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M.; Kaščák, L’. Modeling of Friction

Phenomena of Ti-6Al-4V Sheets Based

on Backward Elimination Regression

and Multi-Layer Artificial Neural

Networks. Materials 2021, 14, 2570.

https://doi.org/10.3390/ma14102570

Academic Editor: Chuang Dong

Received: 20 April 2021

Accepted: 14 May 2021

Published: 15 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Materials Forming and Processing, Rzeszow University of Technology, al. Powst. Warszawy 8,
35-959 Rzeszów, Poland

2 Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology,
Rzeszow University of Technology, al. Powst. Warszawy 12, 35-959 Rzeszów, Poland; d547@stud.prz.edu.pl

3 Faculty of Mechanical Engineering, Institute of Technology and Material Engineering,
Technical University of Košice, Mäsiarska 74, 040 01 Košice, Slovakia; lubos.kascak@tuke.sk

* Correspondence: tomtrz@prz.edu.pl

Abstract: This paper presents the application of multi-layer artificial neural networks (ANNs) and
backward elimination regression for the prediction of values of the coefficient of friction (COF) of
Ti-6Al-4V titanium alloy sheets. The results of the strip drawing test were used as data for the training
networks. The strip drawing test was carried out under conditions of variable load and variable
friction. Selected types of synthetic oils and environmentally friendly bio-degradable lubricants were
used in the tests. ANN models were conducted for different network architectures and training
methods: the quasi-Newton, Levenberg-Marquardt and back propagation. The values of root mean
square (RMS) error and determination coefficient were adopted as evaluation criteria for ANNs.
The minimum value of the RMS error for the training set (RMS = 0.0982) and the validation set
(RMS = 0.1493) with the highest value of correlation coefficient (R2 = 0.91) was observed for a multi-
layer network with eight neurons in the hidden layer trained using the quasi-Newton algorithm.
As a result of the non-linear relationship between clamping and friction force, the value of the COF
decreased with increasing load. The regression model F-value of 22.13 implies that the model with
R2 = 0.6975 is significant. There is only a 0.01% chance that an F-value this large could occur due
to noise.

Keywords: coefficient of friction; friction; sheet metal forming; strip drawing test

1. Introduction

Sheet metal forming (SMF) is a process by which sheet metal parts are subjected to
geometric change without material reduction. The process creates a force that causes the
material to deform. Many physicochemical processes take place during forming which
play a key role in the quality of the product obtained, the tooling lifetime or the accuracy
of the shape of the formed product [1–3]. There are phenomena in the contact zone that
are impacted by many variables, such as the macro- and microgeometry of the contact
surfaces, pressure, processing temperature, type and viscosity of the lubrication used, die
structure, topography and physicochemical phenomena of the contact surfaces, and load
dynamics [4–6].

To determine the effects of friction in SMF, it is necessary to determine the coefficient of
friction between the interacting elements [7,8]. In SMF, one cannot limit the description of
the friction phenomenon to the Coulomb model, because there are phenomena such as adhe-
sion and plowing [9,10]. The coefficient of friction is primarily determined by the roughness
of the surface as well as the structure of the surface layer and its composition [11,12]. The
value of the coefficient of friction (COF) is a variable value, and it depends on, among
other factors, the pressure force applied [13]. In the case of the Grade 5 titanium alloy
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(Ti-6Al-4V) studied in this paper, the tribological properties of this material are not only
affected by the processing method, but also by the distribution of the mixed crystal system
α and β [14] and the content of the alloying elements aluminum and vanadium [15,16].
However, titanium and its alloys are characterized by poor tribological behavior in terms
of a strong tendency to seize [17], severe adhesive wear [18,19], high and unstable friction,
low resistance to abrasion [20,21] and susceptibility to fretting wear [22,23].

To protect the environment, the use of mineral oil-based lubricants should be limited
due to their non-biodegradable nature and inherent toxicity. After forming, mineral oils
must be eliminated before painting, which generates contaminated wastes through the
use of volatile organic solvents [24]. Vegetable oil-based lubricants can be an ecological
alternative to commonly used synthetic oils. Vegetable oils are non-toxic biodegradable
substances, and due to the presence of long chains of fatty acids, they ensure good lubri-
cation under boundary friction conditions [25,26]. They also show most of the properties
required for lubricants destined for cold metal forming, such as good lubricity and a high
viscosity index [27,28].

Multivariate regression analysis has also found many applications in the tribology of
materials [29]. The significant parameters making a major contribution to the coefficient
of friction of titanium carbide (TiC) reinforced metal matrix composites were identified
using Analysis of variance (ANOVA) [30]. Evin et al. [31] modelled the COF of DC05
steel sheet using linear regression. However, the results obtained show that the analyti-
cal model appears to be more suitable than the regression model for the determination
of the COF. Lüchinger [32] successfully determined an optimal friction model for bulk
metal forming using stepwise nonlinear regression. Kumar and Kumaraswamidhas [33]
have applied ANOVA to obtain the most significant parameter of AA 6061 composites
subjected to the pin-on-disk tribological test. Wahyudi et al. [34] used ANOVA analysis
at a standard significance level of α = 0.05 to analyse the COF of ultra-high molecular
weight polyethylene determined in the pin-on-disc test. Trivedi and Bhatt [35] studied
the tribological parameters of the cylinder liner/piston ring under sliding contact in the
presence of lubricant. It was found that the wear character of the worn-out surface was
significantly dependent on the load condition. Ambigai and Prabhu [36] conducted an
ANOVA to study the significance of aluminum alloy composite parameters affecting the
wear characteristics. The analysis allows one to find the relationship between normal
load, sliding distance and the COF. Kalel et al. [37] used ANOVA to study the tribological
behaviour of 17-4 PH stainless steel under different friction test conditions, i.e., duration of
sliding, load and speed.

In recent years, in addition to the currently used static tests, methods of analysis
that use artificial neural networks (ANNs) have gained great popularity [38,39]. They are
successfully used to analyse technological processes and phenomena occurring within
them. Eren et al. [40] used artificial neural networks to describe the friction stir welding
process. Yan and Chen [41] used adaptive control for the optimization of the free forging
process, where neural networks were used to modify proportional–integral–derivative
controller settings and increase machining accuracy. Zhu et al. [42] used deep neural
networks to describe the mechanical properties of steel depending on the alloy additives
used and heat treatment parameters. The comparative study by Tyagi et al. [43] showed
that the predictive ability of ANN is more efficient and fits in better with the experimental
values than the response surface methodology model.

In recent years, an increasing number of tribological studies have turned to the use
of ANNs [44,45]. Bhaumik et al. [46] used the ANN approach to find a biolubricant with
optimised characteristics. Humulnicu et al. [47] analysed the use of ANNs to design
lubricants with significantly lower COF. They considered the optimization of mixtures
of diesel oil with rapeseed and sunflower oils for use in diesel engines. Boidi et al. [48]
employed radial basis function neural networks to predict the COF in lubricated contacts
with textured surfaces. It was shown that hardy multiquadratic radial basis functions
provided satisfactory overall correlation with the experimental results. Trzepieciński and
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Lemu [49] applied genetic algorithms to optimize neural networks for the tribological
strip drawing test. The results obtained have demonstrated that a genetic algorithm can
successfully be applied to optimizing the training set to agree with experimental data. The
use of ANNs in tribology has been discussed by Rosenkranz et al. [50] and Argatov [51].

The advantage of neural networks is the ability to predict the output signal based on
the input data. This article presents the application of backward elimination regression
and multi-layer ANNs for the prediction of the COF of Ti-6Al-4V titanium alloy sheets.
As training data, use was made of the results of strip drawing tests conducted for dif-
ferent kinds of synthetic and biodegradable vegetable oil-based lubricants and variable
load. It was found by experiment that as a result of the non-linear relationship between
clamping and friction force, the value of the COF decreased with increasing load. The
ANNs performance has been assessed based on different training algorithms, i.e., back
propagation, the quasi-Newton and Levenberg-Marquardt. The values of root mean square
(RMS) error and determination coefficient (R2) were adopted as evaluation criteria for
ANNs. The minimum value of the RMS error with the highest value of the determination
coefficient was observed for a multi-layer ANN with eight neurons in the hidden layer
trained using the quasi-Newton algorithm. The analysis of response surfaces allowed
the relationship between the input parameters and the COF to be found. Increasing the
load at constant kinematic viscosity of the lubricant reduces the value of the COF. The
lowest value of the COF during the friction tests of sheets was provided by oil with a low
density and at the same time high kinematic viscosity. High values of COF were visible
during friction occurring when using oil with both high-density and, at the same time,
high kinematic viscosity.

2. Materials and Methods
2.1. Material

Ti-6Al-4V titanium alloy sheets with a thickness of 0.5 mm were used as test material.
This two-phase α + β alloy is used primarily in the aviation, space, automotive and
medicine industries. Its mechanical properties are shaped by heat and plastic treatment.
Table A1 in Appendix A shows the chemical composition of Ti-6Al-4V material. The
Ti-6Al-4V alloy is characterized by good plastic and strength properties. It has the same
strength as steel, but its density is about 40% lower. It is easily cold worked and is resistant
to corrosion at room temperature as well as industrial temperature. The Ti-6Al-4V alloy is
used in the production of aircraft engines and airframe support structures.

The roughness parameters of the sheet surface as-received were measured using the
Bruker Contour GT 3D optical measuring tool (Billerica, MA, USA) in accordance with EN
ISO 25178. The basic parameters of surface roughness include: the average height of the
area selected Sa = 0.23 µm, maximum height of the area selected Sz = 2.03 µm, spatial total
height St = 2.24 µm, maximum peak height of the area selected Sp = 1.14 µm, maximum
valley depth of the area selected Sv = 1.10 µm.

2.2. Strip DrawingTest

Figure 1 shows a friction simulator that was mounted on a Zwick/Roell Z100 testing
machine (Ulm, Germany). The device frame was mounted in the lower holder of the
machine, while flat sheets with a width of w = 18 mm were used as the test material. In
the test, strips were pulled between fixed cylindrical counter-samples. A friction simulator
frame was mounted in the lower bracket of the machine frame, and one of the ends of the
sheet metal is mounted in the upper bracket of the machine. The pressure of the rollers was
exerted on the sample through a Teflon insert and a working spring. In the test, the spring
pressure was achieved by tightening the bolt. Six levels of load between 50 and 200 N were
investigated. An average surface roughness of the set of rollers that was used for the test
was Ra = 0.32 µm.
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Figure 1. Schematic diagram of friction simulator: 1—bottom grip, 2—base, 3—upper grip, 4—specimen, 5—working
rollers, 6—bolt, 7—mandrel, 8—fixing pin, 9—teflon insert, 10—spring.

The value of the COF was estimated for stabilized ranges of the friction force (exclud-
ing the range of the increasing the load force to a specific level (50, 80, 110, 140, 170 and
200 N) according to the following equation

µ =
FT

2FC
(1)

where Fc is the clamping force and Ft is the friction force.
The tests for the specific experiment were repeated three times and the mean COF

value was determined. Plan of experiments is listed in Tables A2–A10. The detailed
procedure for the determination of the COF using the friction simulator shown in Figure 1
can be found in a recent paper by the authors [52].

Before the friction tests, the samples and counter-samples were cleaned with acetone.
Friction tests were performed under lubricated conditions. In these conditions, five kinds
of vegetable oil: palm oil (Ölmühle Solling GmbH, Boffzen, Germany, expiration date:
8 June 2021), olive oil (Sovena Espana SA, Sevilla, Spain, expiration date: 16 September
2021), rapeseed oil (Schalk Mühle GmbH & Co KG, Steiermark, Austria, expiration date
22 April 2021), sunflower oil (SC Argus SA, Constanta, Romania, expiration date: 2 July,
2021) and soybean oil (Basso Fedele e figli s.r.l., Avellino, Italy, expiration date: 23 July
2021) were used. Moreover, and four types of synthetic oil (L-AN 46, L-HL 46, SAE 10W-40,
SAE 75W-85) were used. Oils were selected based on the suggestions included in the
literature [24,53,54]. The selection also took into account the low cost of these oils and their
general availability, and the fact that interest had been shown in their potential for reducing
the friction coefficient of titanium sheets [55,56]. Table 1 presents the basic physico-chemical
properties of the tested oils.
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Table 1. Basic physico-chemical properties of tested oils [57].

Oil Type Density ρ, kg/m3 Kinematic Viscosity
ηk, mm2/s Flash Point Tf, ◦C

olive oil 890 4.52 179
sunflower oil 883 4.45 185

palm oil 875 5.72 165
soybean oil 891 4.05 176
rapeseed oil 880 4.45 62

engine oil SAE
10W-40 872 105.3 220

machine oil L-AN 46 875 43.9 232
gear oil SAE 75W-85 837 64.6 202

hydraulic oil L-HL 46 877 44.2 227

2.3. Regression Model

Quadratic multivariate analysis of variance was used as a tool for determining the
relationship between the friction conditions and the value of the COF. The interaction
between all factors were fitted with a polynomial that accurately expresses the relationships
between all input factors and response values.

When selecting the factors affecting COF, one should take into account the require-
ments related to the construction of the regression model (RM) describing their impact.
These requirements come down to the selection of factors that significantly affect the COF,
and at the same time are independent of each other. In the RM analysis the following
factors were included: kinematic viscosity, oil density and load (Table 2).

Table 2. Factors and levels for ANOVA analysis.

Factor Name Unit Type Minimum Maximum Coded
Low

Coded
High Mean Standard

Deviation

A Density kg/m3 Numeric 837 891 −1↔ 837 +1↔ 891 875.22 15.00

B Kinematic
viscosity mm2/s Numeric 4.05 105.3 −1↔

4.05
+1↔
105.3 31.24 34.42

C Load N Numeric 50 200 −1↔ 50 +1↔ 200 125 51.72

In general, numeric variables have ranges that vary widely. During ANOVA, the
differences in the range of individual variables may cause variables with larger ranges
to have a greater impact on the COF value. The input data were normalized using the
min-max function, which transforms the input data values into an interval (Nmin, Nmax),
according to Equation (2):

D =
(D−min)
max−min

(Nmax − Nmin) + Nmin (2)

where D—value of the variable subjected to normalization and (min, max) is the interval in
which the original data are contained.

The explained variable was the value of the COF. The minimum and maximum values
of the new interval are designated as Coded Low and Coded High, respectively. The coded
values for each input variable are listed in Tables 3–5.

Table 3. Coded values of the densities of the lubricants.

Real value 837 872 875 877 880 883 890 891

Coded value −1 0.296 0.407 0.481 0.592 0.703 0.963 1
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Table 4. Coded values of the kinematic viscosity of the lubricants.

Real value 4.05 4.45 4.52 5.72 44.2 43.9 64.6 105.3

Coded value −1 −0.992 −0.990 −0.967 −0.207 −0.212 0.196 1

Table 5. Coded values of the load.

Real value 50 80 110 140 170 200

Coded value −1 −0.6 −0.2 0.2 0.6 1

Tests for significance have been conducted on individual model coefficients. In back-
ward elimination method, we start with a model in which all independent variables are
present. At each step, the independent variable with the highest probability corresponding
to Fisher’s parameter F is removed from the model if the probability (p-value) is sufficiently
high (in this research not less than 0.10). In other words, it involves the determination of
the p-value or probability value, usually relating the risk of falsely rejecting a given hy-
pothesis [58]. The procedure is finished when there are no more variables in the regression
equation that meet the removal criteria.

The test for significance of the regression model is performed by calculating the F-ratio,
which is the ratio between the regression mean square and the mean square error [58]. The
F-ratio is the ratio of the variance due to the effect of a factor and the variance due to the
error term. This ratio is used to measure the significance of the RM under investigation with
respect to the variance of all the terms included in the error term at the desired significance
level α = 0.05.

A popular method of identifying a typical observation in multiple regression analysis
is the Cook’s distance method, which compares the degree of fit to the data for two models:
the full model, taking into account all observations from the set of observations, and for
the model built on the data set in which the one, selected i-th observation, is omitted [59]:

Di =
∑n

j=1

(
Ŷj − Ŷj(i)

)
m·MSE

(3)

where m is the number of parameters in the model, MSE is the mean square error of the
model, Ŷj is the predicted value of the Y variable, j is case number, Ŷj(i) is the predicted
value of the Y variable in the model built on the set from which the observation number i
was temporarily excluded.

DFFITS is diagnostic meant to show how influential a point is in a statistical regression.
Figure 2 shows that all the points in the statistical regression are influential because they
are located within the range −1.34164 and +1.34164.

2.4. ANN Modeling

One-way multi-layer networks were used for data analysis. The values of nominal
pressure, density of lubricants and the viscosity of lubricants were selected as input param-
eters to the network. On the other hand, the value of COF was expected at the output of the
network. The selection of the structure of the neural network depends on the complexity
of the problem, in the form of the number of explanatory (input) and explained (output)
variables and the size of the training set. Due to the lack of clear guidelines for building a
neural network architecture for a specific problem, the article tested the prediction abilities
of three neural networks with one hidden layer and a different number of neurons in this
layer. Statistica program release 4.0 E Neural Networks (Statsoft Inc., Tulsa, OK, USA) [60]
was used to build and analyse ANNs.
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The network learning process was carried out using three algorithms, the BP, (qN)
and (LM) algorithms. The input data were normalized using the min-max function, which
transforms the input data values into an interval (Nmin, Nmax), according to Equation (2).

In the investigations the ANNs were trained based on the results of experimental
tests. Overall 15% of the data included in the training set was assigned to the verification
set. Data from this set are used to provide independent control of the convergence of the
learning process. As a result, of the learning process, the trained neural network acquires
the ability to predict the value of the output signal based on the sequence of input signals
and the corresponding output signals presented during the learning process. The task
of the training algorithm is to select threshold values and weights of neurons in order to
minimize the global error of the ANN.

On the basis of the literature analysis [61–63], two parameters were adopted as net-
work quality indicators, the root mean square (RMS) error (Equation (4)) and the determi-
nation coefficient R2 (Equation (5)):

RMS =

√
1
n

n

∑
i=1

∣∣aj − pj
∣∣2 (4)

R2 = 1−
(

∑n
i=1
(
aj − pj

)2

∑n
i=1
(

pj
)2

)
(5)

where a is the actual value, p is the predicted value, and n is the number of training sets.
Network training is a key stage in gaining generalization capabilities from a neural

network. There are three main training algorithms of multi-layer ANNs: back propagation
(BP), the quasi Newton (qN) and the Levenberg-Marquardt (LM).

The back propagation algorithm definitely dominates among the methods of training
unidirectional multi-layer networks. The name of the method reflects the principle of
its operation, which consists of “transferring” the error committed by the network in
the direction from the output layer to the input layer (i.e., backwards to the direction of
information flow).

The Levenberg-Marquardt algorithm is a fast-convergent algorithm. Its computational
complexity is not very large and its implementation is simple [64]. The work principle of
the LM algorithm is based on the least-squares method [65]. The LM algorithm, also known
as the damped least-squares method, works without computing the exact value of the
Hessian matrix of the error function. The LM regularization method consists of replacing
the Hessian matrix with its approximation based on gradient calculations with a properly
selected regularization factor. The algorithm of the LM method approximates the Hessian
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of the error function by means of an appropriate transformation of the residual matrix and
Jacobian. Jacobians are used to determine the sensitivity of the network outputs [66].

In the quasi-Newton method, the Hessian of the minimized error function is approxi-
mated by analyzing successive gradient vectors. The variable-metric method assumes that
the error function can be approximated by a quadratic function in the neighborhood of the
local optimum. The fact that the Hessian satisfies the condition of positive definiteness
at each step of the ANN’s training makes the qN method one of the best methods for
optimizing multivariable functions. Due to the high computational complexity related to
the necessity to calculate n2 elements of Hessian, this method is recommended for relatively
not very complex neural networks.

3. Results and Discussion
3.1. Strip Drawing Test

The results of the strip drawing test are listed in Tables A2–A10. Increasing the load
during the strip drawing test causes a clear tendency to reduce the coefficient of friction
(Figure 3). Reducing the value of the COF with increasing load can be explained by the
non-linear relationship between clamping and friction forces. Beyond a range of loads
analyzed, the relationship between friction force and clamping force is not proportional.
In the SMF, the contact area between the sheet metal with relatively low hardness and the
harder tool material plays an important role in the tribological phenomena in the contact
interface. In the strip drawing test the contact area between the cylindrical countersamples
and the strip specimen increases non-linearly with increased load. This conclusion was also
drawn by Kirkhorn et al. [67]. Despite the above-mentioned difficulties in the interpretation
of the COF, the strip drawing test is a primary method for determination of the COF in
SMF [52,68–70]. The highest value of COF in terms of the loads considered was observed
during lubrication with L-HL 46 hydraulic oil. On the other hand, rapeseed and palm oils
showed the worst lubricating properties among the vegetable oils in the entire range of
loads considered. Apart from the load of 80 N, olive oil is the lubricant which provided
the lowest value of COF during the friction process. Several oils present different local
trends of COF changes with load. For example, gear oil SAE 75W-85 only showed an
increase in COF with increasing pressure in the pressure range 50–110 N. There was a clear
reduction in COF with a further increase in load. It is well known that the friction process
under lubricated conditions depends on the load, the volume of the valleys between the
load-bearing plastically deformed asperities also known as “oil pockets”, the lubricant
density and its viscosity.

It very hard to provide an overall interpretation of the interactional effect of load,
kinematic viscosity, and density of lubricants on the value of the COF. For this purpose, two
methods, classical analysis of variance and artificial neural networks, were used. Based on
the training process, ANNs enable one to analyse multidimensional problems with a large
number of independent variables. Neural networks do not require knowledge of the nature
of the relationships between the variables. Based on the numerical values entered, they are
able to generalize the interactions between the input parameters and the output variable.
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3.2. ANOVA Analysis

The multivariant quadratic regression was used to determine the polynomial quadratic
regression model of the influence of independent variables A, B, and C on the value of COF.

The data for the value of COF obtained in each run was analyzed using the software
Design-Expert®10.0 and fitted into multiple non-linear regression models proposed by the
following equation (in the coded factor) for the value of COF:

COF = 0.0219A− 0.0958B− 0.0179C + 0.2277AB + 0.1086A2 + 0.2188 (6)

The terms BC and AC were eliminated based on the backward elimination regression
for a p-value greater than 0.1. The elimination of the terms AC and BC improved the
coefficient of determination. Therefore, the ANOVA revealed that the products of AC and
BC are not statistically significant in the regression equation.

As far as the coded factors are concerned, Equation (6) can be used to make predictions
about the response for given levels of each factor. According to Table 3, high levels of the
factors in Equation (6) are coded as +1 and low levels are coded as −1. In relation to actual
factors, Equation (6) can be used to make predictions about the response for actual levels
of each factor.

The results of the ANOVA for the response surface reduced quadratic model are listed
in Table 6. The model F-value of 22.13 implies the model is significant. There is only a 0.01%
chance that an F-value this large could occur due to noise. p-values less than 0.0500 indicate
the model terms are significant. In this case, A, B, C, AB, A2 are significant model terms.
Values greater than 0.1000 indicate the model terms are not significant.

Moreover evaluating the significance of the backward elimination regression model,
the adequacy of the models was evaluated by applying the lack-of-fit test. The lack-of-fit
test measured the adequacy of the different models based on response surface analysis [71].
The lack-of-fit F-value of 0.33 implies the lack of fit is not significant relative to pure error.
There is a 98.44% chance that a lack of fit F-value this large could occur due to noise.

The total R-square of the regression model is equal to R2 = 0.69 (Table 7). The predicted
R2 of 0.6216 is in reasonable agreement with the adjusted R2 of 0.6660; i.e., the difference
is less than 0.2. The adequacy precision parameter measures the signal to noise ratio.
A ratio greater than 4 is desirable. An adequacy precision ratio of 17.560 indicates an
adequate signal.
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Table 6. Results of ANOVA for the response surface reduced quadratic model.

Source Sum of Squares Degrees of Freedom Mean Square F-Value p-Value Meaning

Model 0.0185 5 0.0037 22.13 <0.0001 significant
A—Density 0.0012 1 0.0012 6.90 0.0115 -

B—Kinematic viscosity 0.0064 1 0.0064 38.48 <0.0001 -
C—Load 0.0081 1 0.0081 48.53 <0.0001 -

AB 0.0052 1 0.0052 30.83 <0.0001 -
A2 0.0034 1 0.0034 20.55 <0.0001 -

Residual 0.0080 48 0.0002 - - -
Lack of Fit 0.0056 42 0.0001 0.3329 0.9844 not significant
Pure Error 0.0024 6 0.0004 - - -

Correlation Total 0.0265 53 - - - -

Table 7. Fit statistics of the regression model.

Standard Deviation 0.0129 R2 0.6975
Mean 0.2332 Adjusted R2 0.6660

Coefficient of Variation % 5.54 Predicted R2 0.6216
Adequacy Precision 17.5598

The RM predicted values were obtained by inserting the values of independent vari-
ables into the regression model. The response values were compared with the experimental
values. The actual values were relatively close to the predicted straight line regression
(Figure 4a). The proportional distribution of data around this line in the entire range of
COF changes proves a good correlation between the predicted and actual values. The fact
that residuals generally fall on a straight line (Figure 5a,b) implies that the model errors
are distributed normally [58]. The results of the diagnostic analysis are supplemented by a
normal probability plot of residuals arranged along a straight line (Figure 4b).
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Figure 6 shows the response surfaces and their corresponding contours of the com-
bined effect of kinematic viscosity and density of lubricants (Figure 6a), kinematic viscosity
and load (Figure 6b), and lubricant density and load (Figure 6c) on COF. The effect of
kinematic viscosity and oil density depends on the effect of the interaction between these
parameters (Figure 6a). The lowest value of COF during friction tests of sheets made of
Ti-6Al-4V titanium alloy was provided by oil with a low density and at the same time,
high kinematic viscosity. The most unfavorable friction conditions occur during friction
occurring when using oil with high-density and, at the same time, high kinematic viscosity.
Similarly high values of COF are visible for lubrication with oil of low density and at the
same time low kinematic viscosity.

Increasing the load at a specific kinematic viscosity of oil reduces the value of COF
(Figure 6b). A similar conclusion can be seen for the interaction between load and oil
density (Figure 6c). As the force exerted by the load increases, the value of COF decreases.
The other problem which makes the interpretation of the friction phenomenon difficult
in the SDT is the effect of the real area of the contact surface on the COF in SMF. In metal
forming processes the hardness of the workpiece is much less than the hardness of the
tool surfaces. Therefore, the mechanism of plowing of asperities plays a dominant role,
especially under high pressure conditions. In these conditions, the classical Amontons-
Coulomb law is not always satisfied. Therefore, if the relationship between the clamping
and friction forces changes, the COF determined from Equation (1) also varies. It is also
clear from Figure 6b that a reduction of the kinematic viscosity of the oil leads to an increase
in the COF at a specific load.

Viscosity is a property of fluids and plastic solids that characterizes their internal
friction resulting from the moving of fluid layers relative to each other. If the viscosity is
too low, the lubricant does not provide a sufficient “cushion” between the sliding surfaces.
This can lead to problems such as increased friction and wear as well as increased heat
generation and oxidation of the material. Too high a viscosity value can lead to insufficient
oil flow in their inner layers and an increase in frictional resistance, which in turn increases
the temperature in the region of surface asperities.
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Sheets made of Ti-6Al-4V alloy are highly susceptible to galling. By increasing the load
of the sample, the adhesion mechanism becomes less important, while galling and plowing
mechanisms taking on a dominant role. At high pressures, the lubricant is not able to lower
the COF of metallic sheets effectively, which are therefore susceptible to galling. However,
the lowest values of COF were observed at the highest pressures and at the same time with
high kinematic viscosity of the lubricant. Under these conditions, the lubricant was able to
produce a mixed lubrication regime in which the friction surfaces are largely separated by
a layer of lubricant [72]. A prerequisite for the formation of a mixed lubrication regime on
a surface, according to the Stribeck curve, is the presence on the surface of (i) oil pockets
which form a large volume, for example, by a roughening mechanism, (ii) lubrication with
a high-viscosity lubricant and (iii) high pressures.

Cook’s distance is a measure of the effect of a given case on the regression equation. It
shows the difference between the values of the coefficients determined in the regression
equation and the calculated values when a given case was excluded from the calculations.
In the correct model, all distances should be of the same order, which is confirmed by the
results in Figure 7. This means that the given case/cases had no significant influence on
the bias of the coefficients of the regression equation.
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The DFFITS indicates the effect that deleting each observation has on the predicted
values of the regression model (Figure 2). The DFFITS is a studentized DFFIT which
is the change in the predicted value for a point, obtained when that point is left out of
the regression:

DFFITS =
yi − yi(i)

S(i)
√

hii
(7)

where hii is the leverage for the point, s(i) is the standard error estimated without the point
in question, ŷi is the prediction for the point with the point included in the regression and
yi(i) is the prediction for the point without the point included in the regression.

3.3. ANN Modeling

Using the Statistica program release 4.0 E Neural Networks (Statsoft Inc., Tulsa, OK,
USA), many experiments were carried out with different network architectures. On the
basis of the correlation coefficient and the value of the RMS error, the network 3:3-8-1:1
network was selected for further considerations. A network witch such this structure
provided the highest value of the correlation coefficient with the lowest RMS error value.
The network training process was carried out independently with three algorithms: BP,
LM and qN. Training was carried out until no further reduction of the network error
observed for the training set was achieved. The training algorithm was stopped at the
network error of 0.213, 0.096 and 0.119 for the BP, qN and LM algorithms, respectively.
The training process with the BP algorithm was characterised by a saw-shaped course
(Figure 8a). This is a typical behavior of error changes when training the network with the
BP algorithm, especially in the case of undetermined relations between the input variables
and the explained variable. The value of the correlation coefficient for the training set
after teaching the network with the BP algorithm was R2 = 0.5979 (Table 8). Under these
conditions, the network RMS error value under these conditions was 0.249 and 0.305 for
the training and validation sets, respectively. It is worth noting that the spread of error
values for the validation set was much larger (red line in Figure 8a) than for the training
set (blue line in Figure 8a). The explanation is that the number amount of data contained in
the training set is much larger than in the validation set.

The training process with the quasi-Newton algorithm (Figure 8b) exhibited a different
character of change in the network error value. After several epochs similar to the BP
algorithm, the qN algorithm provided more than double the reduction in the RMS error
value for the training set (RMS = 0.0982) and the validation set (RMS = 0.1493). The LM
algorithm (Figure 8c) had the most stable learning process. In a similar manner to learning
with the BP algorithm, after about 10 epochs, the algorithm reached a stable minimum
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error, which in a later stage was only slightly reduced. Moreover, the number of epochs
after which no further error reduction occurred is similar to the BP algorithm (Figure 8a).
The values of the RMS error for the training and validation sets of the network learned with
the LM algorithm were 0.114 and 0.1707 respectively. Therefore a network learned with
the qN algorithm was selected for further analysis, which provided the lowest RMS error
value for the training set and the highest value of the correlation coefficient (R2 = 0.91).
Apart from the correlation coefficient R2, an important parameter proving the quality of
the ANN is the S.D. ratio parameter (Table 8). It is the quotient of the standard deviation of
errors (Error S.D.) and the standard deviation of the value of the explained variable (Data
S.D.). This parameter is never negative. However the lower is the value, the better is the
quality of the model.

As can be seen from Figure 9 the normalized errors for cases 35–50 are much larger
than for cases 1–15. It may be that an improvement in the ANN results could be obtained
by carrying out additional friction tests with oils with a kinematic viscosity between the
kinematic viscosities of the oils tested in this study. Nevertheless, the results confirmed the
potential of ANNs to model the value of the coefficient of friction of Ti-6Al-4V titanium
alloy sheets.
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Table 8. Basic regression statistics of the ANNs analyzed and trained using the BP (a), qN (b) and
LM (c) algorithms.

BP (a)

Parameter Training set Validation set

Data mean 0.3828 0.3783
Data S. D. 0.2395 0.2252

Error mean −0.1615 −0.1333
Error S. D. 0.1921 0.2870

Abs E. mean 0.1931 0.2582
S. D. ratio 0.8019 1.2744

Correlation 0.5979 0.0768

qN (b)

Parameter Training set Validation set

Data mean 0.3828 0.3783

Data S. D. 0.2395 0.2252

Error mean −0.0004 0.0146

Error S. D. 0.0993 0.1551

Abs E. mean 0.0819 0.1276

S. D. ratio 0.4145 0.6891

Correlation 0.9100 0.7247

LM (c)

Parameter Training set Validation set

Data mean 0.3828 0.3783
Data S. D. 0.2395 0.2252

Error mean 0.00005 0.0473
Error S. D. 0.1157 0.1717

Abs E. mean 0.1009 0.1503
S. D. ratio 0.4830 0.7624

Correlation 0.8756 0.6514
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4. Conclusions

The article presents the results of the application of an ANN to the modeling of the
value of the COF of Ti-6Al-4V titanium alloy sheets in a strip drawing test. The following
conclusions are drawn from the experimental investigations and ANN modeling:

• As a result of the non-linear relationship between the clamping and the friction force,
the value of the COF decreased with increasing pressure force. The relationship
between friction force and clamping force is not proportional beyond the range of
loads analyzed. Moreover, the contact area between the cylindrical roller and the flat
specimen increases non-linearly with increased load. It is well known that the contact
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area plays a key role in the friction process in plastic working, contrary to friction in
the kinematic pairs.

• The highest value of the COF in terms of the considered loads was observed during
lubrication with L-HL 46 hydraulic oil.

• Apart from the load of 80 N, olive oil is the lubricant which provided the lowest value
of COF during the friction process.

• Increasing the load at a constant value of kinematic viscosity of lubricant reduces the
COF value.

• The lowest value of COF during friction tests of sheets made of Ti-6Al-4V titanium
alloy was provided by oil with a low density and at the same time high kinematic
viscosity.

• The minimum value of RMS error with the highest value of correlation coefficient was
observed for a multi-layer network with eight neurons in a hidden layer learned with
the qN algorithm.

• With all the algorithms investigated during the training process, a higher value of the
network error was noted with the validation set than with the training set since the
latter contains 85% of all experimental data sets.
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Appendix A

Table A1. Chemical composition of the Ti-6Al-4V titanium alloy examined (in wt.%) [73].

Al V O Fe H C N Ti

5.5 3.5 <0.2 <0.3 <0.0015 <0.08 <0.5 remainder
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Table A2. Results of the strip drawing test conducted with lubrication using L-AN 46 machine oil.

Number of Experiment Force, N COF COF (Average Value)

1 50 0.268
0.2722 50 0.265

3 50 0.283

4 80 0.250
0.2515 80 0.242

6 80 0.261

7 110 0.245
0.2438 110 0.235

9 110 0.25

10 140 0.229
0.23011 140 0.224

12 140 0.237

13 170 0.200
0.21414 170 0.219

15 170 0.223

16 200 0.217
0.21717 200 0.21

18 200 0.224

Table A3. Results of the strip drawing test conducted with lubrication using L-HL 46 hydraulic oil.

Number of Experiment Force, N COF COF (Average Value)

19 50 0.282
0.27720 50 0.268

21 50 0.281

22 80 0.273
0.27123 80 0.263

24 80 0.275

25 110 0.278
0.27026 110 0.259

27 110 0.273

28 140 0.246
0.25229 140 0.245

30 140 0.259

31 170 0.261
0.26032 170 0.248

33 170 0.271

34 200 0.255
0.25535 200 0.25

36 200 0.259
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Table A4. Results of the strip drawing test conducted with lubrication using SAE 10W-40 engine oil.

Number of Experiment Force, N COF COF (Average Value)

37 50 0.247
0.24038 50 0.228

39 50 0.245

40 80 0.208
0.21541 80 0.213

42 80 0.223

43 110 0.219
0.21744 110 0.211

45 110 0.221

46 140 0.217
0.21447 140 0.204

48 140 0.221

49 170 0.196
0.19450 170 0.183

51 170 0.203

52 200 0.210
0.20553 200 0.198

54 200 0.207

Table A5. Results of the strip drawing test conducted with lubrication using SAE 75W-85 engine oil.

Number of Experiment Force, N COF COF (Average Value)

55 50 0.258
0.25356 50 0.244

57 50 0.257

58 80 0.269
0.26659 80 0.259

60 80 0.270

61 110 0.272
0.26762 110 0.257

63 110 0.272

64 140 0.183
0.22765 140 0.224

66 140 0.274

67 170 0215
0.22068 170 0.219

69 170 0.226

70 200 0.216
0.22171 200 0.218

72 200 0.229
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Table A6. Results of the strip drawing test conducted with lubrication using palm oil.

Number of Experiment Force, N COF COF (Average Value)

73 50 0.260
0.25974 50 0.253

75 50 0.264

76 80 0.253
0.25677 80 0.251

78 80 0.264

79 110 0.239
0.23880 110 0.229

81 110 0.246

82 140 0.234
0.23383 140 0.227

84 140 0.238

85 170 0.239
0.23886 170 0.231

87 170 0.243

88 200 0.218
0.21689 200 0.209

90 200 0.221

Table A7. Results of the strip drawing test conducted with lubrication using rapeseed oil.

Number of Experiment Force, N COF COF (Average Value)

91 50 0.269
0.26992 50 0.265

93 50 0.273

94 80 0.267
0.26495 80 0.268

96 80 0.257

97 110 0.260
0.25998 110 0.252

99 110 0.265

100 140 0.241
0.242101 140 0.237

102 140 0.248

103 170 0.227
0.228104 170 0.224

105 170 0.233

106 200 0.229
0.225107 200 0.215

108 200 0.231



Materials 2021, 14, 2570 20 of 23

Table A8. Results of the strip drawing test conducted with lubrication using olive oil.

Number of Experiment Force, N COF COF (Average Value)

109 50 0.214
0.213110 50 0.206

112 50 0.219

112 80 0.226
0.227113 80 0.221

114 80 0.234

115 110 0.217
0.219116 110 0.212

117 110 0.227

118 140 0.213
0.207119 140 0.192

120 140 0.216

121 170 0.195
0.197122 170 0.191

123 170 0.205

124 200 0.202
0.199125 200 0.193

126 200 0.203

Table A9. Results of the strip drawing test conducted with lubrication using sunflower oil.

Number of Experiment Force, N COF COF (Average Value)

127 50 0.277
0.233128 50 0.215

129 50 0.207

130 80 0.226
0.229131 80 0.223

132 80 0.238

133 110 0.231
0.225134 110 0.213

135 110 0.231

136 140 0.223
0.217137 140 0.204

138 140 0.224

139 170 0.215
0.211140 170 0.202

141 170 0.216

142 200 0.207
0.202143 200 0.194

144 200 0.205
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Table A10. Results of the strip drawing test conducted with lubrication using soybean oil.

Number of Experiment Force, N COF COF (Average Value)

145 50 0.229
0.231146 50 0.225

147 50 0.239

148 80 0.220
0.222149 80 0.216

150 80 0.23

151 110 0.229
0.224152 110 0.227

153 110 0.216

154 140 0.212
0.211155 140 0.203

156 140 0.217

157 170 0.208
0.216158 170 0.221

159 170 0.219

160 200 0.213
0.209161 200 0.198

162 200 0.216
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