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Abstract

Each year, millions of premature deaths worldwide are caused by exposure to outdoor air

pollution, especially fine particulate matter (PM2.5). Designing policies to reduce these

deaths relies on air quality modeling for estimating changes in PM2.5 concentrations from

many scenarios at high spatial resolution. However, air quality modeling typically has sub-

stantial requirements for computation and expertise, which limits policy design, especially in

countries where most PM2.5-related deaths occur. Lower requirement reduced-complexity

models exist but are generally unavailable worldwide. Here, we adapt InMAP, a reduced-

complexity model originally developed for the United States, to simulate annual-average pri-

mary and secondary PM2.5 concentrations across a global-through-urban spatial domain:

“Global InMAP”. Global InMAP uses a variable resolution grid, with horizontal grid cell

widths ranging from 500 km in remote locations to 4km in urban locations. We evaluate

Global InMAP performance against both measurements and a state-of-the-science chemi-

cal transport model, GEOS-Chem. Against measurements, InMAP predicts total PM2.5 con-

centrations with a normalized mean error of 62%, compared to 41% for GEOS-Chem. For

the emission scenarios considered, Global InMAP reproduced GEOS-Chem pollutant con-

centrations with a normalized mean bias of 59%–121%, which is sufficient for initial policy

assessment and scoping. Global InMAP can be run on a desktop computer; simulations

here took 2.6–8.4 hours. This work presents a global, open-source, reduced-complexity air

quality model to facilitate policy assessment worldwide, providing a screening tool for reduc-

ing air pollution-related deaths where they occur most.
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Introduction

Exposure to outdoor air pollution is the largest environmental health risk factor worldwide,

associated with millions of excess deaths each year [1,2]. The deaths are mostly attributable to

fine particulate matter (PM2.5), which can either be emitted directly, or can form indirectly

from precursor pollutants that are emitted from a wide variety of biogenic and anthropogenic

emission sources, including transportation, agriculture, and electricity generation [3,4].

Designing strategies to reduce mortality relies on understanding how specific emission sources

affect ambient PM2.5 concentrations, and thereby, human health, across a range of possible

technology or policy scenarios.

InMAP [5] (Intervention Model for Air Pollution) is a reduced-complexity, open-source

air quality model that has been used to inform strategies to reduce PM2.5-related mortality

from specific emission sources. For example, InMAP has been used to estimate fine-scale pol-

lution impacts across distances [6], measures of pollution inequity across racial-ethnic and

socioeconomic groups [7], the health impacts of specific sectors under different policy scenar-

ios [8], and the impacts of individual activities such as freight [9], electricity generation [10],

and maize production [11]. However, as with other widely used reduced-complexity air quality

models such as EASIUR [12], AP2 [13], and COBRA [14], InMAP previously has only been

configured and evaluated for the United States, a country with just 4% of the world’s popula-

tion and 2% of the world’s air quality-related deaths [2,4].

Chemical transport models (CTMs) are employed for estimating the effects of emission

sources on pollutant concentrations and health impacts and are considered state-of-the-sci-

ence for air quality modeling. However, they require substantial time, expertise, and computa-

tional resources (e.g., several computation days per simulation month), limiting the use cases

and therefore the extent to which they can inform multidimensional policy decisions [5,15],

especially when modelling dozens or hundreds of policy scenarios at high spatial resolution.

Although GEOS-Chem is one of the most widely used CTMs, 60% of deaths from outdoor air

pollution occur in countries where there are no known users or institutions using

GEOS-Chem [16,17]. Thus, researchers and practitioners would benefit from additional mod-

els and tools beyond CTMs to investigate air pollution and emission control strategies. Such

tools would be useful even though the uncertainty may be higher than with a CTM. For exam-

ple, because damages per tonne emitted vary by orders of magnitude across space [6], for

many analyses an uncertainty of a factor of 2 or 3, or higher (e.g., an order of magnitude esti-

mate), can provide scientifically relevant results that can usefully inform policy decisions.

Some global air quality models are available with a lower operational difficulty or computa-

tional intensity than CTMs, including TM5-FASST [18], source-receptor relationships built

from GEOS-Chem adjoint [19], and EMEP [20]. Compared to the existing global air quality

models with lower operational difficulty than CTMs, InMAP has a unique combination of

higher spatial resolution, ease of use, and low computational costs. A recent notable effort [21]

to build a monthly life cycle assessment model for PM2.5 has not yet been tested against mea-

surements or compared with results from a CTM. A diversity of independently evaluated

reduced-complexity models will increase their applicability and the robustness of policy assess-

ments worldwide [22].

Here, we developed and configured InMAP for use on a global spatial domain (“Global

InMAP”). We ran a year-long, global CTM simulation using GEOS-Chem [23], and used its

outputs to globally parameterize the chemistry, physics, and meteorology of InMAP. We then

ran InMAP on global emission inventories to predict total PM2.5 concentrations and changes

in concentrations from three specific scenarios of emission changes. We compared the results

to a global dataset of ground observations, and to PM2.5 concentrations and changes in
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concentrations predicted by GEOS-Chem. Lastly, we compared Global InMAP to the United

States versions of InMAP for two emission scenarios.

Materials and methods

The InMAP model, described in Tessum et al. [5], estimates annual-average concentrations of

fine particulate matter (PM2.5), including both primary (i.e., directly emitted) and secondary (i.e.,
formed in the atmosphere) components, to guide research and policy. As with other reduced-

complexity models, InMAP is designed to be faster and easier to use than CTMs, and will typically

have lower accuracy and precision than CTMs as a tradeoff for greater speed and ease of use.

InMAP explicitly tracks secondary PM2.5 contributions from particulate ammonium

(pNH4), particulate sulfate (pSO4), particulate nitrate (pNO3), and secondary organic aerosol

(SOA), from emissions of PM2.5 precursors (sulfur oxides (SOx), nitrogen oxides (NOx),

ammonia (NH3), and non-methane volatile organic compounds (NMVOCs)). InMAP esti-

mates pollutant concentrations by approximating the steady-state solution to a set of differen-

tial equations governing pollutant emissions, reaction, advection, diffusion, and removal. It

solves the equations by discretizing over space and time, using a variable resolution grid, and

spatially varying parameterizations that simplify the reaction, advection, and removal terms in

the equations. Whereas CTMs simulate chemistry and physics (e.g., reaction, advection,

removal) using first principles and mechanistic or empirical representations for specific pro-

cesses, InMAP simulates chemistry and physics using simplified representations that are

parameterized by the outputs of a CTM simulation.

InMAP as configured over the United States (“US InMAP”) was parameterized using out-

puts from WRF-Chem [24,25]. However, WRF-Chem is not commonly used for global simu-

lations. Instead, InMAP was parameterized here using outputs from GEOS-Chem [23], a

global CTM. The full list of equations used in InMAP is given in Tessum et al. [5] Details of

the model configuration, GEOS-Chem simulation inputs, global emission inventories, and

performance evaluation are provided below.

Global InMAP computational grid

As with previous InMAP configurations for the US [5–11], the horizontal resolution of the

Global InMAP computational grid varies across space and is higher in places with larger popu-

lation or population density. Here, we used 2020 projected population data at 0.01˚ resolution

[26] to create the computational grid. We employed a population density threshold of

5.5 × 108 deg-2 and a population threshold of 100,000. Beginning with a 5˚ × 4˚ global grid, for

any grid cell, if either threshold was exceeded, then the model subdivided it into smaller cells,

and iterated the process until either the thresholds were not exceeded or the smallest cell size

was reached.

The resulting computational grid (S1 Fig) has ~2.3 million grid cells (ground-level: 273,739

grid cells), whose horizontal resolution at ground-level ranges from 5˚ × 4˚ (which corre-

sponds to ~500 km length at the equator) in remote locations to 0.04˚ × 0.03˚ (~4 km length at

the equator) in urban locations. The spatial domain encompasses the vast majority of the

Earth’s surface: latitudes from -87.0˚ to +81.0˚ and longitudes from -178.0˚ to +172.0˚. Global

InMAP does not track pollution across the poles or antimeridian [27]. The resulting grid cov-

ers all but ~5 million people (< 0.1% of the total global population) in parts of New Zealand

and other islands in the Pacific Ocean. The population-weighted average grid-cell size is 590

km2 (for comparison, ~39,000 km2 for GEOS-Chem). The resulting pre-processed gridded

input data file is ~1.2 GB and is provided in a freely available dataset (doi:10.5281/zenodo.

4641947).
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GEOS-Chem simulation

Chemical and physical atmospheric parameters used in Global InMAP, such as annual-average

gas/particle-phase partitioning coefficients, were derived from the outputs of an annual

GEOS-Chem “Classic” (version 11-01f) simulation (2016-01-01 until 2017-01-01), with meteo-

rology provided by MERRA-2 [28]. The GEOS-Chem outputs were used in the same way as

the corresponding WRF-Chem variables were used for US InMAP (see Tessum et al. [5]). The

full list of GEOS-Chem variables used in Global InMAP, and descriptions of how they are

used, are in Table A in S1 Appendix.

The GEOS-Chem model code and configuration were derived from a simulation performed

by Hammer et al. [29], where the chemical mechanism included complex secondary organic

aerosol (SOA) formation with semi-volatile primary organic aerosol [30,31]. We used the stan-

dard horizontal spatial resolution for global simulations in GEOS-Chem, 2˚ × 2.5˚, (~ 220

km × 275 km at the equator) with 47 vertical levels, following the configuration described in

Hammer et al. [29].

GEOS-Chem also allows for higher resolution grids nested within a larger domain [32].

Again following Hammer et al. [29], we ran GEOS-Chem nested grid simulations over the

same time period (year 2016) for Asia, Europe, and North America, at 0.5˚ × 0.625˚ resolution,

which covers 75% of the world’s population. First, boundary conditions for the nested grid

simulations were recorded every 180 minutes of simulation time, at 2˚ × 2.5˚ resolution, dur-

ing the global simulation. In our application, emergent properties extracted for use in Global

InMAP, such as the annual-average temperature and wind velocity vectors, are only specified

up to this coarse resolution. However, Global InMAP can still be used on a higher resolution

(variable) grid, and the resolution of the emission inventory is also not limited by the resolu-

tion of the GEOS-Chem output.

Emission inputs

To estimate concentrations of total PM2.5 and speciated components using Global InMAP, we

compiled a global emission inventory of NH3, primary PM2.5, NOx, SOx, and NMVOC. For

consistency, we chose the same emission inventories as those used in the GEOS-Chem simula-

tion, but, where possible, processed to a higher spatial resolution as described below. Total

annual emissions fluxes for the emission inventories used in the Global InMAP simulation are

given in Table 1.

Where possible, the total emission inventories used for the Global InMAP simulation were

compiled using the standalone version of HEMCO [33], using the same configuration as used

in the GEOS-Chem simulation except at 0.25˚ × 0.25˚ horizontal resolution.

Differences in grid resolutions, time steps, and environmental fields can result in small dif-

ferences when the same emission inventories are processed. HEMCO standalone provides

both high resolution emissions and consistency with the GEOS-Chem simulation but cannot

be used for some emission inventories that require detailed chemical or meteorological inputs.

For those, we instead saved out emissions (“diagnostics”) from the GEOS-Chem simulation,

gridded at 2˚ × 2.5˚, and used these in the global InMAP simulation.

Table 1 gives the total annual emissions for Global InMAP inputs, and the data source for

each group of emissions used. Global and regional emission inventories used for anthropo-

genic sources of PM2.5 and precursors include: EDGAR [34] v.4.3.2, the National Emissions

Inventory (NEI) 2011 for the United States, BRAVO [35] (Big Bend Regional Aerosol and Vis-

ibility Observational study) for Mexico, the Criteria Air Contaminant (CAC) emission inven-

tory for Canada, EMEP [36] for Europe, MIX [37] v1.1 for Asia, MEIC [38] v1.2 for China, Lu

et al. [39] for SOx emissions in China and India, AEIC [40] for aircraft emissions, PARANOX
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[41] for ship emissions, and RETRO [42] for biofuel emissions. Biomass burning emissions are

from the RETRO [42] and GFED-4 [43] emission inventories. Natural emission inventories

used here include Ge et al. [44] for volcanic emissions, Hudman et al. [45] for soil NOx,

MEGAN [46] for biogenic emissions, and DEAD [47] for dust emissions.

Only a subset of NMVOC emissions is likely to form SOA [48,49]. For Global InMAP

anthropogenic emissions, we included isoprene, monoterpenes, benzene, toluene, xylenes, tri-

methylbenzenes, alkanes with more than 4 carbon atoms, and other aromatics, from the

EDGAR [34] v4.3.2 emission inventory. For biogenic emissions, we included limonene, iso-

prene, alpha-pinene, beta-pinene, sabinene, carene, and monoterpenes from the global

GEOS-Chem simulation. For biomass burning, we include benzene, toluene, xylenes, alkenes

with more than 3 carbon atoms, and alkanes with more than 4 carbon atoms, from the

RETRO biomass burning emission inventory [42].

Although Global InMAP has the functionality to include vertically elevated emissions, there

is a lack of global information on emission heights for many sources [34]. HEMCO processed

emissions were thus derived at the lowest vertical layer, except for aircraft emissions, lightning

NOx, and volcanic SOx. For simplicity in configuring the Global InMAP emissions, here we

only used the emissions from these sources in the lowest vertical layer, which excluded 8% of

global NOx emissions and 16% of global SOx emissions.

PM2.5 concentrations are not directly tracked in GEOS-Chem, but rather are calculated

from its underlying components that are grouped in such a way as to facilitate chemical and

atmospheric modeling. For example, dust is grouped by several size classes that do not per-

fectly map onto PM2.5. HEMCO and GEOS-Chem diagnostic outputs also typically report

emissions in these groups, requiring conversion for use in Global InMAP. Here, we did so in

accordance with the standard GEOS-Chem recommendations (see Table A in S1 Appendix

Table 1. PM2.5 and precursor emissions inputs into GEOS-Chem and Global InMAP.

Pollutant GEOS-Chem (Tg yr-1) Global InMAP (Tg yr-1) Global InMAP data sources Maximum resolution

Anthropogenic
PM2.5 24.45 32.93 EDGAR, NEI, CAC, MEIC 0.25˚ × 0.25˚

NH3 51.52 47.39 EDGAR, CAC, NEI, MIX, MEIC 0.25˚ × 0.25˚

SOx 84.33 84.33 EDGAR, BRAVO, EMEP, NEI, CAC, MIX, MEIC, Lu et al. 2˚ × 2.5˚

NOx 64.85 76.28 EDGAR, BRAVO, EMEP, NEI, CAC, MIX, MEIC, AEIC 0.25˚ × 0.25˚

NMVOC - b 58.15 EDGAR 0.1˚ × 0.1˚

Natural
PM2.5 244.53 244.53 DEAD, GEOS-Chem diagnostics 2˚ × 2.5˚

NH3 17.38 15.97 GEIA 0.25˚ × 0.25˚

SOx 28.32 0.42a Ge et al., GEOS-Chem diagnostics 2˚ × 2.5˚

NOx 28.02 16.60a Hudman et al., GEOS-Chem diagnostics 2˚ × 2.5˚

NMVOC - b 553.14 MEGAN, GEOS-Chem diagnostics 2˚ × 2.5˚

Biomass burning
PM2.5 35.30 35.30 GFED-4 0.25˚ × 0.25˚

NH3 4.24 4.24 GFED-4 0.25˚ × 0.25˚

SOx 2.25 2.25 GFED-4 0.25˚ × 0.25˚

NOx 20.28 20.28 GFED-4 0.25˚ × 0.25˚

NMVOC - b 5.10 RETRO 0.5˚ × 0.5˚

aOnly NOx and SOx emissions in the lowest vertical layer were used in Global InMAP, yet the majority of natural NOx and SOx emissions are emitted from lightning

and volcanoes at higher levels.
bNot all NMVOC emissions from GEOS-Chem simulation are reported.

https://doi.org/10.1371/journal.pone.0268714.t001
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for the PM2.5 equation used). Following Hammer et al. [29] and Li et al. [50], irreversible aque-

ous formation of SOA from isoprene was included in total PM2.5 mass, whereas reversible for-

mation was excluded.

InMAP data inputs for pollutant removal through deposition likewise required modifica-

tion for Global InMAP simulations. Specifically, Global InMAP requires land cover data to cal-

culate dry deposition rates for gases and particles in each ground-level grid cell. For the United

States, InMAP used land cover data from the United States Geological Survey National Land

Cover Database [51]. For Global InMAP, we instead used the Olson 2001 Land Use Map at

0.025˚ × 0.025˚ resolution [52], which is also used in GEOS-Chem.

Comparison with other air quality models and measurements

Using the global emission inventories described in the previous section, we generated Global

InMAP results and compared them against (1) measurements of total and speciated PM2.5

concentrations; (2) another model (GEOS-Chem) for three perturbation scenarios, wherein

we modified global emissions from a specific sector and predicted the resulting concentration

changes; and (3) an earlier version of the same model (US InMAP), for United States electricity

and transportation emissions.

First, we evaluated Global InMAP predictions of PM2.5 (total and speciated) against

annual-average ground-level measurements, as is commonly done for air quality models

[53,54]. To this end, we compiled and vetted a global measurement dataset for total and speci-

ated PM2.5 (see Text A and Table B in S1 Appendix for additional details). We reported metrics

commonly used for evaluating model performance: normalized mean error and bias (NME

and NMB), the squared linear correlation coefficient, R2, and the slope of the best-fit line, S

(see Text B in S1 Appendix for the equations) [55]. Using this approach, model-measurement

comparisons were generated for Global InMAP and (separately) for the GEOS-Chem simula-

tion (described above). Model criteria are often reported to provide context for model-mea-

surement comparison results [55,56]. Here, we report model criteria published by Emery et al.
[55] (see S2 Text).

Second, we simulated the effects of three emissions perturbations with Global InMAP and

GEOS-Chem simulations and compared their predicted pollutant concentration increments.

The perturbations chosen were: (i) a 100% increase (4.9 Tg) in global SO2 emissions from

power generation for 2 months (2016-01-01 until 2016-03-01); (ii) a 100% increase (7.5 Tg) in

global NH3 emissions from agricultural soils for 3 months (2016-01-01 until 2016-04-01); (iii)

a 100% increase (1.4 Tg) in global NOx emissions from road transport for 1 month (2016-01-

01 until 2016-02-01). All emissions changes were from the EDGAR emissions database (v.4.2,

0.1˚ × 0.1˚ resolution) as described above. For each of the scenarios chosen, we ran global,

annual 2˚ × 2.5˚ GEOS-Chem simulations similar to those described above, with the change in

emissions implemented using a uniform temporal profile over the timescale of the perturba-

tion. As InMAP is an “intervention” model (designed to model changes in emissions directly),

for Global InMAP we ran the changes in emissions from the EDGAR emission inventories at

native resolution.

Lastly, because InMAP has already been configured and evaluated over the contiguous

United States, we performed two simulations for United States emission changes using Global

InMAP and US InMAP. To this end, we compiled emission inventories over the United States

using the National Emissions Inventory (NEI) 2014v.1, processed exactly as in Thakrar et al.
[8]. We investigated two sources of PM2.5 and precursor emissions: coal-powered electricity

generation (NEI Source Classification Code: 10100212) and gasoline passenger vehicles (NEI

Source Classification Code: 2201210080).
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Results

Computational requirements

The annual, global simulations described above (system: 98 processors on 1 node of a super-

computing cluster; 36 GB memory) required 8.4 hours for Global InMAP (2.3 million grid

cells) and 100 hours for GEOS-Chem (2˚ × 2.5˚ grid resolution, 0.6 million grid cells). The per-

turbation simulations, when run on the same system, took 2.6–4.4 hours.

Other GEOS-Chem simulations require comparably high resources [57]. The variable reso-

lution InMAP grid allows for much higher spatial resolution over areas with high population

density than is possible with the GEOS-Chem uniform grid, while only requiring 8% of the

computational time.

Model-to-measurement comparisons

The Global InMAP simulation using total emissions predicted total PM2.5 concentrations

against measurements globally with NMB = –60%; NME = 62%; and R2 = 0.33 (see Figs 1 and

2, S2). For comparison, the GEOS Chem simulation predicted total PM2.5 concentrations

against measurements with NMB = –37%; NME = 41%; and R2 = 0.55. As with the

GEOS-Chem simulation, the performance of the Global InMAP simulation varied by region

(see S3–S9 Figs; Table C in S1 Appendix). By region, the Global InMAP simulation was gener-

ally most accurate in Oceania (NMB: -49%; R2: 0.82; see S7 Fig), North America (NMB: -45%;

R2: 0.92; see S6 Fig), and Europe (NMB: -64%; R2: 0.30; see S5 Fig), and least accurate in South

America (NMB: -76%; R2: 0.05; see S8 Fig). The inaccurate prediction in South America may

have arisen from discrepancies in emission inventories [58]. Across many heavily polluted

regions in Asia, the Global InMAP simulation predicted much lower PM2.5 concentrations

than are measured (difference: > 30 μg m-3) (S5 Fig), in particular across the Indo-Gangetic

Plain. The underprediction may have arisen because of potentially low emissions inputs, e.g.

from industrial and agricultural NH3 emissions [59] or missing NMVOC species from bio-

mass burning [60]. The Global InMAP simulation may have underpredicted pollution from

episodic events, such as biomass burning in the Indo-Gangetic Plain, because Global InMAP

assumes that emissions occur at an annual-average rate, whereas PM2.5 attributable to biomass

burning in that region is largest during times of year with lower than average dispersion

Fig 1. Annual-average ground-level total PM2.5 concentrations from the Global InMAP and GEOS-Chem simulations for year 2016.

https://doi.org/10.1371/journal.pone.0268714.g001
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conditions [61,62]. Furthermore, the chemistry that is included in Global InMAP may not be

sufficiently complex to predict PM2.5 with high accuracy in certain polluted areas [63].

We also compared annual-average predicted concentrations from the Global InMAP simu-

lation to annual-average measurements of pSO4, pNO3, and pNH4 globally (Figs 3–8). The

Global InMAP simulation predicted these components well (NME: 48%–66%; R2: 0.25–0.46)

and was generally biased low against measurements for pNO3 (especially in areas with pNO3

>2 μg m-3), and high for pSO4. Because the Global InMAP simulation did not have a strong

low bias against secondary inorganic PM2.5 measurements, it is likely that much of the low

bias of the Global InMAP simulation against total PM2.5 measurements arose from its predic-

tion of primary PM2.5 concentrations (see Fig 9), which have a 4.05 μg m-3 lower population-

weighted mean concentration globally compared to GEOS-Chem (see Table D in S1

Fig 2. Annual-average total PM2.5 concentrations from the Global InMAP and GEOS-Chem simulations against

measurements. Only values�100 μg m-3 are plotted here, excluding 25 (1.5%) model-measurement pairs (full figure

shown in S2 Fig).

https://doi.org/10.1371/journal.pone.0268714.g002
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Appendix). However, measurement data for SOA and primary PM2.5 concentrations were not

available at the evaluation sites (see Figs 9 and 10 for ground-level concentrations of these spe-

cies, and Table D in S1 Appendix for population-weighted concentrations). Against pollutant

concentration estimates that make use of satellite data from Li et al. [50], both the

GEOS-Chem and Global InMAP simulations underpredict population-weighted concentra-

tions of all PM2.5 species, especially SOA concentrations (see Table D in S1 Appendix), consis-

tent with prior findings for other chemical transport models [50].

We also compared the GEOS-Chem simulation against the same measurement data, to

contextualize the Global InMAP results. The GEOS-Chem simulation predicted total PM2.5

measurements with an R2 of 0.55. For comparison, a GEOS-Chem simulation that used the

same code and emissions [29], but estimated PM2.5 concentrations derived from simulated

aerosol optical depth, reported an R2 of 0.61, when using a more comprehensive measurement

dataset and averaging results across years 2010–2018 instead of just 2016.

Fig 3. Global InMAP and GEOS-Chem annual-average ground-level pSO4 concentrations.

https://doi.org/10.1371/journal.pone.0268714.g003

Fig 4. Global InMAP and GEOS-Chem annual-average ground-level pNO3 concentrations.

https://doi.org/10.1371/journal.pone.0268714.g004
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Fig 5. Global InMAP and GEOS-Chem annual-average ground-level pNH4 concentrations.

https://doi.org/10.1371/journal.pone.0268714.g005

Fig 6. Global InMAP and GEOS-Chem annual-average pSO4 concentrations against measurements.

https://doi.org/10.1371/journal.pone.0268714.g006
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Both the Global InMAP and the GEOS-Chem simulations predicted lower annual-average

total PM2.5 concentrations than were observed. For all species and regions, the direction of

bias against measurements was the same for the Global InMAP simulation as for the

GEOS-Chem simulation. This suggests that some of the bias observed in the Global InMAP

simulation was inherited from the bias in GEOS-Chem and/or in the simulation inputs such

as the emissions inventories. If that was the case, then future improvements to the

GEOS-Chem model and to the emission inventories used here could further reduce Global

InMAP biases.

The Global InMAP simulation broadly reproduced spatial patterns of pollutant concentra-

tions predicted by GEOS-Chem (see Table D in S1 Appendix for population-weighted concen-

trations, and Table F in S1 Appendix for region descriptions). However, there were some

features present in the GEOS-Chem simulation that were not captured by the Global InMAP

simulation. Such features included high annual-average PM2.5 concentrations from biomass

burning, including the Alberta fires, crop burning in the Indo-Gangetic Plain, peatland fires in

Fig 7. Global InMAP and GEOS-Chem annual-average pNO3 concentrations against measurements.

https://doi.org/10.1371/journal.pone.0268714.g007
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Singapore and Malaysia, and burning in Siberia. InMAP may have underpredicted PM2.5 con-

centrations from biomass burning relative to the GEOS-Chem simulation because it uses

annual-average representations of pollutant emissions, fate, and transport. Across Western

China, the Global InMAP simulation tended to misrepresent the spatial patterns provided by

the parent GEOS-Chem simulation for both primary and secondary PM2.5, including high

concentrations over the Himalayas and Sichuan Basin, and low concentrations in surrounding

areas. This may suggest that the annual-average advection scheme used by InMAP does not

yet adequately capture complex air flows over steep terrain.

Evaluation of predicted responses to changes in emissions

The major intended use of InMAP is to estimate the changes in PM2.5 concentrations for given

scenarios of emission changes. Therefore, its ability to reproduce the changes predicted by the

original CTM could be considered its most important attribute, more important than its ability

Fig 8. Global InMAP and GEOS-Chem annual-average pNH4 concentrations against measurements.

https://doi.org/10.1371/journal.pone.0268714.g008
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to reproduce current absolute concentrations. However, InMAP is designed to predict PM2.5

concentrations with high spatial resolution in urban areas, whereas GEOS-Chem is designed

to predict global chemical transport and runs at comparatively low resolution. Directly com-

paring the two models requires re-gridding the higher-resolution Global InMAP results to

match the lower-resolution GEOS-Chem results, which cancels out predictive advantages

Global InMAP might gain from its use of higher spatial resolution. Therefore, results in this

section could be considered a conservative evaluation of Global InMAP’s predictive

performance.

Figs 11–13 show annual-average pollutant concentration increments predicted by the

GEOS-Chem and Global InMAP simulations for increases in SOx emissions from power gen-

eration, NH3 emissions from agricultural soils, and NOx emissions from road transportation.

When regridding Global InMAP predictions to the GEOS-Chem grid, we found that Global

Fig 9. Global InMAP and GEOS-Chem annual-average ground-level SOA concentrations.

https://doi.org/10.1371/journal.pone.0268714.g009

Fig 10. Global InMAP and GEOS-Chem annual-average ground-level primary PM2.5 concentrations.

https://doi.org/10.1371/journal.pone.0268714.g010
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InMAP reproduced the GEOS-Chem results with an average area-weighted NME of 118–

182% and an average area-weighted NMB of 59–121% (see Table 2; Table E in S1 Appendix).

For the NOx and NH3 emissions scenarios, Global InMAP exhibited better performance

against GEOS-Chem on a population-weighted basis than on an area-weighted basis, includ-

ing over different regions. For the SOx emissions scenario, Global InMAP exhibited the lowest

overall performance against the GEOS-Chem simulation, having overpredicted changes in

pSO4 concentrations in populated regions such as East Asia and Africa (see Table E in S1

Appendix). Although Global InMAP did not perform well against measurements in South

Asia (see Table C in S1 Appendix), for changes in pollutant concentrations, Global InMAP

reproduces GEOS-Chem concentrations across South Asia with population-weighted NME of

44–59% and NMB of 5–24%, supporting the utility of the model for policy assessment in the

region.

The Global InMAP simulations predicted greater variability in concentration changes over

urban areas than the 2˚ × 2.5˚ GEOS-Chem simulations for the same emissions scenarios,

owing to its higher resolution grid. Fig 14 compares the pNO3 concentration changes over

Cairo, São Paulo, and Tokyo (the largest cities in Africa, South America, and Asia [64]) for the

NOx perturbation scenario as predicted by Global InMAP and GEOS-Chem. The urban-scale

fidelity of Global InMAP in cities worldwide can capture the changes in concentrations one

would expect from local pollution sources, whereas the coarser global model cannot. Higher

resolution GEOS-Chem simulations that resolve intra-urban gradients would be even more

computationally expensive than the GEOS-Chem simulations performed here [57].

Global InMAP predicted similar spatial patterns and magnitudes of changes in pollutant

concentrations as did US InMAP for a given emissions perturbation (see S10 Fig), with NME

Fig 11. Comparison between Global InMAP and GEOS-Chem for predicting changes in pNO3 concentrations from a 100% increase in NOx emissions

from road transportation.

https://doi.org/10.1371/journal.pone.0268714.g011

Fig 12. Comparison between Global InMAP and GEOS-Chem for predicting changes in pSO4 concentrations from a 100% increase in SOx emissions

from power generation.

https://doi.org/10.1371/journal.pone.0268714.g012
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and NMB within ± 50% for both scenarios considered (see Table 2). This demonstrated consis-

tency between the InMAP versions derived from WRF-Chem and GEOS-Chem inputs, sug-

gesting that no major errors were introduced in the Global InMAP model development (see

Table A in S1 Appendix; Tessum et al. [5]). For InMAP applications focusing only on the

United States, continued use of US InMAP is warranted, as the WRF-Chem simulation used

to parameterize US InMAP provides higher spatial resolution than does the nested

GEOS-Chem simulation employed for Global InMAP.

Discussion

Here, we extended InMAP, a reduced-complexity air quality model originally developed for

use in the United States, to simulate a global-through-urban spatial domain. InMAP is

designed to supplement rather than supplant state-of-the-science tools such as GEOS-Chem

or other global models, e.g., for cases in which (i) resources to implement a CTM are unavail-

able, (ii) numerous simulations are needed to evaluate a large variety of policy scenarios, or

(iii) the primary need is initial assessment and screening. The accuracy of InMAP is not as

high as with a CTM (e.g., here, a normalized mean error of 62% (InMAP) versus 41%

(GEOS-Chem)), yet for many scientific and policy questions lacking readily-available CTM-

quality results, InMAP provides useful information.

Global InMAP requires relatively low computational resources, allowing annual-average

simulations to readily be run on a desktop computer rather than a supercomputer, and take a

Table 2. Area- and population-weighted (wtd.) normalized mean bias (NMB) and error (NME) for Global InMAP predicted changes in concentrations against

changes in concentrations from GEOS-Chem or US InMAP, arising from scenarios of changes in emissions. Positive bias indicates that Global InMAP has higher

average concentration changes than the other model.

Model comparison Scenario Weighting NME (%) NMB (%)

Global InMAP against GEOS-Chem NH3 increase from agricultural soils area-wtd. 118.2 58.7

population-wtd. 81.8 58.7

NOx increase from road transportation area-wtd. 180.7 96.2

population-wtd. 106.7 48.9

SOx increase from power generation area-wtd. 181.3 120.7

population-wtd. 275.4 216.9

Global InMAP against US InMAP Coal-powered electricity area-wtd. 38.4 -18.8

population-wtd. 38.7 -10.5

Gasoline passenger vehicles area-wtd. 48.4 -23.0

population-wtd. 48.8 -46.7

https://doi.org/10.1371/journal.pone.0268714.t002

Fig 13. Comparison between Global InMAP and GEOS-Chem for predicting changes in pNH4 concentrations from a 100% increase in NH3 emissions

from agricultural soils.

https://doi.org/10.1371/journal.pone.0268714.g013
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few hours rather than days. For example, compared to the global GEOS-Chem simulation

described here, the Global InMAP simulation was 12× faster at predicting total annual-average

PM2.5 concentrations, despite the Global InMAP simulation having 66× higher population-

weighted average spatial resolution (as low as ~4km).

As expected, the expedience of Global InMAP comes at the expense of lower predictive

accuracy compared to a comprehensive CTM. This Global InMAP simulation is biased low

against measurements for total PM2.5 across all regions. Among species, it is biased high

against measurements of pSO4 and pNH4, and low against measurements of pNO3. The low

computational resource requirements make Global InMAP particularly well-suited to applica-

tions where hundreds of policy scenarios are evaluated, as is often done using reduced-com-

plexity models for the United States [8,11,65], or when no other air quality models are

available at the urban scale. In places with higher population and pollution exposure than the

Fig 14. First column: 100% increase in NOx emissions from road transport across Cairo, São Paulo, and Tokyo. Second and third column: Resulting

changes in pNO3 concentrations predicted by the Global InMAP and the GEOS-Chem simulations. For each map, blue lines indicate rivers and black lines

indicate land borders.

https://doi.org/10.1371/journal.pone.0268714.g014
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United States, there is even more potential for a reduced-complexity model such as Global

InMAP to inform impactful policy decisions. Global InMAP may be important for informing

preliminary hypotheses about policy decisions in its early stages (e.g., “What is the best location

to site a new facility that may be a major pollution source?”), allowing computational resources

to be used instead for CTMs at a later stage to check consistency with the findings.

Global InMAP performance varies regionally, both against measurements and against

GEOS-Chem when estimating changes in concentrations. Across South Asia, Global InMAP

performs poorly against measurements, but for the changes in emissions considered here,

Global InMAP predicts fairly similar changes in concentrations to GEOS-Chem. Against mea-

surements, Global InMAP is generally most accurate in Oceania, North America, and Europe,

and tends to perform worse in places where GEOS-Chem also performs poorly (e.g., South

America, where both GEOS-Chem and Global InMAP exhibit a weak negative linear correla-

tion against measurements). This suggests that Global InMAP performance in those regions

may improve based on future advancements in emission inventories or GEOS-Chem model

inputs. This Global InMAP version was developed using outputs from GEOS-Chem v11-01f,

whereas GEOS-Chem v13.3.3 is currently released. GEOS-Chem v13.3.3 has many improve-

ments over v11-01f, including the ability to easily define high resolution global nested grids.

As well as potentially reducing bias, higher resolution GEOS-Chem inputs to Global InMAP

will reduce artefacts from coarse inputs, such as those observed over cities in Fig 14. Further-

more, higher resolution global meteorology inputs are becoming increasingly available, and

may further be used to improve Global InMAP performance.

By directly estimating annual-average PM2.5 concentrations at high spatial resolution,

Global InMAP is configured to easily estimate changes in human exposure and health impacts.

When estimating human health effects of emissions changes, there will also be sizeable uncer-

tainties from estimating the emissions changes themselves and from the concentration-

response function employed [66]. Global InMAP errors should thus be contextualized with

those uncertainties in mind. For example, cost-benefit analyses typically make use of highly

uncertain mortality estimation and economic valuation to arrive at air quality-related costs

and benefits [67]. For the United States, a previous study [6] found that the largest source of

uncertainty in estimating monetized PM2.5 health impacts was the economic valuation of pre-

mature mortality, followed by the concentration-response function, whereas uncertainty in

PM2.5 concentrations from the choice of air quality model was the smallest source of uncer-

tainty considered. Since uncertainty in the air pollution model is not the largest source of

uncertainty in many contexts, there are many cases in which a reduced-complexity model

(RCM) can deliver useful information sufficient for policy analyses.

That conclusion especially applies to the many cases where resources may exist to run an

RCM but not to establish and run a conventional CTM. Indeed, there are many cases in which

a CTM simulation is infeasible, yet an RCM or other approach could provide some informa-

tion. As mentioned above, InMAP is not a replacement for a CTM; instead, it provides screen-

ing-level information, results for questions that would involve too many model runs to use a

CTM, or results that would be otherwise infeasible. By providing a global, open source, air

quality model with high spatial resolution and low computational requirements, we hope to

facilitate the wide practice of air pollution policy assessment worldwide.
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S1 Fig. InMAP grid details. Detail of the Global InMAP horizontal computational grid over

West Africa, Central America, and Europe for illustration. Grid cells are as small as 0.04˚ ×
0.03˚ (~4 km length) in areas with a higher population such as Lagos in Nigeria, San Salvador

in El Salvador, and London in the United Kingdom. Grid cells are as large as 5˚ × 4˚ (~500 km

length) in places with a lower population, such as across the Atlantic Ocean.

(TIFF)

S2 Fig. Total concentrations against measurements, including outliers. InMAP and

GEOS-Chem annual-average primary PM2.5 concentrations against measurements, including

outliers (above 100 μg m-3). Pop-wtd: Population-weighted metrics.

(TIFF)

S3 Fig. Model performance for Africa. Performance of Global InMAP and GEOS-Chem sim-

ulations against total annual-average PM2.5 measurements for Africa. Dots on each map show

measurement site locations, whose color corresponds to the model-measurement difference in

PM2.5 concentrations.

(TIFF)

S4 Fig. Model performance for East Asia. Performance of Global InMAP and GEOS-Chem

simulations against total annual-average PM2.5 measurements for East Asia. Dots on each map

show measurement site locations, whose color corresponds to the model-measurement differ-

ence in PM2.5 concentrations.

(TIFF)

S5 Fig. Model performance for South Asia. Performance of Global InMAP and GEOS-Chem

simulations against total annual-average PM2.5 measurements for South Asia. Dots on each

map show measurement site locations, whose color corresponds to the model-measurement

difference in PM2.5 concentrations.

(TIFF)

S6 Fig. Model performance for Europe. Performance of Global InMAP and GEOS-Chem

simulations against total annual-average PM2.5 measurements for Europe. Dots on each map

show measurement site locations, whose color corresponds to the model-measurement differ-

ence in PM2.5 concentrations.

(TIFF)

S7 Fig. Model performance for North and Central America. Performance of Global InMAP

and GEOS-Chem simulations against total annual-average PM2.5 measurements for North and

Central America. Dots on each map show measurement site locations, whose color corre-

sponds to the model-measurement difference in PM2.5 concentrations.

(TIFF)

S8 Fig. Model performance for Oceania. Performance of Global InMAP and GEOS-Chem

simulations against total annual-average PM2.5 measurements for Oceania. Dots on each map

show measurement site locations, whose color corresponds to the model-measurement differ-

ence in PM2.5 concentrations.

(TIFF)

S9 Fig. Model performance for South America. Performance of Global InMAP and

GEOS-Chem simulations against total annual-average PM2.5 measurements for South Amer-

ica. Dots on each map show measurement site locations, whose color corresponds to the

model-measurement difference in PM2.5 concentrations.

(TIFF)

PLOS ONE Global, reduced-complexity air quality modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0268714 May 25, 2022 18 / 22

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268714.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268714.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268714.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268714.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268714.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268714.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268714.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268714.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268714.s010
https://doi.org/10.1371/journal.pone.0268714


S10 Fig. Comparison between Global and US InMAP. Changes in Total PM2.5 concentra-

tions from road vehicle emissions and from power generation emissions as predicted by

Global InMAP (which has GEOS-Chem preprocessor inputs) alongside US InMAP (which

has WRF-Chem preprocessor inputs).

(TIFF)
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28. Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, et al. The modern-era retrospective

analysis for research and applications, version 2 (MERRA-2). Journal of climate. 2017 Jul 15; 30

(14):5419–54. https://doi.org/10.1175/JCLI-D-16-0758.1 PMID: 32020988

29. Hammer MS, van Donkelaar A, Li C, Lyapustin A, Sayer AM, Hsu NC, et al. Global estimates and long-

term trends of fine particulate matter concentrations (1998–2018). Environmental Science & Technol-

ogy. 2020 Jun 3; 54(13):7879–90. https://doi.org/10.1021/acs.est.0c01764 PMID: 32491847

30. Pye HOT; Seinfeld JH. A global perspective on aerosol from low-volatility organic compounds. Atmo-

spheric Chemistry and Physics 2010; 10(9):4377–4401.

31. Pye HO, Chan AW, Barkley MP, Seinfeld JH. Global modeling of organic aerosol: the importance of

reactive nitrogen (NOx and NO3). Atmospheric Chemistry and Physics. 2010 Nov 30; 10(22):11261–

76.

32. Wang YX, McElroy MB, Jacob DJ, Yantosca RM. A nested grid formulation for chemical transport over

Asia: Applications to CO. Journal of Geophysical Research: Atmospheres. 2004 Nov 27; 109(D22).

33. Keller CA, Long MS, Yantosca RM, Da Silva AM, Pawson S, Jacob DJ. HEMCO v1. 0: a versatile,

ESMF-compliant component for calculating emissions in atmospheric models. Geoscientific Model

Development. 2014 Jul 14; 7(4):1409–17.

34. Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, Van Aardenne JA, et al. Gridded emissions

of air pollutants for the period 1970–2012 within EDGAR v4. 3.2. Earth Syst. Sci. Data. 2018 Oct 26; 10

(4):1987–2013.

35. Kuhns H, Green M, Etyemezian V, Watson J, Pitchford M. Big bend regional aerosol and visibility obser-

vational (BRAVO) study emissions inventory. Report prepared for BRAVO Steering Committee, Desert

Research Institute, Las Vegas, Nevada. 2003.

36. Vestreng V. Emission data reported to UNECE/EMEP: Quality assurance and trend analysis & presen-

tation of WebDab: MSC-W status report 2002.

37. Li M, Zhang Q, Kurokawa JI, Woo JH, He K, Lu Z, et al. MIX: a mosaic Asian anthropogenic emission

inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric

Chemistry and Physics. 2017 Jan 20; 17(2):935–63.

38. Zheng B, Huo H, Zhang Q, Yao ZL, Wang XT, Yang XF, et al. High-resolution mapping of vehicle emis-

sions in China in 2008. Atmospheric Chemistry and Physics. 2014 Sep 17; 14(18):9787–805.

39. Lu Z, Zhang Q, Streets DG. Sulfur dioxide and primary carbonaceous aerosol emissions in China and

India, 1996–2010. Atmospheric Chemistry and Physics. 2011 Sep 23; 11(18):9839–64.

40. Stettler ME, Eastham S, Barrett SR. Air quality and public health impacts of UK airports. Part I: Emis-

sions. Atmospheric environment. 2011 Oct 1; 45(31):5415–24.

41. Holmes CD, Prather MJ, Vinken GC. The climate impact of ship NOx emissions: an improved estimate

accounting for plume chemistry. Atmospheric Chemistry and Physics. 2014 Jul 4; 14(13):6801–12.

42. Schultz MG, Heil A, Hoelzemann JJ, Spessa A, Thonicke K, Goldammer JG, et al. Global wildland fire

emissions from 1960 to 2000. Global Biogeochemical Cycles. 2008 Jun; 22(2).

43. Giglio L, Randerson JT, Van Der Werf GR. Analysis of daily, monthly, and annual burned area using the

fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeos-

ciences. 2013 Mar; 118(1):317–28.

44. Ge C, Wang J, Carn S, Yang K, Ginoux P, Krotkov N. Satellite-based global volcanic SO2 emissions

and sulfate direct radiative forcing during 2005–2012. Journal of Geophysical Research: Atmospheres.

2016 Apr 16; 121(7):3446–64.

45. Hudman RC, Moore NE, Mebust AK, Martin RV, Russell AR, Valin LC, et al. Steps towards a mechanis-

tic model of global soil nitric oxide emissions: implementation and space based-constraints. Atmo-

spheric Chemistry & Physics. 2012; 12(16):7779–7795.

46. Guenther AB, Jiang Xiaoyan, Heald CL, Sakulyanontvittaya T, Duhl Ti any, Emmons LK, et al. The

Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2. 1): an extended and

updated framework for modeling biogenic emissions. Geoscientific Model Development. 2012; 5

(6):1471–1492.

47. Zender CS, Bian H, Newman D. Mineral Dust Entrainment and Deposition (DEAD) model: Description

and 1990s dust climatology. Journal of Geophysical Research: Atmospheres. 2003 Jul 27; 108(D14).

48. Ahmadov R, McKeen SA, Robinson AL, Bahreini R, Middlebrook AM, De Gouw JA, et al. A volatility

basis set model for summertime secondary organic aerosols over the eastern United States in 2006.

Journal of Geophysical Research: Atmospheres. 2012 Mar 27; 117(D6).

PLOS ONE Global, reduced-complexity air quality modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0268714 May 25, 2022 21 / 22

https://doi.org/10.1175/JCLI-D-16-0758.1
http://www.ncbi.nlm.nih.gov/pubmed/32020988
https://doi.org/10.1021/acs.est.0c01764
http://www.ncbi.nlm.nih.gov/pubmed/32491847
https://doi.org/10.1371/journal.pone.0268714


49. Philip S, Martin RV, Pierce JR, Jimenez JL, Zhang Q, Canagaratna MR, et al. Spatially and seasonally

resolved estimate of the ratio of organic mass to organic carbon. Atmospheric Environment. 2014 Apr

1; 87:34–40.

50. Li C, Martin RV, van Donkelaar A, Boys BL, Hammer MS, Xu JW, et al. Trends in chemical composition

of global and regional population-weighted fine particulate matter estimated for 25 years. Environmental

science & technology. 2017 Oct 3; 51(19):11185–95. https://doi.org/10.1021/acs.est.7b02530 PMID:

28891283

51. Homer C, Huang C, Yang L, Wylie B, Coan M. Development of a 2001 national land-cover database for

the United States. Photogrammetric Engineering & Remote Sensing. 2004 Jul 1; 70(7):829–40.

52. GEOS-Chem Wiki. Olson land map. Accessed: 25th January 2021. http://wiki.seas.harvard.edu/geos-

chem/index.php/Olson_land_map.

53. Dennis R, Fox T, Fuentes M, Gilliland A, Hanna S, Hogrefe C, et al. A framework for evaluating

regional-scale numerical photochemical modeling systems. Environmental Fluid Mechanics. 2010 Aug;

10(4):471–89. https://doi.org/10.1007/s10652-009-9163-2 PMID: 21461126

54. Diao M, Holloway T, Choi S, O’Neill SM, Al-Hamdan MZ, Van Donkelaar A, et al. Methods, availability,

and applications of PM2. 5 exposure estimates derived from ground measurements, satellite, and atmo-

spheric models. Journal of the Air & Waste Management Association. 2019 Dec 2; 69(12):1391–414.

55. Emery C, Liu Z, Russell AG, Odman MT, Yarwood G, Kumar N. Recommendations on statistics and

benchmarks to assess photochemical model performance. Journal of the Air & Waste Management

Association. 2017 Apr 27; 67(5):582–98. https://doi.org/10.1080/10962247.2016.1265027 PMID:

27960634

56. Boylan JW, Russell AG. PM and light extinction model performance metrics, goals, and criteria for

three-dimensional air quality models. Atmospheric environment. 2006 Aug 1; 40(26):4946–59.

57. Eastham SD, Long MS, Keller CA, Lundgren E, Yantosca RM, Zhuang J, et al. GEOS-Chem High Per-

formance (GCHP v11-02c): a next-generation implementation of the GEOS-Chem chemical transport

model for massively parallel applications. Geoscientific Model Development. 2018; 11(7):2941–2953.

58. Huneeus N, van der Gon HD, Castesana P, Menares C, Granier C, Granier L, et al. Evaluation of

anthropogenic air pollutant emission inventories for South America at national and city scale. Atmo-

spheric Environment. 2020; 235:117606.

59. Van Damme M, Clarisse L, Whitburn S, Hadji-Lazaro J, Hurtmans D, Clerbaux C, et al. Industrial and

agricultural ammonia point sources exposed. Nature. 2018 Dec; 564(7734):99–103. https://doi.org/10.

1038/s41586-018-0747-1 PMID: 30518888

60. Akherati A, He Y, Coggon MM, Koss AR, Hodshire AL, Sekimoto K, et al. Oxygenated aromatic com-

pounds are important precursors of secondary organic aerosol in biomass-burning emissions. Environ-

mental Science & Technology. 2020 Jun 19; 54(14):8568–79. https://doi.org/10.1021/acs.est.0c01345

PMID: 32559089

61. Shaik DS, Kant Y, Mitra D, Singh A, Chandola HC, Sateesh M, et al. Impact of biomass burning on

regional aerosol optical properties: A case study over northern India. Journal of environmental manage-

ment. 2019; 244:328–343. https://doi.org/10.1016/j.jenvman.2019.04.025 PMID: 31129465

62. Rastogi N, Singh A, Sarin MM, Singh D. Temporal variability of primary and secondary aerosols over

northern India: Impact of biomass burning emissions. Atmospheric environment. 2016; 125:396–403.

63. Zheng B, Zhang Q, Zhang Y, He KB, Wang K, Zheng GJ, et al. Heterogeneous chemistry: a mechanism

missing in current models to explain secondary inorganic aerosol formation during the January 2013

haze episode in North China. Atmospheric Chemistry and Physics. 2015 Feb 25; 15(4):2031–49.

64. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization

Prospects: The 2018 Revision (ST/ESA/SER.A/420). 2014. New York: United Nations.

65. Muller NZ, Mendelsohn R. Efficient pollution regulation: getting the prices right. American Economic

Review. 2009 Dec; 99(5):1714–39.

66. Coffman E, Burnett RT, Sacks JD. Quantitative Characterization of Uncertainty in the Concentration–

Response Relationship between Long-Term PM2. 5 Exposure and Mortality at Low Concentrations.

Environmental Science & Technology. 2020 Jul 23; 54(16):10191–200. https://doi.org/10.1021/acs.est.

0c02770 PMID: 32702976

67. US Environmental Protection Agency. Regulatory impact analysis for the final revisions to the national

ambient air quality standards for particulate matter. 2012 Dec;EPA-452/R-12-005.

PLOS ONE Global, reduced-complexity air quality modeling

PLOS ONE | https://doi.org/10.1371/journal.pone.0268714 May 25, 2022 22 / 22

https://doi.org/10.1021/acs.est.7b02530
http://www.ncbi.nlm.nih.gov/pubmed/28891283
http://wiki.seas.harvard.edu/geos-chem/index.php/Olson_land_map
http://wiki.seas.harvard.edu/geos-chem/index.php/Olson_land_map
https://doi.org/10.1007/s10652-009-9163-2
http://www.ncbi.nlm.nih.gov/pubmed/21461126
https://doi.org/10.1080/10962247.2016.1265027
http://www.ncbi.nlm.nih.gov/pubmed/27960634
https://doi.org/10.1038/s41586-018-0747-1
https://doi.org/10.1038/s41586-018-0747-1
http://www.ncbi.nlm.nih.gov/pubmed/30518888
https://doi.org/10.1021/acs.est.0c01345
http://www.ncbi.nlm.nih.gov/pubmed/32559089
https://doi.org/10.1016/j.jenvman.2019.04.025
http://www.ncbi.nlm.nih.gov/pubmed/31129465
https://doi.org/10.1021/acs.est.0c02770
https://doi.org/10.1021/acs.est.0c02770
http://www.ncbi.nlm.nih.gov/pubmed/32702976
https://doi.org/10.1371/journal.pone.0268714

