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 Background: The aim of this study was to identify biomarkers closely related to the pathogenesis and prognosis of oral squa-
mous cell carcinoma (OSCC) by using weighted gene co-expression network analysis (WGCNA) based on inte-
grative transcriptome datasets.

 Material/Methods: Gene expression profiles of OSCC were downloaded from the Gene Expression Omnibus (GEO) database. 
Differentially expressed genes (DEGs) were obtained and we then performed with Gene ontology (GO) and 
pathway enrichment analysis as well as protein–protein interactions (PPI) network analysis. WGCNA was used 
to construct the co-expression network. Multipart results were intersected to acquire the candidate genes, and 
survival analysis was used to identify the hub genes.

 Results: A total of 568 DEGs, including 272 upregulated genes and 296 downregulated genes, were identified. GO and 
pathway analyses revealed that these DEGs were mainly enriched in extracellular matrix (ECM), ECM organiza-
tion, structural constituent of muscle, and ECM-receptor interaction. The PPI network of DEGs was established, 
comprising 428 nodes and 1944 edges. In the co-expression network, pink module was the key module, in 
which 34 genes with high connectivity were identified. After the intersection of multipart results, 24 common 
genes were chosen as the candidate genes, among which 7 hub genes (PLAU, SERPINE1, LAMC2, ITGA5, TGFBI, 
FSCN1, and HLF) were identified using survival analysis.

 Conclusions: Seven potential biomarkers were identified as being closely related with the initiation and prognosis of OSCC 
and might serve as potential targets for early diagnosis and personalized therapy of OSCC.
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Background

Oral cavity cancer is a global public health issue and is the sixth 
most common malignancy of humans, accounting for more 
than 300 000 new cases annually [1,2]. It has been estimated 
that approximately 300 400 new cases of oral cancer and 145 
400 related fatalities occurred worldwide in 2012 [3]. Despite 
the relatively low incidence of oral cancer in China, the num-
ber of OSCC patients is still large due to the huge population 
base. It was reported that in 2010, there were over 34 000 new 
cases and 14 000 people died from oral cancer in China [4].

Oral cancer is growth of cancerous tissue in the oral cavity, 
and most oral malignancies (approximately 90%) are histolog-
ically subtyped as oral squamous cell carcinoma (OSCC) [5]. 
The main etiological factors are tobacco use, excessive al-
cohol consumption, chewing betel quid (especially in some 
Asian areas), and human papilloma virus 16 (HPV16) infec-
tion [6–9]. In the last few decades, great efforts have been 
made to fight OSCC. Despite substantive progress in surgical 
and medical treatments for OSCC, the overall 5-year survival 
rate has not significantly improved and remains approximately 
50% [5]. Delay in diagnosis of OSCC patients in an early stage 
leads to progression to an advanced stage [10]. Most OSCC 
patients had a poor prognosis because of the advanced clini-
cal stage at which they were diagnosed. One of the important 
reasons for failure in early diagnosis is insufficient research on 
the mechanisms at molecular levels underlying the carcino-
genesis of OSCC. In-depth research on the molecular mecha-
nisms in cancer initiation and prognosis of OSCC are needed, 
and this would also benefit OSCC patients at treatable stages. 
Therefore, it is of great importance to identify novel biomark-
ers for OSCC and reveal the molecular events contributing to 
OSCC pathogenesis.

The comparative analysis of differential gene expression be-
tween cancer tissues and normal controls will strengthen our 
exploration of the molecular pathogenesis and thus promote 
the identification of potential target genes and pathways for 
OSCC therapy. Previous bioinformatics studies about OSCC ei-
ther utilized a single dataset with small sample size, or just 
directly merged multiple datasets, ignoring their batch ef-
fects and inherent heterogeneity [11,12]. As an alternative, 
the ComBat method can address these limitations, and can 
combine gene expression profiles from different datasets by 
removing the batch effects [13]. Furthermore, based on the 
theory that genes with high expression profile similarity may 
have closely related functional linkages or be involved in in-
teracting pathways [14], the weighted gene co-expression 
network analysis (WGCNA) algorithm provides a systems bi-
ology approach to describe detailed characteristics at the lev-
el of genetic networks. WGCNA can establish free-scale gene 
co-expression networks to screen clusters (modules) of highly 

correlated genes and construct modules related to sample 
traits [15]. Zhang et al. used WGCNA to identify 2 modules 
and 10 hub genes associated with OSCC [16], but they only 
used a single dataset and the study lacked sufficient repre-
sentativeness due to its limited sample size. Thus, integrating 
the data from different independent studies by ComBat meth-
od and the construction of a co-expression network based on 
this data will provide deeper insight into the molecular mech-
anisms of tumor genes associated with OSCC.

In the present study, we first integrated 5 gene expression pro-
file datasets from GEO and removed the batch effects of these 
datasets by ComBat method. Then, we identified differentially 
expressed genes (DEGs) between OSCCs and normal samples, 
which were further assessed with Gene ontology (GO) func-
tion and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis, as well as protein–protein in-
teractions (PPI) network analysis. Weighted gene co-expres-
sion network analysis (WGCNA) was used to construct a co-
expression network of relationships between genes to find 
network-centric genes. Subsequently, multipart results were 
intersected to obtain the candidate genes, and then the log-
rank test of Kaplan-Meier analysis was performed to identi-
fy the hub genes for OSCC. Finally, we used other datasets to 
demonstrate the value of the hub genes.

Material and Methods

Date search strategy and selection criteria

The gene expression profile datasets were searched from the 
GEO database with the search terms “Oral squamous cell carci-
noma” Or “OSCC” And “Homo sapiens” And “Expression profil-
ing by array”. The datasets were eligible if they met the follow-
ing criteria: (1) mRNA expression profiling by array; (2) datasets 
compared with normal control; (3) the number of samples more 
than 20; and (4) accessible gene expression profiles and plat-
form information. The exclusion criteria were: (1) duplicated 
or non-relevant datasets; (2) non-coding RNA expression pro-
files; (3) methylation profiles; (4) datasets compared between 
cell lines; (5) datasets without normal control; (6) the number 
of samples less than 20; and (7) incomplete gene expression 
profiles or platform information. Moreover, a manual search 
of relevant OSCC datasets listed in the Materials and Methods 
section of the published articles was conducted. The dataset 
selection procedure is summarized in Figure 1. Six microarray 
gene expression datasets met the inclusion criteria (GSE30784, 
GSE13601, GSE37991, GSE31056, GSE9844, and GSE23558) 
were obtained from the GEO repository and the character-
istics of these datasets are listed in Table 1. Five datasets 
with a larger sample sizes (GSE30784, GSE13601, GSE37991, 
GSE31056, and GSE9844) were used to peform an integrative 
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transcriptome analysis, and the other dataset (GSE23558) was 
used to validate the results.

Data preprocessing and differential expression analysis

The raw data were preprocessed for background correction, 
log2 transformation, quantile normalization, and then con-
verted into expression matrix by using Robust Multi-array 
Average (RMA) function of the affy R package [17]. Batch ef-
fects are inevitable when pooling microarray data across dif-
ferent laboratories, array types, or platforms. ComBat, com-
bining location (mean) and scale (variance) adjustment with 
empirical Bayes, is a highly effective method of removing batch 
effects [13]. The batch effects when integrating the 5 datasets 
were removed by the ComBat function in the SVA R package. 
Afterwards, DEGs of the integrated datasets were screened 
through the limma R package with the cut-off criteria adjusted 
P<0.05 and |log 2-fold change (FC)| >1 based on the Benjamin 
and Hochberg (BH) procedure [18].

Gene ontology and pathway enrichment analysis

GO and KEGG pathway enrichment analyses were performed 
using the clusterProfiler package, which offers enrichGO and 
enrichKEGG methods for enrichment analysis and has the visu-
alization function of profiles for genes and gene clusters [19]. 
P<0.05 was considered as the threshold value.

Protein–protein interactions (PPI) network construction

The online database STRING (http://string-db.org/) was em-
ployed to establish the PPI network of DEGs, with a confi-
dence score ³0.7. Cytoscape software (National Institute of 
General Medical Sciences of the National Institutes of Health, 
Bethesda, MD, USA) was then used to visualize and analyze the 
network. The Molecular Complex Detection (MCODE) plug-in 
of Cytoscape was used to find clustered sub-networks (highly 
interconnected regions) in the PPI network [20]. Degree ³2, 
node score ³0.2, K-core ³2, and max depth=100 were used 
as cut-off criteria.

Datasets identi�ed through GEO
respository searching (n=104)

Datasets screened (n=102)

Datasets assessed for 
eligibility (n=15)

Datasets met the inclusion
criteria (n=6)

Additionla datasets identi�ed
through other sources (n=1)

Duplicates datasets were removed (n=3)

Datasets excluded after screening of summary (n=87)
1. Datasets compared between cell lines (n=39)
2. Datasets without normal control (n=34)
3. Non-coding RNA expression pro�les (n=10)
4. Methylation pro�les (n=2)
5. Non-relevant studies (n=2)

Datasets excluded after review of pro�les and platform
information (n=9)
1. Incomplete pro�les or platform information (n=5)
2. Sample size less than 20 (n=4)

Figure 1.  Flow chart of the datasets search and 
selection process.

First author GEO number
Sample size

Platform
Normal Tumor

Chen C GSE30784 45 167 GPL570; Affymetrix Human Genome U133 Plus 2.0 Array

Reis PP GSE31056 73 23 GPL10526; Affymetrix GeneChip Human Genome HG-U133 Plus 2 Array

Lee CH GSE37991 40 40 GPL6883; Illumina HumanRef-8 v3.0 expression beadchip

Estilo CL GSE13601 26 31 GPL8300; Affymetrix Human Genome U95 Version 2 Array

Ye H GSE9844 12 26 GPL570; Affymetrix Human Genome U133 Plus 2.0 Array

Ambatipudi S GSE23558 5 27 GPL6480; Agilent-014850 Whole Human Genome Microarray

Table 1. Summary of datasets met the inclusion criteria.
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Construction of co-expression network

The integrated gene expression data after removing the batch 
effects were chosen for constructing the co-expression net-
work using the “WGCNA” R package [15]. First, we construct-
ed the Pearson correlation coefficient matrix between gene 
pairs based on the gene expression profile. Second, an appro-
priate soft threshold power (b) was selected in line with scale-
free topology criteria. We turned the correlation coefficient 
matrix into the weighted adjacency matrix through a pow-
er function aij=|cor(xi, xj)| b (aij=weighted adjacency matrix, 
cor(xi, xj)=Pearson correlation coefficient matrix between gene 
pairs). Third, the adjacency matrix was transformed into a to-
pological overlap matrix (TOM) by the fuction of TOM similarity, 
and the corresponding TOM-based dissimilarity (1-TOM) was 
calculated as well. Next, an average linkage hierarchical cluster-
ing dendrogram was built on the basis of TOM-based dissimi-
larity, and clustering module identification was achieved using 
dynamic tree cut with the minimum module size 50. Moreover, 
the dissimilarity of module eigengenes (MEs, the first princi-
pal component of one module) were calculated, and the cut 
line of 0.25 for module dendrogram was chosen as the mod-
ule-merged standard. Finnaly, we calculated the relationships 
between module and trait, gene significance (GS), and mod-
ule membership (MM) to find the key modules. GS, defined as 
the log10 transformation of the P value (lgP) in the linear re-
gression between gene expression and trait information, was 
used to quantify associations of individual genes with a trait. 
MM was defined as the correlation between gene expression 
profile and the ME of a given module. The key modules were 
identified based on the correlation between MEs and trait.

Mining of candidate genes

Hub genes in key modules were regarded as genes with high 
module connectivity measured by the absolute value of the 
Pearson correlation and the clinical trait relationship (|MM| >0.8 
and |GS| >0.2). The preprocessed level 3 RNA-seq expression 
data and clinical information for HNSC were downloaded from 
TCGA. A total of 499 patients with detailed survival data were 
included for subsequent survival analysis. The edgeR pack-
age was used to identify the DEGs for TCGA RNA-seq data un-
der the cut-off criteria of false discovery rate (FDR) < 0.05 and 
|log2 FC| >1.5 [21]. We intersected multipart results (DEGs of 
5 gene microarray data, DEGs of TCGA data, and hub genes in 
the co-expression network) to get the candidate genes.

Hub genes identification and validation

Log-rank test in Kaplan-Meier analysis was performed to dem-
onstrate the effect of candidate genes expression on prognosis 
using survival R package. Candidate genes (log-rank P<0.05) 
were considered as the hub genes. Similarly, GSE23558 was 

used to verify expression of hub genes. The effect of hub gene 
expression on patient prognosis was verified by GSE41613.

Results

DEGs screening in OSCC

The integrated data (GSE30784, GSE13601, GSE37991, 
GSE31056, and GSE9844) were analyzed using the limma R 
package after preprocessing and removing batch effects. The 
heatmap was used to evaluate batch effects of the integrated 
data before and after using ComBat methods (Supplementary 
Figures 1, 2). Before removing batch effects, the cluster tree 
of the samples was divided into 5 categories. All samples 
of the 5 datasets in the cluster tree were evenly mixed to-
gether and the batch effects were removed after performing 
ComBat methods. A total of 568 DEGs, including 272 upreg-
ulated genes and 296 downregulated genes, were identified 
for subsequent analysis.

Gene ontology and pathway enrichment analysis

GO and KEGG pathway enrichment analyses were performed 
using the clusterProfiler R package. For the biological processes 
(BP), the top 5 enriched categories among DEGs were extracel-
lular matrix (ECM) organization, extracellular structure organi-
zation, collagen metabolic process, muscle filament sliding, and 
actin-myosin filament sliding. In cellular component (CC) on-
tology, DEGs were significantly enriched in ECM, proteinaceous 
ECM, ECM component, contractile fiber componant, and con-
tractile fiber componant. Molecular function (MF) analysis in-
dicated that structural constituent of muscle, integrin binding, 
actin binding, heparin binding, and growth factor binding were 
the top 5 commonly enriched categories (Table 2). KEGG anal-
ysis showed that DEGs were mainly enriched in ECM-receptor 
interaction, focal adhesion, protein digestion and absorption, 
amoebiasis, and IL-17 signaling pathway (Table 2).

PPI network construction and module selection

The PPI network of DEGs, including 428 nodes and 1944 
edges, was constructed using the STRING online database and 
Cytoscape software (Figure 2). Then, the MCODE plug-in was 
applied for module selection of the PPI network and module 1, 
comprising 93 nodes and 818 edges, got the highest score 
(Figure 3). In module 1, the top 10 genes according to mocde 
scores were PLOD2, COL10A1, COL11A1, COL17A1, COL5A2, 
COL7A1, COL16A1, COL4A5, OAS1, and RSAD2.
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Weighted co-expression network construction and 
identification of key modules

The integrated gene expression profiles in which we had been 
eliminated the batch effects were analyzed by WGCNA R pack-
age. The power of b=5 (scale-free R2=0.86) was set as the ap-
propriate soft-thresholding value to satisfy the scale-free net-
work criteria. A total of 16 modules, ranging in size from 77 
to 1857 genes, were identified and labeled with different col-
ors (Figure 4A). According to the correlation between MEs 
and trait, the pink module was the most correlated with trait 
of cancer and was considered as the key module (Figure 4B).

L2 Candidate genes mining for OSCC

Based on the hub genes screening criteria in the key module 
(|GS|>0.2 and |MM|> 0.8), 34 genes in the pink module were re-
garded as hub genes in the co-expression network (Figure 4C, 
Supplementary Table 1). TCGA RNA-seq expression data were 
analyzed using the edgeR package. There were 6712 DEGs in 
total under the threshold value of FDR <0.05 and |log2FC| >1.5, 
in which 4060 upregulated and 2652 downregulated genes 

were identified. Using the intersect function in Venny 2.1.0. 
we identified 24 genes in all 3 parts of the results (DEGs of 5 
gene microarray data, DEGs of TCGA data, and hub genes in 
the co-expression network) as the candidate genes (Figure 4D, 
Supplementary Table 1).

Hub genes identification and validation

Log-rank analysis was used to evaluate the difference in overall 
survival between high expression and low expression of these 
candidate genes. This procedure showed that 7 genes (PLAU, 
SERPINE1, LAMC2, ITGA5, TGFBI, FSCN1, and HLF) were signif-
icantly associated with the prognosis of OSCC patients, and 
these were defined as hub genes (Figure 5, Supplementary 
Figures 3, 4). Survival analysis demonstrated that OSCC pa-
tients with high expression of 6 hub genes (PLAU, SERPINE1, 
LAMC2, ITGA5,TGFBI, and FSCN1) had lower overall survival than 
those with low expression. In contrast, patients with high ex-
pression of gene HLF displayed remarkably longer overall sur-
vival compared to those with low expression.

Category Term/pathway ID Description Count P-value

BP GO: 0030198 Extracellular matrix organization 64 1.46E-27

BP GO: 0043062 Extracellular structure organization 59 5.25E-27

BP GO: 0032963 Collagen metabolic process 29 1.73E-19

BP GO: 0030049 Muscle filament sliding 19 9.50E-19

BP GO: 0033275 Actin-myosin filament sliding 19 9.50E-19

CC GO: 0031012 Extracellular matrix 84 2.11E-40

CC GO: 0005578 Proteinaceous extracellular matrix 69 1.50E-34

CC GO: 0044420 Extracellular matrix component 31 5.15E-23

CC GO: 0043292 Contractile fiber 44 1.82E-22

CC GO: 0044449 Contractile fiber part 42 4.39E-21

MF GO: 0008307 Structural constituent of muscle 18 7.59E-16

MF GO: 0005178 Integrin binding 20 1.73E-10

MF GO: 0003779 Actin binding 39 6.54E-10

MF GO: 0008201 Heparin binding 23 7.87E-10

MF GO: 0019838 Growth factor binding 21 9.45E-10

KEGG hsa04512 ECM-receptor interaction 21 4.76E-11

KEGG hsa04510 Focal adhesion 28 1.34E-08

KEGG hsa04974 Protein digestion and absorption 19 6.94E-08

KEGG hsa05146 Amoebiasis 18 2.22E-07

KEGG hsa04657 IL-17 signaling pathway 16 3.48E-06

Table 2. The top five significant enriched GO terms and KEGG pathways of DEGs in OSCC.

GO – Gene ontology; KEGG – Kyoto Encyclopedia of Genes and Genomes; BP – biological processes; CC – cellular component; 
MF – molecular function.

7276
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Ge Y. et al.: 
Hub genes associated with oral squamous cell carcinoma carcinogenesis and prognosis

© Med Sci Monit, 2019; 25: 7272-7288
META-ANALYSIS

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



Figure 2.  PPI network construction. PPI network of DEGs containing 428 nodes and 1944 edges was constructed. Upregulated and 
downregulated genes are shaded in red color and green, respectively. PPI – protein–protein interaction; DEGs – differentially 
expressed genes.

Figure 3.  Module analysis of PPI network. Module 1 with the highest score was identified by MCODE plug-in of Cytoscape software, 
including 93 nodes and 818 edges. Upregulated and downregulated genes are shaded red and green, respectively. 
PPI – protein–protein interaction; MCODE – Molecular Complex Detection.
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GSE23558 was used to confirm the differences in expression 
of 7 hub genes between normal and OSCC tissues. The results 
suggested that the expression of hub genes was significant-
ly higher in OSCC tissues than in normal tissues, except for 
gene HL, which had lower expression in OSCC tissues com-
pared with normal tissues (Table 3). The GSE41613 dataset 
was successfully used to validate the effect of hub genes on 
OSCC patient prognosis (Figure 6).

Discussion

The transformative process of normal stratified squamous oral 
mucosa into squamous cell carcinoma contains several steps 
and factors in which accumulated genetic alterations inter-
vene with the normal functions of oncogenes and tumor sup-
pressor genes [22]. However, the underlying molecular mech-
anisms involved in the process are unclear. In the present 
study, by integrating 5 individual cohorts of gene expression 
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profile datasets and using multiple bioinformatics methods, 
we identified key pathways and 7 hub genes in OSCC tissues 
not found in the normal controls.

Based on the GO analysis, the most significant enrichment in 
biological process was extracellular matrix (ECM) organization, 
a process occurring at the cellular level, resulting in the as-
sembly, arrangement of constituents, or disassembly of ECM. 
Through a literature research, we found that the process of 
ECM organization appears to be associated with cancer-as-
sociated fibroblasts (CAFs). Comparison of genes or proteins 
between CAFs and normal fibroblasts revealed that most of 
the enriched genes or proteins are related to ECM organiza-
tion [23,24]. As a major element of tumor stroma, CAFs can 

promote tumor growth and invasiveness by affecting ECM re-
modeling through producing MMPs [25,26]. Several studies 
have also indicated the vital role of CAFs in OSCC develop-
ment and metastasis [27,28]. Other biological processes such 
as the collagen metabolic process were also enriched, which 
might be due to the production of MMPs [29]. Similarly, the 
top 3 cellular components were associated with ECM. ECM is a 
highly dynamic structure, continuously performing the remod-
eling process, including ECM components deposition, degra-
dation, or other modification [26]. These results of biological 
process and cellular component ontology highlight the pivot-
al effect of abnormal ECM dynamics on OSCC occurrence and 
progression. For the molecular function ontology, the enriched 
categories of structural constituent of muscle, actin binding, 
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Figure 5.  Hub genes identification by Kaplan-Meier survival analysis. Survival analysis indicated that PLAU, SERPINE1, LAMC2, 
ITGA5, TGFBI, FSCN1, and HLF were the hub genes. The survival analysis of the other 17 genes is shown in Supplementary 
Figures 3, 4.

Microarray datasets Gene names LogFC Adjusted P value

PLAU 2.98 1.90E-07

SERPINE1 4.42 7.13E-05

LAMC2 2.72 7.91E-05

GSE23558 ITGA5 1.82 0.0038

TGFBI 1.75 0.0161

FSCN1 2.74 0.0004

HLF –5.58 3.01E-06

Table 3. Validation of seven real hub genes in GSE23558.

FC – fold change.
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heparin binding, and growth factor binding may be relevant to 
CAFs as well. Fibroblasts can be activated by various growth 
factors secreted by cancer or immune cells, such as trans-
forming growth factor-beta1 (TGF-b1), hepatocyte growth fac-
tor (HGF), and fibroblast growth factor (FGF) [30]. Once acti-
vated, fibroblasts undergo phenotypic transformation and turn 
into CAFs, which can express characteristic markers a-smooth 
muscle actin (a-SMA), indicating the myofibroblast phenotype 
and strong contractility [30,31]. In turn, CAFs can synthesize 
a series of growth factors, cytokines, and chemokines, includ-
ing TGF-b, HGF, MMPs, VEGF, MCT-4, and IL-6, all of which are 
critical to inducing the deposition of ECM, promoting epithe-
lial-mesenchymal transition (EMT), and ultimately resulting in 
tumor initiation and metastasis [32,33]. Consistent with GO 
analysis, KEGG analysis showed ECM-receptor interaction and 
focal adhesion were the 2 most significantly enrichment cat-
egories. The enrichment of ECM-receptor interaction and fo-
cal adhesion signaling pathway may be related to expression 
of the integrin (ITG) gene [34,35]. Integrins are heterodimeric 
cell surface receptors that participate in specific interactions 
between cells and ECM, as well as in cell adhesion [36]. Focal 
adhesion is a cell–substrate adhesion structure mediated by 
integrin, with functions including fixing the ends of actin fila-
ments, promoting strong attachments to substrates, and play-
ing a functional role as an integrin signaling platform [37].

Module analysis for the PPI network showed that most of 
the top 10 genes in module 1 were collagen-related genes. 
Collagens are one of the most important components of ECM, 
and increasing evidence suggests collagen affects tumor growth 

and metastasis through multiple mechanisms [38]. Some studies 
have explored the mechanism of collagen XVI and XVII facilitat-
ing proliferation and invasion of OSCC cells [39,40]. Additionally, 
the overexpression of some collagen-related genes is also pos-
sibly due to the net result of overproduction and degradation.

In this study, we integrated 3 parts of results and combined 
them with survival analysis to identify 7 genes (PLAU, SERPINE1, 
LAMC2, TGFBI, ITGA5, FSCN1, and HLF) as hub genes. PLAU 
(plasminogen activator, urokinase) and SERPINE1 (plasmino-
gen activator inhibitor-1) are both part of the plasminogen ac-
tivation system. LAMC2, TGFBI, and ITGA5 are ECM protein-re-
lated gene. The remaining 2 genes (FSCN1 and HLF) are novel 
molecules that have received little research interest to date.

PLAU encodes the urokinase-type plasmin activator (uPA), a ser-
ine protease which converts inactive plasminogen to plasmin 
by binding to its receptor (uPAR). uPA has been shown to be 
involved in tissue remodeling and migration under physio-
logical conditions and tumorigenesis [41,42]. uPA/uPAR plays 
critical roles in promoting extracellular proteolysis, regulation 
of cell/ECM interactions, and cell migration, all of which are 
related to the malignant progression of various tumors [43]. 
Elevated expression of uPA was observed in OSCC tissues, 
which was correlated with increased invasiveness of OSCC [44].

SERPINE1, also known as plasminogen activator inhibitor-1 
(PAI-1), is the principal inhibitor of tissue plasminogen acti-
vator (tPA) and uPA. However, higher expression of SERPINE1 
has been described as a poor prognostic marker in several 
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Figure 6.  Survival analysis validation of the 7 hub genes by using GSE41613.
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cancers. Especially, SERPINE1 had been validated as a biolog-
ical marker for treatment regimen selection in patients with 
node-negative breast cancer [45]. Bajou et al. observed that 
absence of SERPINE1 expression in mice had the effect of in-
hibiting malignant cell invasion and angiogenesis after trans-
plantation of malignant keratinocytes, whereas invasion and 
vascularization recurred when mice were injected with ade-
novirus carrying hunman SERPINE1 [46]. These observations 
indicate that SERPINE1 has a multifunctional role in promot-
ing tumor development, invasion, and metastasis, indepen-
dent of the ability to function as a protease inhibitor. Recent 
findings have suggested that SERPINE1 can regulate apopto-
sis and make the tumor cells detach from vitronectin and the 
ECM by displacing vitronectin from the uPA receptor-vitronec-
tin interaction, thus enhancing tumor cell migration and me-
tastasis [47,48].

LAMC2 is a protein-coding gene that encodes the gamma chain 
isoform laminin and gamma 2, which form laminin 332 com-
bined with alpha 3 and beta 3 chains. Laminin 332 can drive 
tumorigenesis and enhances tumor invasion via interactions 
with collagen VII and integrin receptors alpha6beta4, as well 
as activation of PI3K and RAC1 [49]. Notably, LAMC2 appears 
to be preferentially expressed in invading malignant cells in 
many human cancers [50]. LAMC2 is also one of the 4 signa-
tures accurately predicting lymph node metastasis of OSCC [51].

Integrin-a5 (ITGA5) is a member of the intergrins family, which 
has been demonstrated to regulate various complex biological 
events such as differentiation, development, cell adhesion, and 
control of cancer growth and progression. Integrin a5, which 
is associates with integrin b1 to form a fibronectin receptor, 
has been shown to exert a pivotal role in certain cancers such 
as non-small cell cancer, esophageal squamous cell carcinoma, 
and breast cancer [52–54]. Integrin a5b1 can promote cancer 
cell migration and invasion through activating the focal adhe-
sion kinase (FAK) and Src [55]. In addition, Claudia et al. found 
that integrin a5b1 enhances cancer cell invasiveness by fa-
cilitating the generation of contractile forces [56]. However, 
its expression pattern and function in OSCC are still elusive.

TGFBI, also called big-h3, encodes transforming growth factor-
beta-induced protein, which is an extracellular matrix protein 
implicated in physiological and pathological processes, includ-
ing development of corneal dystrophy and tumor formation. 
TGFBI has dual functions in tumor progression, acting as a tu-
mor promoter or tumor suppressor depending on the tumor 
microenvironment [57]. TGFBI has been reported to promote 
metastasis of colon cancer through facilitating tumor cell ex-
travasation [58]. Laura et al. found that TGFBI is necessary for 
proliferation and survival of melanoma cells as well as meta-
static outgrowth [59]. Li et al. demonstrated the role of TGFBI 
as a tumor suppressor in breast cancer and mesothelioma [60]. 

Several studies have shown that TGFBI is upregulated in OSCC 
tissues [61,62], and, compared with normal mouth mucosa, 
its expression is increased in precancerosis and, more signifi-
cantly, in OSCC [62]. Our results indicate that TGFBI might have 
a positive regulatory effect, and higher expression of TGFBI in 
OSCC tissues suggests a poor prognosis.

FSCN1, known as fascin actin-bundling protein 1, exerts a 
critical function in regulating cell migration, cell motility, and 
cell-to-cell interactions [63]. FSCN1 is usually absent in nor-
mal epithelial tissues but is overexpressed in many human 
carcinomas, suggesting aggressive, metastatic carcinomas 
and poor prognosis [64–66]. FSCN1 was found to participate 
in EMT and promote invasive filopodia formation, which con-
fers increased motility and metastatic properties to cancer-
ous cells [67]. Given the lack of studies showing involvement 
of FSCN1 in OSCC, further studies are required.

HLF (hepatic leukemia factor) is a member of the proline and 
acid-rich (PAR) bZIP transcription factor family, which can form 
homodimers or heterodimers among each other and regulates 
transcriptional activity [68]. Chromosomal translocations fuse 
portions of HLF with the E2A gene to form E2A-HLF, a chimeric 
transcription factor created by the t(17;19) gene, which contrib-
utes to leukemogenesis through its potential to inhibit apop-
tosis [69,70]. Moreover, HLF can increase miR-132 expression 
through the HLF binding site BS1 of miR-132 promoter, sup-
pressing the proliferation of glioma cells, metastasis, and ra-
dioresistance via inhibiting a downstream factor TTK protein 
kinase [71]. Intriguingly, in our study, the expression of HLF 
in OSCC tissues was downregulated compared to normal tis-
sues, and patients with low expression of the HLF gene had 
shorter overall survival compared to patients with high expres-
sion. This result indicates HLF might have potential value in 
OSCC treatment. Unfortunately, there has been no study dis-
cussing the regulating role of HLF in OSCC, and further stud-
ies are needed.

Zhang et al. recently used WGCNA to identify 10 hub genes 
(MMP1, TNFRSF12A, PLAU, FSCN1, PDPN, KRT78, EVPL, GGT6, 
SMIM5, and CYSRT1) that are associated with OSCC carcino-
genesis and undertook survival analysis to validate the prog-
nostic value of these genes [16]. Among these 10 hub genes, 
4 genes (PLAU, FSCN1, MMP1, and PDPN) were involved in 
our analysis. PLAU and FSCN1 were also identified as hub 
genes in our study, which might have diagnostic and prog-
nostic perspectives for OSCC patients. However, in our study, 
MMP1 and PDPN were identified as the candidate genes and 
had no effect on the prognosis of OSCC. These different con-
clusions regarding MMP1 and PDPN might be due to the dif-
ference in data used for survival analysis. The other 6 hub 
genes (TNFRSF12A, KRT78, EVPL, GGT6, SMIM5, and CYSRT1) 
identified by Zhang et al. were not included in our 2 parts of 
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results (DEGs of 5 gene microarray data and hub genes in the 
co-expression network). Several factors might be responsible 
for this difference between the 2 studies. First, Zhang et al. 
used a single dataset (GSE30784) to construct the gene co-
expression network to identify these 6 genes. In our study, 
we integrated 5 datasets (GSE30784, GSE13601, GSE37991, 
GSE31056, and GSE9844) for subsequent analysis. Therefore, 
these 6 genes might not be statistically significant in our in-
tegrative data, and cannot meet our cut-off criteria. Second, 
Zhang et al. used WGCNA to study the genes related to the 
transformation of normal mucosa to oral dysplasia and oral 
dysplasia to carcinoma. However, among the 5 datasets ob-
tained from GEO, only GSE30784 contains normal mucosa, oral 
dysplasia, and OSCC samples. Thus, we could merely identi-
fy hub genes related to the process of normal to OSCC, which 
might also lead to the different results.

There are several limitations worth noting in our study. First, 
in a co-expression network, a connection between 2 genes 
cannot be assumed to correspond with a connection in regu-
latory or PPI networks. When compared with other biological 
networks where the edges represent well-defined biological 
interactions, the edges in a co-expression network might be a 
limited representation of the correlation of the data. Therefore, 
experimental or clinical studies are needed to further validate 
these findings. Second, due to the lack of specific clinical in-
formation in these 5 datasets from GEO, we failed to construct 
a co-expression network to explore the relationship between 
genes and clinical features. Furthermore, we simply studied 
the effect of hub genes expression on OSCC patient prognosis, 
while more clinical parameters such as HPV infection and can-
cer staging should be included in further analysis. Third, among 

the 5 datasets obtained from GEO, only GSE30784 consists of 
normal mucosa, oral dysplasia, and OSCC samples. Thus, we 
could merely analyze the transformation from normal to car-
cinoma. To include the dynamic analysis from normal to pre-
cancerous lesions and further to OSCC would be much better. 
Fourth, this study only used TCGA and GEO data, and more 
data from other databases should be assessed to produce a 
more comprehensive analysis.

Conclusions

We have identified 7 hub genes (PLAU, SERPINE1, LAMC2, 
TGFBI, ITGA5, FSCN1, and HLF) by using WGCNA and found 
they are closely correlated with the initiation and progno-
sis of OSCC. The GO and KEGG pathway enrichment analysis 
combined with the hub genes has emphasized the essential 
role of ECM in OSCC occurrence and progression. Among the 
7 genes, ITGA5, FSCN1, and HLF are relatively new biomarkers 
for OSCC, and few studies about their roles in OSCC are cur-
rently available, so this topic needs further experimental veri-
fication. These novel biomarkers will greatly contribute to the 
early diagnosis and prognosis prediction in OSCC.
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Supplementary Figure 1.  The heatmap of the integrated data before removing batch effects. Each column and row represent one 
sample and one gene, respectively. Red shows high relative expression and green suggests low relative 
expression. The cluster tree shows that the samples was divided into 5 categories.
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Supplementary Figure 2.  The heatmap of the integrated data after removing batch effects. Each column and row represent one 
sample and one gene, respectively. Red shows high relative expression and green suggests low relative 
expression. The cluster tree shows that all the samples of 5 datasets were evenly mixed together.
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* 24 candidate genes identified through intersection of three parts of results (DEGs of three gene microarray data, DEGs of TCGA data, 
hub genes in the co-expression network). GS – gene significance; MM – module membership.

Gene names GS. Cancer MM. turquoise

LAMC2* 0.764 0.911

PLAU* 0.754 0.892

MMP1* 0.788 0.891

SERPINE1* 0.714 0.882

PDPN* 0.717 0.879

PTHLH* 0.721 0.874

FSCN1* 0.707 0.873

HOMER3* 0.729 0.873

ITGA3* 0.674 0.867

MMP10* 0.700 0.864

CDH3 0.750 0.860

MYO1B* 0.720 0.858

PLAUR 0.699 0.852

ACTN1 0.640 0.846

MSN 0.737 0.846

SHC1 0.729 0.837

TGFBI* 0.649 0.832

Supplementary Table 1. Thirty-four hub genes in the co-expression network.

Gene names GS. Cancer MM. turquoise

TMSB10 0.709 0.828

MYH9 0.613 0.817

SLC3A2 0.649 0.817

ITGA5* 0.667 0.814

PTK7* 0.724 0.812

CYP27B1* 0.626 0.807

SNAI2* 0.667 0.807

ITGB4 0.674 0.805

IL24* 0.653 0.802

ITGA6* 0.653 0.801

NCOA1 –0.671 –0.801

EPHX2* –0.705 –0.816

RRAGD* –0.702 –0.834

UBL3* –0.741 –0.845

ACADSB* –0.686 –0.846

HLF* –0.747 –0.888

GPD1L* –0.733 –0.896
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Supplementary Figure 3.  Survival analysis of the other 17 genes.
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