In summary, our
study suggested that pyroptosis was a mechanism by which
LDR enhances the tumor-suppressive effect of HDR.

LDR Pre-irradiation Enhances DNA Damage Caused
by HDR Irradiation and Inhibits DNA Damage Repair

Radiation kills tumor cells mainly by causing DSBs.'* The
organism has 2 main repair pathways, HR and NHEJ, to repair
the damaged cells.'” Therefore, we first assayed the expres-
sion of YH2AX, a double-strand breakage marker, by using
immunofluorescence, and found that under co-culture con-
ditions, the focus of yYH2AX was dramatically increased in the
LDR+HDR and HDR groups after irradiation, and the
LDR-+HDR group had more focus than the HDR group (P <
.01) (Figure 5A and 5B). Detection of the damage repair
marker 53BP1 showed that the LDR+HDR group had less
focus than the HDR group (P < .01) (Figure 5C and 5D).
Subsequently, we assayed the mRNA expression of HR repair
pathway key molecules BRCA1 and Rad51 and NHEJ pathway
key molecules Ku80, DNA-PKcs, and XRCC4 in A549 cells
after irradiation under co-culture conditions. As expected, the
LDR+HDR group had lower levels of mRNA expression for all
5 molecules than the HDR group (Figure SE-51). Further testing

of'the 5 molecules’ protein expression found that the protein
and mRNA were consistent (Figure 5J). Thus, these results
indicated that under co-culture conditions, LDR pre-
irradiation enhanced HDR-induced DNA damage and in-
hibited DNA damage repair.

LDR No Longer Enhances the Inhibitory Effect of HDR
on Tumor Cells After the Treatment of A549 Cells
With DNA-PKcs Agonist

VND3207 was known to increase the expression of DNA-
PKcs.>' To further determine DNA damage repair as the
mechanism by which LDR enhances the tumor suppressive
effect of HDR, A549 cells were treated with 40 uM of
VND3207 and then co-cultured with Jurkat cells. Cell via-
bility was measured after irradiation, and the results showed
that cell viability was higher in the LDR+HDR group com-
pared to the HDR group (P < .05) (Figure 6A). Results of
apoptosis showed that the rate of apoptosis was lower in the
LDR+HDR group than in the HDR group (P <.01) (Figure 6B
and 6C). Afterward, we assayed the mRNA expression of
DNA damage repair-related molecules in A549 cells after
irradiation. The results indicated that the LDR+HDR group
had higher mRNA expression of BRCA1, Ku80, DNA-PKcs,
and XRCC4 than the HDR group (Figure 6E-6H). The mRNA
expression of Rad51 was not significantly different between
the 2 groups (Figure 6D). Similarly, the expression of DNA
damage repair-related molecules Ku80, DNA-PKcs and
XRCC4 protein revealed that the LDR + HDR group showed
higher expression than the HDR group (Figure 6I). The effect
of LDR pre-irradiation was lost after increasing the expression
of DNA-PKcs by using VND3207. Altogether, our findings
suggest that DNA damage repair has a major role in LDR-
enhanced tumor suppressive effect of HDR.

LDR Local Irradiation Can Enhance the Tumor
Inhibition Effect of HDR In Vivo

After that, we established a tumor-bearing nude mouse model
to verify the results of in vitro experiments. Different doses of
irradiation were delivered to mice. After irradiation, the tumor
size was assessed every 3 days. After 21 days of radiation
treatment, the mice were killed and their tumors were re-
moved. The size of the tumor is shown in Figure 7A and 7B.
Tumors were the smallest in the LDR+HDR group, followed
by the HDR group. The same is true for tumor volume results
(Figure 7C). Subsequently, we detected mRNA and protein
expression of DNA damage-repair-related molecules in tumor
tissues, as well as the expression of pyroptosis-related mo-
lecular proteins, and the results were similar to those from
in vitro experiments (Figure 7D-71). Through these results, we
are more certain that LDR can enhance the tumor suppressive
effect of HDR and that DNA damage repair plays an
important role.
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Discussion

Radiotherapy is a part of the standard therapies for clinical
cancer treatment, but the influence of radioresistance on tumor
cells makes radiotherapy not achieve the expected effect.
Therefore, research for ways to improve the effectiveness of
radiotherapy has been a hot topic. Previous studies on LDR
have focused on hormesis, adaptive responses, and bystander
effects.’® However, no report has been conducted on the tumor
suppressive effect of HDR enhanced by LDR. Our current
study demonstrates that when tumor cells and immune cells
coexist, LDR could enhance the tumor inhibition of HDR and
the mechanisms are related to DNA damage repair and py-
roptosis. This study may provide a reference for improving the
efficacy of tumor radiotherapy.

Previous studies have demonstrated that breast cancer
MCF-7 cell growth was inhibited and radiosensitivity was
enhanced in the presence of HSF fibroblasts.> Under the
conditions of macrophage coexistence with colon cancer RKO
cells, macrophages sensitize RKO to radiation-induced apo-
ptosis.>* In addition, another study has also demonstrated that
LDR can stimulate the bone marrow-derived mesenchymal
stromal cells (BM-MSCs) to secrete some cytokines that in-
hibit the proliferation of colorectal cancer (CRC) cells and
induce their apoptosis.”® Interestingly, in our earliest study,
LDR had no effect on the tumor inhibition effect of HDR when
irradiated with tumor cells alone. Considering the hormesis
and the complex tumor microenvironment, we established a
tumor cell and immune cell co-culture model to better simulate
the environment of tumor radiotherapy. Subsequently, we
found that under co-culture conditions, LDR enhanced the
proliferation inhibition of HDR and increased its induction of
apoptosis in tumor cells. Cells are most sensitive to radiation
in the G2/M phase of the cell cycle.”® Importantly, in our
study, radiation also induced G2 phase cell cycle arrest, and
LDR made the HDR-induced G2 phase arrest more
pronounced.

The mechanism by which LDR pre-irradiation enhances
the inhibitory effect of HDR on tumor cells under co-culture
conditions has not been reported. Therefore, we carried out
RNA sequencing to clarify the mechanism of this study. The
results of the RNA sequence revealed that LDR pre-
irradiation could increase HDR-induced expression of
pyroptosis-related genes and decrease the expression of
DNA damage repair-related genes (Figure 3E). By using
GO analysis, we found that the biological processes of
differential gene enrichment in the LDR+HDR and HDR
groups contained double-strand break repair, activation of
the immune response, and regulation of inflammatory re-
sponse. HR*® and NHEJ?’ are the main pathways for re-
pairing DNA double-strand breaks. In addition, it has been
documented that pyroptotic cells release pro-inflammatory
factors, which cause inflammatory responses and immune
responses.”® Based on the RNA-sequence results, we
speculated that pyroptosis and DNA damage repair were the

mechanisms by which LDR pre-irradiation enhanced the
tumor cell inhibitory effect of HDR.

Pyroptosis is a novel type of cell death. An increasing
number of studies are proving the great potential of py-
roptosis in cancer treatment.>’**! NLRP3-GSDMD-cas-
pase-1 has been shown to be one of the pathways through
which pyroptosis occurs and can release inflammatory
factors such as IL-18 and IL-1p.** However, there are no
reports that LDR can enhance radiation-induced pyroptosis.
So, is LDR able to enhance HDR-induced pyroptosis? Is
there an important role for pyroptosis in the enhanced tumor
suppressive effect of HDR by LDR? With these questions in
mind, we conducted this study. We found that HDR induced
the onset of pyroptosis under co-culture conditions, as
evidenced by protein expression increases of NLRP3,
GSDMD, and cleaved-caspase-1 as well as IL-18 and IL-1
secretion. Subsequently, we demonstrate that LDR pre-
irradiation can enhance HDR-induced pyroptosis. More
intriguingly, HDR also induced the secretion of IL-32 and
TNF-a, which can induce the onset of pyroptosis,**** and
LDR pre-irradiation also enhanced the HDR-induced se-
cretion of both. Most importantly, we proved that after
NLRP3 expression was reduced by using NLRP3-siRNA or
NLRP3 inhibitors, pyroptosis-related protein expression
was no longer increased after irradiation, and LDR no
longer enhanced the proliferation inhibition of tumor cells
by HDR, which further confirmed that pyroptosis is the
mechanism by which LDR enhances the tumor-suppressive
effect of HDR.

DNA damage repair is a major reason why tumor cells are
radioresistant. yYH2AX is a marker of DSBs and can be used to
monitor DNA damage after irradiation.* 53BP1 can regulate
the repair of DSBs.*® DNA damage is mainly repaired through
2 pathways, HR and NHEJ. BRCA1 and Rad51 are important
players in the HR repair pathway, and DNA-PKcs, Ku80, and
XRCC4 play important roles in the NHEJ repair pathway.*”*®
A previous study has shown that the sensitivity of NSCLC
cells to X-rays was enhanced by eurycomalactone and can
inhibit X-ray-induced DNA damage repair.*’ In the previous
study, we demonstrated that under co-culture conditions, LDR
can enhance the tumor inhibition effect of HDR. Based on
these studies, we hypothesized that DNA damage repair has a
mechanistic role in our study. As expected, our data showed
that LDR pre-irradiation enhanced HDR-induced expression
of YH2AX and reduced HDR-induced expressions of BRCA1,
Rad51, Ku80, DNA-PKcs, and XRCC4. It was demonstrated
that under co-culture conditions, LDR enhances HDR-
induced DNA damage and inhibits DNA damage repair. In
vivo experiments further demonstrated that LDR could en-
hance the tumor inhibition effect of HDR, and DNA damage
repair was inhibited. VND3207 can enhance the expression of
DNA-PKcs.?! More importantly, our results showed that LDR
no longer enhanced the inhibition of HDR on tumor cells after
increasing the expression of DNA-PKcs by using VND3207.
Therefore, these results suggest that DNA damage repair is the
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some pro-inflammatory factors, causing the onset of pyroptosis, and LDR pre-irradiation can enhance HDR-induced pyroptosis, ultimately

leading to proliferation inhibition of tumor cells.

mechanism by which LDR enhances the tumor suppressive
effect of HDR.

There are some limitations of our study that should be
noted. No additional enhancement of the tumor-suppressive
effect of HDR irradiation was observed following LDR pre-
irradiation in single tumor cells (lung, breast, and cervical
cancers) without co-culture. A549 cells were specifically
chosen for co-culture modeling in subsequent studies due to
their representation of a classical in vitro model for non-small
cell lung cancer and their resistance to radiation as a type of
lung adenocarcinoma cell.’® Future research could focus on
investigating more radiation-resistant tumor cell types.

Conclusion

Our current study demonstrates that when tumor cells coexist
with immune cells, LDR pre-irradiation enhances HDR-
induced G2 phase cell cycle arrest, increases HDR-induced
DNA damage, and inhibits DNA damage repair after HDR
irradiation, leading to an increase in HDR-induced apoptosis.
On the other way, radiation promotes the secretion of some
pro-inflammatory factors, causing the onset of pyroptosis, and
LDR pre-irradiation upregulates the HDR-induced cell py-
roptosis which ultimately results in the proliferation inhibition
of tumor cells (Figure 8).
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