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Abstract: Dried roots of Polygala tenuifolia (YuanZhi in Chinese) are widely used in Chinese herbal
medicine. These components in YuanZhi have significant anti-oxidation properties owing to high
levels of 3,6’-disinapoylsucrose (DISS) and Polygalaxanthone III (PolyIII). In order to efficiently
extract natural medicines, response surface methodology (RSM) and least squares support vector
machine (LSSVM) were used for the modeling and optimization of ultrasound-assisted extraction of
DISS and PolyIII together to determine the antioxidant activity of the extracts obtained from YuanZhi.
For the optimal combination of the comprehensive yield of DISS and PolyIII (Y), the Box-Behnken
design (BBD) was used to improve extraction time (X1), extraction temperature (X2), liquid–solid
ratio (X3), and ethanol concentration (X4). The optimal process parameters were determined to be
as follows: extraction time, 93 min; liquid–solid ratio, 40 mL/g; extraction temperature, 48 ◦C; and
ethanol concentration, 67%. With these conditions, the predictive optimal combination comprehensive
evaluation value is 13.0217. It was clear that the LS-SVM model had higher accuracy in predictive and
optimization capabilities, with higher antioxidant activity and lower relative deviations values, than
did RSM. Hence, the LS-SVM model proved to be more effective for the analysis and improvement of
the extraction process.

Keywords: Yuanzhi; 3,6′-disinapoylsucrose; polygalaxanthone III; response surface methodology;
least squares support vector machine; antioxidant activity

1. Introduction

Polygala tenuifolia (Yuanzhi) is widely distributed in China, and its roots are an im-
portant herb used in traditional Chinese medicine and have been widely reported to have
multiple physiological roles and to produce a variety of biological effects, such as antioxi-
dant, analgesic and anti-inflammatory activities. More recently, there has been renewed
interest in treating neurocognitive system diseases of Yuanzhi root extracts. In addition,
Yuanzhi is the main component of “Kai Xin Powder”, a commonly used classic recipe [1].
At present, it has been proven that oligosaccharide ester compounds and xanthones are the
major bioactivity constituents of Yuanzhi [2,3]. Noticeably, 3,6’-disinapoylsucrose (DISS)
and Polygalaxanthone III(PolyIII) are the main ingredients in Yuanzhi, and they have
significant antioxidant activity [4]. This means that DISS and PolyIII have good scavenging
ability to active oxygen free radicals [5,6]. DISS has protective effects on brain and neuron
cells and has antidepressant and anxiolytic effects [7,8]. PolyIII has an excitatory effect in
the central nervous system and inhibition of monoamine oxidase [9] and has antidepressant
and anti-inflammatory effects [10]. Meanwhile, these compounds constitute the quality
control indices of Yuanzhi in the Chinese pharmacopeia. In conclusion, Yuanzhi can be
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used to treat disorders such as depression and AD [11], each dose in 3–10 g from Chinese
pharmacopeia 2020 [12]. In addition, DISS and PolyIII can be used as high value natural
antioxidant products. In order to develop traditional Chinese medicine, it has important
scientific significance to make better use of resources and improve the yield of DISS and
PolyIII (Figure 1).

In general, the traditional extraction methods such as percolation, decoction, im-
pregnation and reflux consume large amounts of solvents and energy. Compared with
traditional extraction methods, ultrasound-assisted extraction (UAE) can utilize the me-
chanical, cavitation and thermal effects of ultrasonic waves to overcome the weaknesses
of traditional extraction and significantly improve the extraction efficiency with lower
consumption [13–15]. Exactly, the propagation of ultrasonic mechanical thermal vibration
contributes to the dissolution and diffusion of plant active ingredients [16]. The cavitation
releases energy and generates instantaneous pressure and high temperature to cause the
cell wall to be cracked, which prompts the contents that are directly dissolved and fully
contacted with the solvent [17]. The process is not associated with damage to phytochem-
icals; it has been widely used to extract biologically active components from plants [18].
In addition, the solvent extraction process is affected by many factors, particularly extrac-
tion factors including solvent concentration, extraction time, extraction temperature and
liquid–solid ratio, and these factors can individually or together affect extraction efficiency.
Because of multitudinous factors, it is a time-consuming and expensive process to analyze
and optimize the extraction condition without a mathematical model. Therefore, it is
essential to use multivariate analysis methodologies, such as response surface methodology
(RSM) or least squares support vector machine (LSSVM) to analyze the interactive effects
of these factors and optimize extraction parameters [19].
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RSM is an optimization method for comprehensive experimental design and mathe-
matical modeling proposed by Box and Wilson in 1951. It is commonly used to understand
the performance of complex systems and to optimize any type of complex extraction pro-
cess [20,21]. RSM, which has been widely applied in the extraction from plants or herbs due
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to its advantages of fewer trials, higher precision, better predictive performance, and an
optimal response, can be obtained through the visual inspection of the three-dimensional
response surface, can elucidate the interactive effect of factors on target responses, and can
optimize chemical and physical processes. Compared with the RSM, least squares support
vector machine (LSSVM) is derived from the support vector machine (SVM) approach and
is a further improvement of the support vector machine model [22], which improves the
operation speed by transforming the objective function, optimizing the equation conditions,
and reducing computational complexity. It has been widely used in many fields [23,24]. A
comparative study of RSM and LSSVM can provide stronger evidence while comparing
methods in analytical chemistry. To the best of our knowledge, a comparison between
RSM and LSSVM models has not been reported with regard to the simultaneous optimiza-
tion of comprehensive yields of DISS and PolyIII and the antioxidant activity of Yuanzhi.
This study is the first attempt to optimize UAE conditions for DISS and PolyIII and their
antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH)
and 2, 2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) antioxidant power (ABTS)) by
Box–Behnken design (BBD). Furthermore, extraction time (X1), extraction temperature
(X2), liquid–solid ratio (X3), and ethanol concentration (X4) were selected as independent
variables in order to optimize the extraction process for yield and antioxidant activity with
four-factor three-level BBD.

2. Results
2.1. Single-Factor Experiments
2.1.1. Effect of Extraction Time

The extraction times were set at 30, 60, 90, 120, and 150 min. Other experimental
conditions were as follows: extraction temperature was 40 ◦C, liquid–solid ratio was
8 mL/g, and 70% ethanol was selected as solvent. The effect of extraction time on response
value is shown in Figure 2a. With the prolongation of extraction time, the response value
increased. After the extraction time lasted for 90 min, the response value reached its
maximum, and was followed by a declining trend, which might be due to the degradation
of DISS and PolyIII or the increase in the dissolution of other impurities.
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2.1.2. Effect of Extraction Temperature

Extraction temperature is an important factor during the extraction process [25]. The
experiments in this study were conducted at 20, 30, 40, 50, 60 ◦C to investigate the influence
of extraction temperature. The extraction time was set to 90 min, the liquid–solid ratio
was 10 mL/g, and the ethanol concentration was 70%. All other conditions were equal.
As shown in Figure 2b, the study results demonstrated that the response value increases
gradually with the increase in temperature, reaching the maximum value at 50 ◦C, and
then decreasing slowly. Therefore, the ultrasonic extraction temperature was set to 40, 50
and 60 ◦C.
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2.1.3. Effect of Liquid–solid Ratio

The extraction procedure was executed at different liquid–solid ratios (6, 8, 10, 12,
14 mL/g), while other extraction parameters were as follows: extraction temperature was
50 ◦C, ethanol concentration was 70%, and extraction time was 90 min. As shown in
Figure 2c, the response value increased with the liquid–solid ratio, while the liquid–solid
ratio reached 12 mL/g, increasing slowly. Considering cost savings, the extraction liquid–
solid ratio was selected as 10, 12, and 14 mL/g.

2.1.4. Effect of Ethanol Concentration

In this study, we investigated the effect of different ethanol concentrations (40%, 55%,
70%, 85%, 95%) on the extraction of DISS and PolyIII. As shown in Figure 2d, the variation
trend of the response value first increased and then decreased with the increase in ethanol
content. This may be due to increased dissolution of other alcohol-soluble substances,
and this may also be that the viscosity of the solvent becomes larger due to the excessive
concentration of ethanol, which is not conducive to the dissolution of the compound.

Finally, three levels were determined as follows: the extraction time was 60, 90 and
120 min; liquid–solid ratio was 8, 10 and 12 mL/g; the ethanol concentration were 50%,
70%, 85%, as shown in Table 1.

Table 1. Factors and levels in Box–Behnken design.

Factor Symbols
Level

−1 0 +1

Extraction time, min X1 60 90 120
Extraction temperature, ◦C X2 40 50 60
Liquid–solid ratio, mL/g X3 8 10 12
Ethanol concentration, % X4 55 70 85

2.2. BBD Method Optimization of Extraction Conditions

The ranges for the four independent extraction variables, namely, extraction time (X1),
extraction temperature (X2), liquid–solid ratio (X3) and ethanol content (X4), were at three
levels (+1, 0, −1) for extraction parameter optimization by the BBD method.

A comprehensive evaluation value of DISS and PolyIII extraction yield was chosen
as the dependent variable. In the extraction optimization experiment, 30 groups (5 g for
Yuanzhi, n = 3) were selected, and the BBD matrix of 30 experimental standard runs was
designed by the software, as shown in Table 2.

Table 2. Box-Behnken design (BBD) and results.

Std X1 X2 X3 X4 PolyIII (mg/g) DISS (mg/g) Y
(Synthesis Score)

1 −1 −1 0 0 1.4456 15.5484 12.0227
2 1 −1 0 0 1.5295 16.1695 12.5095
3 −1 1 0 0 1.4981 15.9899 12.3670
4 1 1 0 0 1.5736 16.1695 12.5205
5 0 0 −1 −1 1.4016 15.9492 12.3123
6 0 0 1 −1 1.5044 15.9561 12.3432
7 0 0 −1 1 1.4409 14.9479 11.5711
8 0 0 1 1 1.5486 15.2625 11.8340
9 −1 0 0 −1 1.3442 15.2710 11.7893
10 1 0 0 −1 1.4611 15.9812 12.3512
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Table 2. Cont.

Std X1 X2 X3 X4 PolyIII (mg/g) DISS (mg/g) Y
(Synthesis Score)

11 −1 0 0 1 1.3649 14.7946 11.4372
12 1 0 0 1 1.5000 14.9916 11.6187
13 0 −1 −1 0 1.4956 15.9583 12.3426
14 0 1 −1 0 1.5200 16.1822 12.5166
15 0 −1 1 0 1.5716 16.3750 12.6741
16 0 1 1 0 1.6158 16.2980 12.6275
17 −1 0 −1 0 1.3782 15.9690 12.3213
18 1 0 −1 0 1.3829 16.2697 12.5480
19 −1 0 1 0 1.4019 16.2483 12.5367
20 1 0 1 0 1.5831 16.7280 12.9418
21 0 −1 0 −1 1.4724 15.3066 11.8481
22 0 1 0 −1 1.5987 15.9826 12.3866
23 0 −1 0 1 1.5282 15.2000 11.7821
24 0 1 0 1 1.5159 14.7230 11.4212
25 0 0 0 0 1.6715 16.6493 12.9048
26 0 0 0 0 1.7005 16.7102 12.9578
27 0 0 0 0 1.6571 16.9221 13.1058
28 0 0 0 0 1.6694 16.8204 13.0327
29 0 0 0 0 1.6842 16.8039 13.0240
30 0 0 0 0 1.7018 16.8183 13.0392

2.3. Model Fitting
2.3.1. RSM Modeling

The optimization results of ultrasound-assisted extraction of Yuanzhi with RSM and
the data obtained from the BBD were analyzed to obtain the quadratic polynomial model
by regression analysis. The quadratic polynomial model is as follows:

Y = β0 +
4

∑
z=1

βixi +
4

∑
i=1

4

∑
j≥1

βijxixj +
4

∑
z=1

βiix2
i + ε (1)

where Y represents the comprehensive evaluation value, Xi or Xj (i, j = 1, 2, 3, 4) are the
independent variables: X1, extraction time; X2, extraction temperature; X3, solid–liquid
ratio; X4, ethanol concentration. β0 is the constant coefficient. Bi, βij, βii are constant
regression coefficients of the model. ε is the residual between model and experiment.

Based on BBD, 30 experiments of the extraction were carried out to study the effect of
these four factors on the yields of DISS and PolyIII. The results of the four independent
variables and their levels, as well as the experimental and predictive dependent variables
based on the selected BBD, are shown in Table 2. From the results, the comprehensive
evaluation value of DISS and PolyIII extraction yield in Yuanzhi extracts ranged from
11.4212 to 13.1058. The extraction yield value of comprehensive evaluation value can be
expressed as the following equation:

Y = 13.01 + 0.17X1 + 0.055X2 + 0.11X3 − 0.28X4 − 0.083X1X2 + 0.045X1X3 −
0.095X1X4 − 0.055X2X3 − 0.22 X2X4 + 0.058X3X4- 0.33X1

2 − 0.32X2
2− 0.13X3

2 − 0.86X4
2 (2)

The analysis of variance (ANOVA) is an effective and important method to evaluate
the quality and significance of mathematical models; the results are shown in Table 3. p
values were used to check the significance of each coefficient. When the “p-value > f” is less
than 0.05, 0.01 and 0.001, it indicates that the model item is significant, highly significant
and extremely significant, respectively. When the p value < 0.05 (α = 0.05), the fitted
regression equation was considered statistically significant.



Molecules 2022, 27, 3069 6 of 21

Table 3. Results of analysis of variance (ANOVA) of the Box–Behnken design (BBD).

Source of
Variation

Sum of
Squares Variance Mean Square F p Significance

Model 7.3700 14 0.5264 121.9277 < 0.0001 ***
X1 0.3385 1 0.3385 78.4086 < 0.0001 ***
X2 0.0363 1 0.0363 8.4172 0.011 *
X3 0.1508 1 0.1508 34.9318 < 0.0001 ***
X4 0.9443 1 0.9443 218.7243 < 0.0001 ***

X1X2 0.0278 1 0.0278 6.4295 0.0228 *
X1X3 0.0080 1 0.0080 1.8423 0.1947
X1X4 0.0362 1 0.0362 8.3790 0.0111 *
X2X3 0.0122 1 0.0122 2.8221 0.1137
X2X4 0.2022 1 0.2022 46.8362 < 0.0001 ***
X3X4 0.0135 1 0.0135 3.1175 0.0978
X1

2 0.7355 1 0.7355 170.3606 < 0.0001 ***
X2

2 0.7052 1 0.7052 163.3234 < 0.0001 ***
X3

2 0.1103 1 0.1103 25.5470 0.0001 **
X4

2 5.0848 1 5.0848 1177.7096 < 0.0001 ***
Residual 0.0648 15 0.0043

Lack of fit 0.0402 10 0.0040 0.8199 0.6322
R2 0.9913

Adjusted R2 0.9832
Predicted R2 0.9641

* Represents significant at p < 0.05; ** Represents highly significant at p < 0.01; *** Represents extremely significant
at p < 0.001.

On the basis of the ANOVA results, they showed significant linear (X1, X2, X3 and
X4) and interactive (X1X2, X1X4, X2X4) effects on comprehensive evaluation values. The
coefficient of determination value (R2) is in reasonable agreement with the adjusted de-
termination coefficients (Adj. R2), which means that the difference is less. The lack of a
fit F-value of 0.82 implies that the lack of fit is not significant relative to the pure error.
There is a 63.19% chance that a lack of fit F-value this large could occur due to noise. In
this study, the weight transformation method was used for the optimization of the DISS
and PolyIII. Based on the regression equations, 3D and 2D response surface plots were
established to explain the individual as well as the interactive influences of the four factors
on the comprehensive evaluation value of DISS and PolyIII yields.

The response surface 3D plots and 2D contour plots (Figure 3) were designed to show
the interaction effects of the independent variables on the yields of the dependent variables.
The higher the slope of the 3D graph is, the steeper the slope, indicating a more significant
interaction between the two factors and a greater the influence of the two factors on the
response value. The gentler the 3D graph is, the less obvious the interaction between the
two factors, and the less influence on the response value. The more circular the 2D graph is,
the smaller the interaction between the two factors; the more elliptical the 2D graph is, the
greater the interaction between the two factors. Above all, the F test, X1, X3, X4, X2X4, X1

2,
X2

2, X4
2 were extremely significant parameters, X3

2 was a highly significant parameter,
and X2, X1X2, X1X4 were significant parameters. Combined with Figure 3, it can be seen
that extraction time and ethanol concentration had a greater effect on extraction efficiency.
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Based on the Box–Behnken design and the response surface plots, the optimal compre-
hensive evaluation value is 13.0870, and the result from the verification experiment was
12.8650. The suggested conditions were: extraction time 99.06 min, extraction temperature
50.70 ◦C, liquid–solid ratio 10.88 mL/g, ethanol concentration 67.39%. For the convenience
of experiments, parameters were modified slightly in the verification experiment as follows:
extraction time 99 min, extraction temperature 51 ◦C, liquid–solid ratio 11 mL/g, ethanol
concentration 67%.
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2.3.2. LS-SVM Modeling

The values of kernel parameter g and penalty factor C are closely related to the data
sample set and affect the learning and generalization ability of the model itself for the
LS-SVM model. The higher the penalty factor C value is, the smaller the allowable error.
However, too much C value will lead to too much fitting and the generalization ability
will be reduced. A smaller C value can enhance the generalization ability of the LS-SVM
model, and the allowable error will also be larger. If the input range of the experimental
data samples is large, the value of the core parameter g needs to be increased. Otherwise,
the value of the kernel parameter g needs to be reduced.

For the small amount of data in this experiment, the radial basis function (RBF) has
a high performance and application range. Therefore, when the RBF kernel function
is selected, an appropriate kernel parameter g and penalty factor C should be selected
simultaneously to optimize the LS-SVM model. In this study, 30 groups of experimental
data of BBD analysis scheme are preprocessed. The experimental data matrix of 30 rows
and 5 columns is divided into an input variable matrix of 30 rows and 4 columns and
an output variable matrix of 30 rows and 1 column into the platform of Matlab 2018b
software (MathWorks, Natick, MA, USA). The output variables of the same input variables
are averaged before the input. There are only 25 rows and 4 columns of the input variable
matrix and 25 rows and 1 column of the output variable. LS-SVM was used for modeling,
and the kernel function was RBF function. Finally, the cross verification method is used to
verify the nuclear parameter g and penalty factor C simultaneously. The effect of each pair
of parameters is tested one by one in the parameter matrix composed of g and C, and the
optimal kernel parameter g = 0.1 and the optimal penalty factor C = 10.4 are obtained. The
process is shown in Figure 4.
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By analyzing the results of the optimal parameters in Figure 4 and combining them
with the program results, the optimal core parameter G = 0.1 and penalty factor C = 10.4
can be obtained. After obtaining appropriate nuclear parameter G and penalty factor C, the
comprehensive evaluation predicted values of 25 groups of BBD analysis schemes can be
obtained by returning to the LS-SVM model again, as shown in Table 4.
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Table 4. Predictive values of comprehensive evaluation of the LS-SVM model.

Group Predicted
Value Group Predicted

Value Group Predicted
Value

1 12.0440 11 11.8291 21 12.4576
2 12.3464 12 12.1121 22 12.5146
3 12.1006 13 12.0862 23 11.9325
4 12.4031 14 12.1429 24 11.9895
5 12.3770 15 12.3042 25 12.2235
6 12.6092 16 12.3609
7 11.8379 17 11.9634
8 12.0701 18 12.2814
9 12.3350 19 12.1657
10 12.6180 20 12.4837

The mean-square error (MSE) was used to evaluate the performance of the LS-SVM
model, and its specific formula is as follows.

MSE =
1
n

n

∑
i=1

(yi − y∗i )
2 (3)

where n is 25 data sets, yi is LS-SVM predicted value, y∗i is the actual value obtained by the
experiment.

Finally, 25 groups of original experimental values and predicted values were substi-
tuted into the formula to calculate MSE, and a comparison chart was drawn between the
real comprehensive evaluation value and predicted comprehensive evaluation value of the
experiment, as shown in Figure 5.
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Figure 5 shows that the comprehensive evaluation values of 25 groups of actual data
and predicted data are close, indicating that the training data fit is close to the actual test
data, and the calculated MSE is 0.1357, indicating that the model training and prediction
effect is good.

Based on the BBD experimental design, combined with the actual experimental reach-
able conditions, the software Matlab 2018b was used to add 80 groups of gradient data sets
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(gradient 0.05) for the four factors, and the LS-SVM model was used to predict the optimal
combination. Finally, the optimal extraction conditions were as follows: temperature 48 ◦C,
time 93 min, liquid–solid ratio 10 mL/g and ethanol content 73%. The comprehensive
evaluation value of the optimal extraction conditions was 13.0217.

2.4. Validation Experiment and Comparison between RSM and LSSVM

In this study, RSM and LS-SVM models are used to model and optimize the data,
and both models can fit the experimental data well. All experiments under the optimized
conditions by RSM and LS-SVM were performed in quintuplicate, and the results are
displayed in Table 5. The results of comparison of antioxidant activity are shown in
Figure 6 (the concentrations were 0.2, 0.4, 0.6, 0.8, 1.0 mg/mL).

Table 5. Verification of experiment results.

Runs PolyIII
(mg/g) DISS (mg/g) Y Mean ± SD Predicted

Value
Relative

Deviation (%)

RSM

1 1.7148 16.6133 12.8887

12.8402
±

0.0963
13.0870 1.89

2 1.7233 16.6408 12.9114

3 1.6977 16.5620 12.8459

4 1.7058 16.6342 12.9021

5 1.6924 16.3064 12.6529

LS-SVM

1 1.6963 16.7761 13.0062

13.0045
±

0.0405
13.0217 0.13

2 1.6883 16.6806 12.9325

3 1.7103 16.8408 13.0582

4 1.7132 16.7804 13.0136

5 1.7005 16.7825 13.0120
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It can be seen from Table 5 that these findings indicate that the performance of LS-SVM
was better than RSM. Not only that, LS-SVM had larger response values than those of
RSM under the predicted optimum conditions. From Figure 6, the antioxidant activity of
extraction according to the LS-SVM model was better than the RSM model. In conclusion,
LS-SVM has better prediction ability and optimization ability than RSM.

2.5. HPLC Analysis of DISS and PolyIII

The calibration curve of DISS was Y = 13.965x + 0.553, R2 = 0.9995, showing a good
linear relationship in the concentration range of 1.2–2 mg/mL. The calibration curve
of PolyIII was 22.106x − 2.521, R2 = 0.9991, showing a good linear relationship in the
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concentration range of 0.1–0.5 mg/mL. The HPLC profiles of some standard substances
and samples are shown in Figure 7.
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DISS and PolyIII content were measured by the corresponding peak area transforma-
tion. The results showed that the content of DISS was higher than that of PolyIII in the
sample. Under these conditions, the retention times of DISS and PolyIII were 8.73 and
25.4 min, respectively.

The RSD values of peak area for DISS and PolyIII were 0.85% and 0.56% of stability,
which indicated that it was great from 0 to 16 h at room temperature. The repeatability and
precision of DISS and PolyIII were 0.77%, 0.69% and 0.53%, 0.81%, respectively.

3. Discussion

Above all, when the extraction time, extraction temperature, liquid–solid ratio and
ethanol concentration were increased, the comprehensive evaluation value increased at
the beginning and then decreased. The cavitation effect of ultrasound facilitated the
extraction of DISS and PolyIII from the herb. Nevertheless, prolonged ultrasound may
cause degradation of chemical structures and may reduce the extraction efficiency of DISS
and PolyIII [26]. The increase in temperature strengthened the diffusion and dissolution
of solute in the solvent and decreased the viscosity of the solvent itself, thus increasing
the diffusion rate of the solvent. However, with the temperature continuously increased,
the cavitation effect became weak and the yield reduced [27], which might be due to the
reduction of solvent surface tension at high temperature; thus, the effective components
were decreased in the dissolution [28]. The yield of DISS and PolyIII increased with the
liquid–solid ratio in a certain range and then decreased slowly after the peak. This was
due to the viscosity of the solution being high in the beginning, where it was difficult to
produce a cavitation effect. With the increase in the liquid–solid ratio, the viscosity and
concentration of the solvent decreased, which led to a greater cavitation effect. As cavitation
becomes stronger, the extraction efficiency of effective substances also increases. However,
excessive cavitation may lead to the destruction of the active substance and degradation of
the solvent itself [29,30]. As for the ethanol concentration, after the peak concentration, the
extraction yield decreased with increasing concentration. This might have been due to the
polarity of DISS and PolyIII. It could also be due to the increase in ethanol concentration, in
which the dielectric constant of the solvent decreases and the solubility and diffusivity of
phenolic compounds increase. Therefore, the dissolution of the other substances is reduced.

RSM is a widely used method for TCM extraction [31–33], including statistical factorial
experimental design, modeling between causal factors and response variables, and multi-
objective optimization to seek optimal formulation. The theoretical model is composed of
multiple formula factors and process variables, and the number of tests for model prepara-
tion can be greatly reduced by adopting the composite experimental design. Through the
combination of causal factors, the response variables of each model formula are predicted
quantitatively. The traditional method is to apply multiple regression analyses based on
quadratic polynomial equations [34]. Finally, a multi-objective optimization algorithm is
used to predict the optimal formula, but the prediction based on the quadratic polynomial
is usually limited to a low level because the theoretical relationship between causal factors
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and the response variables is not clear. This can lead to an underestimation of the optimal
formulations [35].

The least square support vector machine (LSSVM) is based on the support vector
machine (SVM) algorithm and is an extended version of SVM. It can be used to predict the
relationship between multiple factors and their interactions with evaluation indexes [36].
LSSVM is characterized by solving a set of linear equations, instead of the traditional more
complex quadratic programming method to avoid an insensitive loss function; meanwhile,
it greatly reduces the complexity of calculation, speeds up the solution, and expands the
application field [37], which has been used in fault diagnosis [38], electricity consump-
tion [39], water quality prediction [40] and other fields. However, it is seldom used in
pharmacology, especially in the extraction process of effective substances of TCM. There
are many exploitable capabilities in LSSVM that have yet to be explored by researchers.

Compared with RSM and other machine learning regression methods, such as random
decision forest [41] and the artificial neural network (ANN) model [42–44], LSSVM has
certain advantages, which will provide a new idea and reference for the study of extraction
process optimization of TCM active ingredients.

In this study, the simultaneous optimization of the comprehensive evaluation values
of DISS and PolyIII, RSM and LS-SVM modeling methods were used to compare the
antioxidant activity of Yuanzhi extracts. The results indicate that the extracts under optimal
conditions of the LS-SVM model have a better yield of extraction and better antioxidant
activity than the RSM model extracts. Therefore, the LS-SVM model has good predictive
ability, and the results are satisfactory. The optimal predictive conditions obtained using
LS-SVM are as follows: extraction time 93 min; liquid–solid ratio 40 mL/g; extraction
temperature 48 ◦C; and ethanol concentration 67%. With these conditions, the predictive
optimal combination comprehensive evaluation value is 13.0217. It can be said that RSM is
a widely used way to optimize extraction processes [45]. LS-SVM can be used as a potential
alternative technique. In the future, the findings of this study can provide effective guidance
for the extraction process of natural antioxidants DISS and PolyIII and can be used for
industrial large-scale extraction.

4. Materials and Methods
4.1. Materials

The dried roots of Polygala tenuifolia (batch no. 210413) were purchased from the Chi-
nese Medicine Pieces Co., Ltd. (Hangzhou, China) of Zhejiang Chinese Medical University
and were identified by Professor Yuyan Zhang of the Zhejiang Chinese Medical Univer-
sity. 3,6’-disinapoylsucrose reference substance (B21780-20 mg) and Polygalaxanthone III
reference substance (B21625-20 mg) were purchased from Shanghai Source Leaf Technol-
ogy Co., LTD. (Shanghai, China). Microporous membrane (0.22 micron) was purchased
from Jingteng Co., LTD (Tianjin, China). HPLC-grade acetonitrile was purchased from
Merck (Darmstadt, Germany). Deionized water was prepared using a Millipore water
purification system (Millipore Co., Ltd., Billerica, MA, USA). Ethanol (the mass fraction of
ethanol ≥99.7%, CAS:64-17-5) was purchased from SHUANGLIN chemical reagent Co.,
LTD. (Hangzhou, China). Unless stated otherwise, all reagents and chemicals were of
analytic grade.

4.2. Experimental Design
4.2.1. Single-Factor Experiment

According to the large number of literature reviews and summaries, the extraction
time (30, 60, 90, 120,150 min), extraction temperatures (20, 30, 40, 50, 60 ◦C), liquid–solid
ratio (6, 8, 10, 12, 14 mL/g), and ethanol concentrations (40, 55, 70, 85, 95%) were selected
for single-factor experiments
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4.2.2. Variables Selection and Weight Design of Multi-Component Indexes

In general, the UAE yield of Yuanzhi was influenced by various factors, which included
extraction temperature, solvent-to-liquid ratio, ultrasonic power, extraction time, solvent
concentration, particle size and so on. Samples sifted through a 65-mesh sieve were
subjected to a fixed ultrasound power of 120 W in this study. According to the previous
studies, the appropriate solvent is important for the extraction of herbs. Owing to its
non-toxic nature and an ability to provide higher solubility or extraction yields, ethanol
was used as a solvent for the extraction of DISS and PolyIII. Considering costs and safety
parameters, ethanol proved to be an ideal extraction solvent. Subsequently, extraction
temperature (◦C, A), extraction time (min, B) liquid–solid ratio (mL/g, C) and ethanol
concentration (%, D) were selected as variables. The single-factor experiment was carried
with these variables. The comparison matrix of evaluation indicators is designed by using
the Precedence Chart (shown in Table 1). The Precedence Chart (PC) was first proposed by
American P.E. Moody in 1983. The scoring method is as follows: Index A and B, if index
A is more important than index B, index A receives 1 point. If the effect of indicator B
is greater than that of indicator A, then indicator A receives 0 points. If indicator A and
indicator B are equally important, they each receive 0.5 points. According to the quality
requirements of the Chinese pharmacopoeia 2020 edition, a = DISS, b = PolyIII, and a > b
were determined. After data normalization, the unit limit was removed, the weight of each
index was multiplied by the normalization score, and then the sum was added to obtain
the final comprehensive score. Comprehensive evaluation value (Y) = extraction yield of
DISS×0.75 + extraction yield of PolyIII score×0.25.

4.2.3. Box-Behnken Design (BBD) for Extraction Optimization

The Design-Expert (Minneapolis, MN, USA) software was used for experimental
design, RSM model regression analysis, and RSM model optimization. Based on the
single-factor experimental results, the Box–Behnken design (BBD) was developed with four
variables and three levels. The four independent variables were set at 3 levels (−1, 0, 1),
with X1 (60, 90, 120 min), X2 (40, 50, 60 ◦C), X3 (8, 10, 12 mL/g,), X4 (55%, 70%, 85%). Details
are shown in Table 1. The comprehensive evaluation value of DISS and PolyIII extraction
yield was chosen as the dependent variables. In the extraction optimization experiment,
30 groups (5 g for Yuanzhi, n = 3) were selected, and the BBD matrix of 30 experimental
standard runs was designed by the software.

4.2.4. Least Squares Support Vector Machine for Extraction

The least squares support vector machine (LSSVM) model can explain several ex-
traction factors (x1, x2 . . . xi) and the comprehensive evaluation index Y of the extraction
rate. The basic for the LS-SVM is that the i-th data input Xi = (X1, X2 . . . Xn) represents
the corresponding n extraction factor values, and the i-th data output Yi represents the
comprehensive evaluation value of the corresponding extraction rate. Given the known
experimental data set, D = was used to find the quantitative relationship between extraction
factors and the comprehensive evaluation value. To be specific, the LSSVM was used to es-
tablish the regression model of the comprehensive evaluation value on the extracted factors
in the high dimensional feature space, and then the Lagrange multiplier was introduced
according to the structural risk minimization principle under Kuhn–Tucker conditions
(KKT) of optimization theory. The regression model was transformed into an optimization
model related to the kernel function. Finally, the prediction comprehensive evaluation
value with the smallest error between the real comprehensive evaluation value and the
optimal parameters can be found through continuous learning of the data set.

In this study, four extraction process data were set up based on the Matlab language
environment, namely, extraction time (X1), liquid–solid ratio (X2), ultrasonic temperature
(X3), ethanol content (X4) and comprehensive evaluation value Y. In addition, Y is the
comprehensive evaluation value of the extraction rate of DISS and PolyIII in Yuanzhi by
linear weighted calculation by the precedence chart method.
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4.3. Ultrasound-Assisted Extraction

The dry powder of Yuanzhi (5 g) was placed in a 250 mL conical flask and soaked in
ethanol with a certain concentration and liquid–solid ratio according to the BBD experimen-
tal conditions. Then, the conical flask was placed in an ultrasonic cleaner. The UAE model
was KQ5200DE, which was purchased from Kunshan Ultrasonic Instrument Co., LTD. The
samples were extracted at 40 kHz and 120 W. The extraction time and temperature were
selected based on the BBD experimental conditions. After extraction, each extract was
filtered with a Buchner funnel, and the filtrate was passed through a 0.22 µm microporous
membrane. Lastly, the filtrates were analyzed by HPLC.

4.4. Determination of Antioxidant Activity

The antioxidant activity of Yuanzhi extracts was evaluated using the 2,2-diphenyl-1-
picrylhydrazyl radical scavenging capacity (DPPH) and 2, 2’-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) antioxidant power (ABTS) [46]. The DPPH assay was introduced by Brand
Williams [47]. The solution of DPPH radicals was prepared by adding 180 µL of 0.1 mM
DPPH in anhydrous ethanol and 20 µL of the sample solution at different concentrations
(0.2–1.0 mg/mL). The mixture was subsequently incubated for 30 min at room temperature
in the dark, and the absorbance of the solution was measured at 517 nm [48]. The DPPH
radical scavenging activity was calculated according to the following equation.

Scavenging percente(%) =

(
1− A2− A0

A1

)
× 100 (4)

where A0 is the absorbance of sample + anhydrous ethanol, A1 is the absorbance of
anhydrous ethanol + DPPH, and A2 is the absorbance of sample + DPPH.

The ABTS solution was adjusted with absolute ethanol to make 0.70 ± 0.20 of the
absorbance (734 nm). The reaction mixture contained 20µL sample solution with different
concentrations (0.2–1.0 mg/mL) and 180µL ABTS solution. After reacting for 6 min at room
temperature, the absorbance was determined at 734 nm.

Scavenging percente(%) =

(
1− A2− A0

A1

)
× 100 (5)

where A1 is the absorbance of absolute ethanol instead of sample, A2 is the absorbance of
the sample, and A0 is the absorbance of absolute ethanol instead of ABTS.

4.5. HPLC Analysis

HPLC analysis was carried out using a Thermo UltiMate 3000 HPLC with VWD-3100
UV detector, equipped with column Kromasil C18 (4.6 × 250 mm, 5µm). The mobile phase
consisted of 0.05% phosphoric acid in water (A) and acetonitrile (B). In addition, the flow
rate was 1 mL/min. The column temperature was set at 25 ◦C, and the injection volume
was 10 µL. The monitoring wavelength for Yuanzhi was 320 nm [49].

The isocratic elution was as follows: 0–30 min, 16% (B), with a total run time of
30 min. Under such chromatographic conditions, DISS and PolyIII were well separated.
Sample peaks were identified based on their retention time compared with the standard. A
standard curve to quantify DISS and PolyIII was constructed in the range of 1.2, 1.4, 1.6,
1.8, 2.0 mg/mL and 0.1, 0.2, 0.3, 0.4, 0.5 mg/mL, respectively.

5. Conclusions

In this study, the pharmacological value and action of Yuanzhi and its main compounds
were described. Then, RSM and LS-SVM were compared, and the optimal extraction process
and antioxidant activity were determined by the final DISS and POLY response values. The
results showed that the best extraction process of Yuanzhi was at temperature 48 ◦C, time
93 min, liquid–solid ratio 10 mL/g and ethanol content 73%. The comprehensive evaluation
value of the optimal extraction conditions was 13.0217. In addition, the extraction of



Molecules 2022, 27, 3069 19 of 21

Yuanzhi had great antioxidant activity. Our experiments showed that the extraction from
Yuanzhi by LS-SVM had better yield and antioxidant activity than from RSM. In the future,
Yuanzhi will be better developed and utilized as an antidepressant and AD treatment drug.
The method in this paper is feasible, with a high extraction rate and good antioxidant
activity, which is useful for the application of Yuanzhi in food, medicine and the health
product industry.
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