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Abstract: Image-based optical vibration measurement is an attractive alternative to the conventional
measurement of structural dynamics predominantly relying on accelerometry. Although various
optical vibration monitoring systems are now readily available, their performance is currently
not well defined, especially in the context of experimental modal analysis. To this end, this study
provides some of the first evidence of the capability of optical vibration monitoring systems in modal
identification using input–output measurements. A comparative study is conducted on a scaled
model of a 3D building frame set in a laboratory environment. The dynamic response of the model to
an impulse excitation from an instrumented hammer, and an initial displacement, is measured by
means of five optical motion capture systems. These include commercial and open-source systems
based on laser Doppler velocimetry, fiducial markers and marker-less pattern recognition. The
performance of these systems is analysed against the data obtained with a set of high-precision
accelerometers. It is shown that the modal parameters identified from each system are not always
equivalent, and that each system has limitations inherent to its design. Informed by these findings, a
guidance for the deployment of the considered optical motion capture systems is given, aiding in
their choice and implementation for structural vibration monitoring.

Keywords: optical systems; structural health monitoring; modal testing; vibration measurement;
experimental modal analysis

1. Introduction

Optical motion capture systems (MCS) are becoming increasingly popular in structural
vibration monitoring [1–3]. Their main advantage lies in the remote operation hence
avoidance of the deployment of cabling system associated with conventional motion
capture systems, most often relying on accelerometry. Although optical MCS derive the
most accurate results tracking a single point only, continuous improvement in resolution of
all sorts of digital cameras has enabled vibration tests to be performed in which multiple
points are being tracked simultaneously. For example, Park et al. [4] presented results
from tests utilising motion capture system (MCS) based on three cameras measuring 3D
structural displacements in a laboratory environment. The process required installing
multiple light-reflective markers on the structure, each seen by at least two cameras at any
time. A number of studies explored the capabilities of single-camera systems. For example,
Brownjohn et al. [5] and Luo et al. [6] used a single high speed camera coupled with custom
software for tracking multiple points on bridges in situ. Patil et al. [7] proposed a method of
stitching together mode shapes from data obtained from video footage of a pair of cameras
roving around a structure for 3D measurements. As for the equipment, all these studies
used off-the-shelf commercial products dedicated to motion capture.

Optical MCS could become a cost-effective solution for structural vibration monitoring,
particularly when direct displacement rather than acceleration is sought. However, off-the-
shelf commercial products from the leading suppliers carry a cost of tens of thousands GBP,
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which may be prohibitive for many potential users. Undoubtedly, these solutions are quite
refined in terms of data processing capabilities and user-friendly interfaces. However, it
remains to be determined whether simpler solutions relying on consumer-grade hardware
and well documented data processing algorithms, often available in open-source format,
can match their performance, or at least offer enough measurement fidelity to be considered
viable alternative solutions. The results of recent investigations are encouraging in this
respect. For example, Kromanis et al. [8] compared a number of modern smartphones
against various cameras by coupling them with various image processing algorithms. By
measuring deformations of structural elements caused by static, quasi-static and dynamic
loads in the lab, they demonstrated the feasibility of such low-cost systems for structural
health monitoring (SHM). A number of studies explored the capabilities of smartphone
cameras in capturing the vibration and displacement of structures in situ [9,10], whilst
other studies used action cameras for the same purpose. For example, Lydon et al. [11]
explored a feature-based template matching technique [12] by tracking the displacement of
a single point on two structures using Go-Pro camera. Xu et al. [13] conducted a similar
study, but using area-based template matching technique [12] for tracking multiple points.
A few attempts were also made to use other types of optical MCS, such as depth sensing
cameras (RGB-D) [14] and video cameras [15,16], while an exhaustive review on relevant
advances can be found elsewhere [3,17]. However, none of the studies provided a full
dynamic characterisation of the tested structures, which is the ultimate goal of modal
analysis [18].

A continuing effort is being made on developing advanced modal identification tech-
niques based on operational modal analysis (OMA), in which the excitation force comes
from either environmental and/or man-made sources, see e.g., the hybrid OMAX [19],
associated with the operational regime of the investigated structure [20]. However, while
pure OMA can provide information about the modal frequencies, damping, and mode
shapes, it cannot intrinsically scale the mode shapes since it relies on response measurement
only while making rather specific assumptions as to the nature of the excitation input [21].
Although a number of approaches has been proposed in the last two decades to overcome
this limitation [22], their application requires either various types of interventions on the
structure or its numerical model [23]. The former approach is realised by introducing a
local change in the mass or stiffness of the structure, or an auxiliary mechanical system.
Therefore, it carries a similarity with experimental modal analysis (EMA) in which an extra-
neous device is employed—here a force source, enabling direct scaling of the mode shapes
with modal mass. The latter approach relies on a highly reliable finite element model,
which is notoriously difficult to obtain even for seemingly simple civil structures. Conse-
quently, EMA-based practices are still the gold standard in full dynamic characterisation
of structures.

Although studies on full-scale structures in situ are the ultimate reason for interest
in optical MCS within civil engineering community, laboratory-based experiments allow
the MCS performance to be examined in a controlled environment while excluding any
environmental effects which can debilitate the measurement accuracy. Such studies gen-
erally involve using simple structural elements, most often beams or columns [16], or
custom-built downscaled models of simple structures, such as few-storeys high models of
building frames [4,24–27]. The latter approach, with a more demanding variant of a 3D
rather than a planar frame, is adopted in this study.

To the best of the authors’ knowledge, this is the first study aiming to assess the
performance of various optical structural vibration monitoring systems in the context of
EMA. Six instrumentation systems, including five optical MCS, are deployed in a laboratory
environment to measure the response of a scaled frame of a 3D building to the impulse
excitation from an instrumented hammer and initial displacement. A complete set of modal
properties is used for benchmarking, including natural frequencies, damping ratios, mode
shapes and modal (generalised) masses. The damping ratios and in particular modal masses
seem to have never appeared in alike comparisons involving image-based optical MCS.
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The rest of the paper is organised as follows. Section 2 presents the tested structure, briefly
introduces instrumentation systems used in this study, describes experimental protocols
and outlines data analysis procedures. The results are presented and discussed in Section 3.
This includes the results of pose reconstruction assessment of ArUco markers in Section 3.1,
modal identification in Section 3.2 and initial displacement response in Section 3.3. The
conclusions are presented in Section 4.

2. Methodology
2.1. Tested Structure

A simple steel frame shown in Figure 1 was designed and built at the University of
Leicester, UK. SAP2000 version 20 structural analysis package was used in the specifica-
tion of structural components such as to tune natural frequencies of the frame to those
representative of full-scale civil structures such as short-span bridges and medium-rise
buildings. The frame has six plates above the bottom plate centrally bolted onto the floor,
each 20 mm thick and cut to fit within 180 × 180 mm outline, joined by four columns
recessed into the plates’ corners. Mild steel with density 7850 kg·m−3 was used throughout.
The distance between centroids of each two consecutive plates is 200 mm, except for the
distance between plate 4 and 5 counting from the bottom, which is 180 mm. The columns
have rectangular cross section of 10 × 3 mm and are connected to each plate using two
screws arranged one above the other. The structure is rather lively, i.e., after providing a
hit to one of the plates the structure can be seen with naked eye to vibrate for a prolonged
time, indicating low damping. The structure together with its coordinate axes is shown in
Figure 2. The movement in z-axis was of particular interest since it is associated with the
weak (in terms of resistance of the section to bending/rotation) axis of the columns.
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Figure 2. (a) Steel frame and (b,c) its details showing the positioning of sensors and markers around
the top plate. 1—instrumented hammer; 2—triaxial accelerometer; 3—single axis accelerometer;
4—light reflective fiducial marker for laser Doppler vibrometer (LDV); 5—spherical reflective marker
for OptiTrack; 6—Imetrum marker, 7—ArUco marker.

2.2. Instrumentation

A set of conventional constant current accelerometers and five optical motion capture
systems, including two systems relying on images recorded with a consumer-grade camera
(CGC), were used in this study. The basic specification of these systems is given in Table 1.
An instrumented hammer was used to provide force excitation and a lux meter was used
to measure light intensity during the tests. A brief description of these instrumentation
systems is given in Sections 2.2.1–2.2.7. Figure 2 presents the layout of accelerometers
and fiducial markers attached to the frame, used in conjunction with optical MCS, and
the point of application of excitation force with the instrumented hammer, which is the
centroid of the side face of the top plate. This point was chosen with an intention not to
mobilise strongly torsional modes which could distort the results of modal analysis from
instrumentation systems which were not inherently capable of 3D measurements. It can
be seen in Figure 2 that the accelerometers and markers cover all side faces of the plates
above the bottom plate. The layout of the instrumentation and markers was optimised
such as to obtain maximum quality measurements in z-axis. For clarity of presentation, the
operational principles behind the different fiducial markers are explained in Section 2.3.
Basic specification of the MCS used in this study is given in Table 1.
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Table 1. Basic specification of the motion capture systems used in this study.

System Sensor Quantity
Sampling

Frequency and
Resolution

Distance Relative
to the Markers

Fiducial
Marker

Polytec LDV PSV-500-HM 3 200 Hz and
0.02 µm/s 3 m
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2.2.1. Accelerometers

Acceleration in x- and z-axis (see Figure 2) was measured with five triaxial accelerom-
eters (PCB 356 A16, USA) mounted onto plates 3–7, counting from the base (i.e., bottom)
plate, and two single axis accelerometers (PCB 333 B30, USA) mounted onto plate 2. The
positions of accelerometers measuring the response in z-axis were collinear since they were
located at the centroids of the plates’ faces on the same side of the frame, as shown in
Figure 2a.

2.2.2. Imetrum

Imetrum [28] is a commercial-grade MCS used for structural testing in a variety of
applications in a laboratory and outdoor environment [5,29]. The main asset of the system
is the Video Gauge software, developed based on the study of Macdonald et al. [30],
which uses Digital Image Correlation (DIC) technique coupled with various prediction and
subpixel refinement techniques. The setup used in this study consisted of a dedicated PC
with Video Gauge software package, two synchronised cameras with 2 megapixel (MP)
resolution equipped with 25 mm camera lenses, recording at 50 frames per second (fps)
and mounted on a single tripod approximately 1.2 m apart. To perform 3D measurements,
the calibration process includes specifying the inter camera distances and angles, and
predefining some known distances within the captured image. 2D markers consisting of
slightly blurred black and white concentric circles printed on white matte vinyl stickers
were attached to the plates, as shown in Figure 2b, for improved tracking quality as the
steel plate surface was found to be rather featureless at the scale of interest.

2.2.3. OptiTrack

OptiTrack [31] is a commercial-grade MCS used predominantly for laboratory testing
in biomechanics, robotics and virtual reality applications. The setup used in this study
consisted of eight Prime 13 cameras with 1.3 MP resolution and sampling at 120 fps,
mounted in pairs on four tripods, a network hub and Motive 2.1.1 motion capture software.
The system detects and tracks the movement of spherical reflective markers which were
attached to the plates, as shown in Figure 2. A 250 mm T-shaped wand and 200 mm square
were used to calibrate the cameras and define the coordinate system aligned with that of
the frame.
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2.2.4. Polytec Laser Doppler Vibrometer (LDV)

Polytec laser Doppler vibrometer (LDV) PSV-500-3D was used in this study. It con-
sisted of three HeNe red laser scanning heads enabling 3D measurement, one of which
includes video camera facilitating system set up. The scanning heads were positioned at a
distance of about 3 m from the frame and, since they utilise the Doppler effect, they were
pointing at the plates’ faces perpendicular to the z-axis at the angles close to 90 degrees
to obtain reliable measurements of the structural response in z-axis. A proprietary PC
with data acquisition board and PSV software was used during measurements. In order to
perform 3D scan, all three laser heads were set up to measure one point of interest at a time.
For better reflection of laser signals hence improved signal to noise ratio, 2D light reflective
fiducial markers were attached to the plates of the structure as shown in Figure 2c.

2.2.5. Consumer-Grade Camera (CGC)

Canon EOS 200D CGC coupled with 20 mm focal length lens, with maximum aperture
f/2.8, was used in this study, set to operate in a fixed focus mode. The video footage
recorded with CGC was used with two MCS, (i) ArUco system tracking feature-based
fiducial markers and (ii) area-based template matching system hereafter referred to as
template matching and abbreviated by TM. The data processing was implemented in
a custom application written in C++ programming language, referring to open source
OpenCV library of computer vision functions [32]. Sub-pixel refinement was used in both
CGC-based MCS.

Feature-Based Template Matching (ArUco)

ArUco system, presented in Garrido-Jurado et al. [33], has so far been mainly used for
pose estimation in computer vision applications such as robot navigation and augmented
reality. It is believed to be one of the most evolved tools for fiducial marker detection [34].
The markers are composed of a wide black border and an inner binary matrix which
determines their unique IDs. Marker tracking is performed in two stages: (i) Marker
detection and (ii) estimation of markers’ pose relative to the camera. During stage (i) the
outer square box and the unique pattern of markers’ inner binary code are identified. This
inner pattern allows robust detection of multiple markers in an image frame. During
stage (ii) the position and rotation of camera related to each marker is identified through
a full projection matrix [35]. This is a camera calibration process where camera intrinsic
parameters are identified using the images of a chessboard and then the camera extrinsic
parameters are identified through the known physical geometry of the markers. For this
study, the movement of the markers attached to the steel frame was identified relative to
their state in the first frame of the captured video.

Area-Based Template Matching

The video from CGC used with ArUco was also used in an area-based template
matching system, which in various forms is now being widely used for SHM [2,36]. The
area-based template matching relies on the identification of template patterns within
captured images. The normalised version of sum of squared differences (NSSD) [32]
method was used as a correlation criterion. For improved computational efficiency, a
region of interest (ROI) was defined, reducing the area of images within which to search
for the template patterns. An offline calibration with chessboard was performed to remove
camera distortion effects. A planar homography matrix was determined through linking
the user-defined planar coordinates of key points on the 2D structural coordinate system
and the pixel coordinates of these points. The area-based template matching system,
hereafter simply referred to as template matching, used the ArUco markers to aid in
pattern recognition.
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2.2.6. Instrumented Hammer

PCB 086C01 instrumented hammer was used to provide excitation energy to the
structure. A pre-trigger offset was set based on the force threshold to ensure the whole
signal was contained within the measured window. The hammer tip was chosen such as
to ensure there is enough excitation energy within the whole frequency range of interest.
An example of the recorded hammer force in time and frequency domains is shown in
Figure 3a,b. The time and frequency ranges were truncated to highlight the shape of the
force pulse and the magnitude of the FFT of the force within the frequency range of
interest, respectively.
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The ripples on both sides of the pulse in Figure 3a are a consequence of applying
anti-aliasing (low pass) filter on the force signal and indicate its frequency content goes
beyond the limit set in data acquisition. This does not affect the quality of the analysis
presented in this study [23]. It can be seen in Figure 3b that the force spectrum between
1.5 Hz and 30 Hz is flat hence there is energy in the frequency band of interest of 1.5 to
25 Hz. The lower frequency limit was chosen considering the lowest expected mode in
z-axis of the structure, and the upper limit is dictated by the maximum sampling frequency
of Imetrum. Further discussion on the adequacy of the chosen excitation method for
extracting response characteristics is given in Section 3.2.

2.2.7. Lux Meter

Chauvin Arnoux CA1110 lux meter was used to record light intensity during testing.
The lux meter was positioned close to the frame, as shown in Figure 1, and sampled at 1 Hz.
The expected measurement error stated by the manufacturer at the light intensity levels
close to those recorded during the tests is below 1%. The mean and standard deviation of
light intensity recorded during the tests was 686 lx and 5.8 lx, respectively. Therefore, the
measurements from optics-based systems can be considered free from errors associated
with the light intensity fluctuations. The recorded illuminance levels indicate the lab
was well lit and represent recommended conditions for areas in which precision work is
conducted [37].

2.3. Fiducial Markers

Different types of fiducial markers were used in conjunction with the optical instru-
mentation systems described in Section 2.2. In a broad sense, fiducial markers are reference
objects deliberately set within the monitored system to facilitate recognition, localisation
and tracking. They are often used in medicine, robotics, measurement and surveying, and
X-Reality (or Cross-Reality)—a term encompassing a wide range of technology enabling
realisation of virtual environments, typically in applications involving computer vision. In
the context of structural vibration monitoring, light-reflective, light-emitting, and shape-
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and pattern-based fiducial markers were previously used to aid motion recognition using
optical systems.

2.3.1. Light-Reflective Markers

Light-reflective fiducial markers comprise of a flat or spherical object covered with
retroreflective paint thus bouncing the light back towards the light source, hence enhancing
marker visibility. This is typically achieved with tightly-spaced 20–90 µm diameter glass
spheres having rear surface covered with highly reflective coating, as seen on pictures taken
with a scanning electron microscope in Figure 4. For maximum efficiency, the light source
is integrated with the optical measurement system, e.g., infrared LEDs surrounding lenses
of OptiTrack cameras. Light-reflective fiducial markers have been used for measurements
taken in a laboratory environment [38] and in the field [39]. In this study, light-reflective
fiducial markers were used to facilitate the operation of OptiTrack system described in
Section 2.2.3 and enhance the performance of LDV system described in Section 2.2.4.
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2.3.2. Light-Emitting Markers

Light-emitting fiducial markers produce light to reveal their location within captured
images [40]. This approach is advocated to reduce the problem caused by insufficient and/or
non-uniform structure illumination, e.g., caused by vapour interference [41]. Although mark-
ers of this type were not used in this study, they are mentioned here for completeness.

2.3.3. Shape- and Pattern-Based Markers

Shape and pattern-based fiducial markers are graphical objects of predefined geometry
set within captured images. Shapes are 2D components of relatively simple topological
structure, e.g., dots or few-sided polygons, whilst patterns are 2D assemblies of shapes.
The recognition of shapes typically involves edge detection, object fitting and/or centroid
computation [42]. Patterns are usually used to enable marker pose estimation, i.e., the
determination of its position and orientation in 2D or 3D space [33]. Pattern-based fiducial
markers were used by ArUco and template matching systems described in Section 2.2.5,
and aided in area-based recognition by Imetrum system described in Section 2.2.2.

2.4. ArUco Pose Accuracy Assessment

Prior to the deployment of ArUco system on the structure it was necessary to establish
the accuracy of the estimated pose. Furthermore, suitable marker size, camera to structure
distance and angle of the camera relative to the structure (i.e., angle of incidence) had to be
determined considering the camera and lens capabilities. To this end, two parallel columns
of black and white ArUco square markers, varying in side size from 1 to 7 cm every 1 cm,
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were printed along the two short edges of an A0 sheet attached to an inch thick fibreboard
clamped against a wall, as shown in Figure 5. All markers had unique patterns and were
positioned at different height such that the planar coordinates of the centres of any two
markers of the same size were different but the distances between them were the same. The
longest distance between a pair of markers of corresponding size measured along x-axis
shown in Figure 5 was representative of the longest distance between ArUco markers
placed on the frame during modal and initial displacement tests. The CGC was placed at
various distances (1.5 m to 4 m every 0.5 m) and facing angles (0 degrees, 15 degrees, and
30 degrees) to the board at the height corresponding to the middle of the sheet, represented
by a yellow patch in the middle of Figure 5. A one-minute video was recorded for each
combination of the camera arrangement. The results of ArUco pose accuracy assessment
are presented in Section 3.1.
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2.5. Modal Testing and Analysis

The centroid of the side face of the top plate of the structure was hit 8 times with the
instrumented hammer in z-axis to obtain correspondingly 8 windows of 64 s duration,
containing time-synchronised structural response data from accelerometers and input force
from the hammer. The length of the window was chosen such as to ensure vibration
amplitudes would decay to values below observable. However, since the signals from
camera-based MCS contained significant amount of noise at low vibration levels, an expo-
nential decay window was applied to the corresponding force and response signals in each
widow during modal analysis. The artificial (i.e., numerical) damping was subsequently
removed to obtain unbiased modal damping estimates. The acquisition of data by all
optical systems was performed in parallel, apart from LDV since it cannot be used to obtain
the structural response data at more than one location at the time. Therefore, a dedicated
test was run for the purpose of modal testing with LDV. For each of the 14 locations mea-
sured with LDV (2 targets per plate, for all 7 plates; see Figure 2), 3 hammer hits were
applied in z-axis at the centroid of the side face of the top plate of the structure to obtain
the corresponding average force-response spectra.

A driving point measurement, i.e., an input–output set of data obtained from spatially
coincident and coaxial force and response sensors, is required in EMA to obtain mass scaled
mode shapes (and determine modal mass). However, in many practical applications this
is impossible to realise due to physical constraints. Hence, an alternative sensor location
needs to be used. In this study, the driving point measurement relied on the response
sensors located around the perimeter of the top plate, as discussed in Section 2.2 and
shown in Figure 2b,c. The difference in force and response sensors’ collocation is in this
case acceptable since the high stiffness of the plate, together with uniform mass distribution,
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caused its lowest natural frequencies (at close to 1 kHz as estimated from a finite element
model of a plate set in SAP2000) to be much higher than those of the frame, which were
of interest. The coaxial alignment of the response sensor with the force sensor, apart from
the skills of the impact hammer operator, relied on either the response sensor mounting
arrangement and/or the transform of coordinates. A quality check was performed to
verify this procedure, by inspecting the driving point frequency response function (FRF)
magnitudes in which all resonance peaks, without exceptions, should be separated by
antiresonance dips (with the corresponding abrupt shifts in the FRF phase). This is opposed
to the transfer point FRF, obtained from non-collocated sensors between which there is
differential motion, for which antiresonances do not need to occur. This was indeed the
case, for which some supporting evidence is provided in Section 3.2.

The hammer signal was recorded together with the signals from accelerometers and
LDV by their respective data acquisition systems, but not with the signals from other
MCS. Therefore, the following signal time-alignment procedure was applied to be able
to perform EMA using image-based MCS relying on finding a match between z-axis
accelerometer signal from the top plate and spatially correspondent signals from those
MCS. The signals were first up-sampled to a common frequency of 640 Hz. The acceleration
and displacement signals were integrated and differentiated, respectively, to obtain velocity
signals. The fourth-order two-way Butterworth band-pass filter with cut-off frequencies
at 1 Hz and 20 Hz was applied throughout this process to minimise the errors associated
with these numerical operations. The least-square error method was used to find the
time lag based on the first 10 s of the acceleration signal measured after the impulse
excitation, corresponding to the parts of response signals with the highest signal-to-noise
ratio. The signals from image-based MCS were then time-aligned with the signals from
accelerometers and the instrumented hammer, and truncated to match their length.

Siemens LMS SCADAS Mobile system was used for data acquisition from the ac-
celerometers and the hammer. The hammer data were simultaneously logged by Polytec
system to obtain a force signal time-synchronised with LDV signals.

The modal identification was performed using poly-reference least squares complex
frequency domain algorithm [22,43–45] implemented in Siemens LMS Test.Lab™ 18.2
software under the name PolyMAX. PolyMAX has been shown to offer considerable ad-
vantages in terms of ease of use, performance speed, and reduced operator judgment
dependency towards delivering high quality modal parameter estimations, even on com-
plex data (e.g., noisy data from systems with high damping, high order, and closely spaced
modes) [43]. It compares favourably with current best-of-class commercially available
EMA techniques [44,46]. H1 estimator was used in the calculation of FRFs to reduce the
effect of uncorrelated noise in the structural response signals. The results of modal analysis
are presented in Section 3.2.

2.6. Initial Displacement Testing and Analysis

The initial displacement tests were conducted to assess the measurement accuracy
at various motion amplitudes and the influence of the CGC angle of incidence on motion
reconstruction with ArUco. The top plate was pulled approximately 5 mm away from its
resting position in z-axis direction and then released. All optical MCS were simultaneously
recording motion of the top plate of the frame for one minute at the time. The position and
orientation of CGC was changed between tests, such that it was facing the side of the frame
with ArUco markers at angles of 0, 15, and 30 degrees. The measurement point for LDV
was chosen at the centroid of the side of the top plate facing the laser heads. The results of
initial displacement tests are presented in Section 3.3.

3. Results and Discussion
3.1. ArUco Pose Accuracy Results

The error estimates are plotted in Figure 6 for all camera and markers arrangements
and for all measured orthogonal directions. The error is expressed as mean magnitude,
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denoted by colour coding of the faces of the cubes, and RMS values, denoted by the length
of the red lines projecting out from the cubes’ faces. The information associated with
each face of the cube corresponds to the measurement along the axis denoted within the
parallel backdrop plane of Figure 6, as defined in Figure 5. The quality of reconstruction
diminishes with increased distance of the camera from the frame, increased camera angle
and decreased size of the markers. The same relationship is observed for the stability of
reconstruction, expressed in terms of RMS error, which is associated with the measurement
noise. No estimates were obtained for the cubes missing from the grid (see Section 2.4) for
which the system arrangement was found inadequate for pose reconstruction. The least
accuracy was obtained for the measurements in z-axis, as defined in Figure 5, which is in
line with the results presented in Popescu et al. [34]. This is because ArUco markers are
planar structures and the measurements along that axis, corresponding to the depth of
the image, predominantly rely on the identification of their scale rather than displacement
within the image plane. Any deviation of the camera angle from 0 degrees will amplify the
scale difference between markers hence lead to an increased reconstruction error.
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An appropriate camera and markers arrangement was specified considering a com-
promise between accuracy and applicability, in particular the availability of the area on
the faces of the plates. Therefore, 5 × 5 cm ArUco markers were chosen and the CGC
was placed 1.5 m away from the structure at a zero-degree angle of incidence (i.e., facing
straight on the side of the frame).

3.2. Modal Testing Results

The driving point FRF obtained from an accelerometer mounted at the top plate is
shown in Figure 7. Six resonant peaks in Figure 7a correspond to the phase of π/2 in
Figure 7b, except for the last peak, close to 25 Hz, which has relatively small amplitude.
Each pair of resonant peaks is separated by an antiresonance dip, which is to be expected
for driving point FRF. The correlation between the force input and the structural response
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measured with accelerometers, shown in terms of the magnitude-squared coherence in
Figure 7c, is very good for all resonant peaks and reduces for antiresonance dips. This is to
be expected since any measured response at the antiresonances, and in theory there should
be none, is then dominated by uncorrelated signals, e.g., sensor noise. Taken together, the
results presented in Figure 7 support the assumptions made in dispersing sensors around
the plates, as discussed in Section 2.5, and show that the direct point FRF used to scale the
mode shapes is reliable.
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The magnitudes of FRF, averaged over all measurement points and expressed in terms
of mobility, are shown in Figure 8. Mobility was chosen to reconcile measurements from
MCS detecting displacement (for all image-based optical systems), velocity (for LDV) and
acceleration (for accelerometers). The FRF is an average over eight windows, each contain-
ing data from a single hammer impulse test, apart from LDV for which three windows
were used for each measurement point (see Section 2.5). Six well-separated dominant
peaks, having magnitudes above 4 × 10−3 ms−1 N−1, are visible for accelerometry and
LDV below the frequency of circa 25 Hz, marking the Nyquist frequency for Imetrum.
These peaks correspond to the lightly-damped and well-separated z-axis translational
modes constituting the focus of this study, hereafter denoted as mode 1 to 6. Although the
behaviour of the frame above 25 Hz is not of interest, Figure 8 presents data up to 30 Hz
to include the spectra roll-off for mode 6. A less defined peak is visible at frequency of
around 11 Hz which was identified as a torsional mode using accelerometry (i.e., by finding
significant common frequency components in spectra of x- and z-axis measurements), LDV
and OptiTrack, each system intrinsically capable of providing 3D motion data. Mode 6 was
not recovered by both CGC-based systems, and mode 5 was not recovered by ArUco. The
peak in OptiTrack data at 28.8 Hz was not identified as a mode.
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A visual inspection indicates the results from accelerometry and LDV to be seemingly
compatible and relatively free from noise, which affects the performance of all other systems.
The CGC-based systems are particularly prone to this problem, which is reinforced by their
generally lower sensitivity.

There are slight differences in the peak amplitudes between MCS which could be
attributed to systems’ specification, but also the spatial origin of data. This factor is
associated with the systems’ operational requirements, and the requirement of having to
accommodate numerous markers within each plate, as shown in Figure 2.

A complete set of numerical values for the identified modal parameters is given in
Table 2. The values in brackets represent the percentage errors relative to the measurement
with accelerometers.
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Table 2. Modal parameters of the structure identified with various instrumentation systems for the first six translational
modes in z-axis.

Modal Frequency [Hz]

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Accelerometry 2.681 (N/A) 8.673 (N/A) 13.471 (N/A) 18.730 (N/A) 21.223 (N/A) 24.943 (N/A)
LDV 2.676 (−0.20%) 8.671 (−0.02%) 13.462 (−0.07%) 18.723 (−0.04%) 21.214 (−0.04%) 24.938 (−0.02)

OptiTrack 2.680 (−0.04%) 8.675 (0.02%) 13.471 (0.00%) 18.737 (0.03%) 21.227 (0.02%) 24.949 (0.03%)
Imetrum 2.680 (−0.06%) 8.676 (0.03%) 13.473(0.01%) 18.737 (0.04%) 21.221 (−0.01%) 24.985 (0.17%)

ArUco 2.681 (−0.01%) 8.675 (0.02%) 13.473 (0.01%) 18.741 (0.06%) N/A N/A
Template matching 2.680 (−0.05%) 8.675 (0.02%) 13.472 (0.01%) 18.738 (0.04%) 21.218 (−0.02%) N/A

Modal damping ratio [%]

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Accelerometry 0.706 (N/A) 0.224 (N/A) 0.251 (N/A) 0.227 (N/A) 0.238 (N/A) 0.233 (N/A)
LDV 0.710 (0.54%) 0.269 (20.14%) 0.243 (−3.24%) 0.234 (3.05%) 0.241 (1.46%) 0.235 (0.70%)

OptiTrack 0.754 (6.79%) 0.250 (11.77%) 0.246 (−2.03%) 0.206 (−9.25%) 0.184 (−22.77%) 0.110 (−52.73%)
Imetrum 0.704 (−0.31%) 0.245 (9.29%) 0.227 (−9.59%) 0.210 (−7.52%) 0.203 (−14.76%) 0.083 (−64.23%)

ArUco 0.707 (0.21%) 0.226 (0.93%) 0.176 (−29.95%) 0.130 (−42.47%) N/A N/A
Template matching 0.735 (4.13%) 0.249 (11.51%) 0.237 (−5.47%) 0.200 (−11.68%) 0.158 (−33.54%) N/A

Generalised mass [kg]

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Accelerometry 19.55 (N/A) 20.74 (N/A) 17.71 (N/A) 15.55 (N/A) 13.80 (N/A) 10.78 (N/A)
LDV 18.05 (−7.66%) 17.47 (−15.78%) 18.11 (2.27%) 15.44 (−0.72%) 15.26 (10.59%) 10.31 (−4.38%)

OptiTrack 17.57 (−10.11%) 17.83 (−14.04%) 14.27 (−19.41%) 13.95 (−10.26%) 14.45 (4.71%) 17.13 (58.92%)
Imetrum 18.58 (−4.93%) 20.18 (−2.72%) 20.72 (16.98%) 23.58 (51.65%) 24.25 (75.76%) 26.95 (149.99%)

ArUco 17.85 (−8.65%) 20.13 (−2.92%) 28.42 (60.50%) 32.12 (106.6%) N/A N/A
Template matching 18.02 (−7.83%) 19.06 (−8.07%) 19.11 (7.93%) 18.28 (17.57%) 21.43 (55.34%) N/A

For better readability, the errors in modal parameter estimation are presented in a
graphical way in Figure 9. The data not recovered by ArUco and template matching are
indicated with crosses. As could be expected, the accuracy of frequency reconstruction pre-
sented in Figure 9a is overall high with the error magnitude below 0.2%. The discrepancy
between results can be mainly attributed to the various sampling rates used by MCS, as
stated in Table 1, hence various resolution of data in the frequency domain. The higher fre-
quency resolution for LDV relative to accelerometry, imposed by the system requirements
(i.e., the lowest sampling rate available in the LDV proprietary software), is the most likely
reason for LDV underestimating modal frequencies across the whole range.

The identified damping levels are representative of those measured on bridges, chim-
neys, and steel masts and towers [24,47–51].

The accuracy of damping and generalised mass reconstruction, presented in Figure 9b,c,
respectively, shows high variability between modes and within each mode above the 2nd
mode. As could be expected from the system specifications, the highest overall accuracy
relative to accelerometry is recorded for LDV. The relatively high difference in damping
estimates for mode 2 is probably also related to the different ability of the instrumentation
systems to capture the neighbouring torsional mode at approximately 11 Hz, as seen in
Figure 8. In this particular case, the results obtained for LDV are more reliable. For all
MCS based on image processing, the accuracy diminishes with the mode rank. The bias
error was minimised by choosing the measurement duration allowing signals to decay to
values below observable, considering the sensitivity of MCS, and using an exponential
weighting window on both force and response measurements, hence minimising leakage.
The random error in FRF obtained with H1 estimator, assuming no extraneous noise on the
hammer force input (see Figure 3), provided by the formula given in Bendat and Piersol [52]
is negligibly small for the recovered modes. Therefore, this systematic behaviour should
be attributed to insufficient MCS sensitivity and relatively high noise levels obtained by
taking the average from only eight windows. This can be understood by closer inspection
of the magnitude of compliance FRF for ArUco system and the corresponding magnitude-
squared coherence shown in Figure 10. The data were obtained by taking an average over
eight windows, each containing data from a single hammer impulse test, and by applying
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an exponential window on both signals with the decay constant of −4, thus ensuring the
window reduces to below 2% of its initial value of unity at the end of the record. The
compliance FRF was chosen in this case as it relies on the displacement signal, which is
native to ArUco. Four distinctive peaks are visible in the spectrum of compliance FRF
magnitude above 4 × 10−4 mN−1 in Figure 10a, which correspond to the four lowest
translational modes in z-axis of the frame. The peaks for mode 5 and 6 are hardly visible in
the spectrum and mostly buried in the uncorrelated noise having magnitude reaching up
to approximately 7 × 10−5 mN−1 within the corresponding frequency band. As shown in
Figure 10b, the coherence is acceptable for the first four modes, but drops to unacceptable
levels for frequencies associated with mode 5 and 6, for which the magnitude FRF in
Figure 10a is heavily distorted between resonant peaks. In comparison, the mobility
FRF magnitude for accelerometers in Figure 8, from data sampled at a similar rate to
CGC systems (see Table 1), is very clear and there is no distortion throughout the whole
frequency bandwidth.

Interestingly, the performance of Imetrum and template matching in terms of modal
frequency, damping and generalised mass is comparable up to the 4th mode at circa 18.73
Hz. The two MCS relied on different fiducial markers and Imetrum used two cameras
whilst template matching used only one camera. Furthermore, the results from Imetrum
were averaged over two markers tracked within the top plate, whilst a single marker was
tracked by template matching. Beyond the 4th mode, all image-based MCS yield little
accuracy in terms of damping and generalised mass reconstruction.
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Another reason for the deficiency in reconstruction of mode 5 and 6 by CGC-based
MCS is revealed when considering relatively low response levels for these modes at the
top plate, as shown in Figure 8, together with the mode shapes, shown in Figure 11. For
clarity of presentation, the mode shapes in Figure 11 are normalised to the maximum
magnitude of unity. Although the relative resolution of mode shapes coarsens with the
increasing mode shape rank, the relative movement at the measurement points is what
could be expected from the type of tested structure when idealised as a lumped-mass
model. The match between mode shapes recovered with different MCS seems generally
good. However, the modal displacement at the top plate, coinciding with the point of
application of the hammer force, is relatively small for mode 5 and 6. This means that the
energy transmitted to these modes, bearing in mind the force level was similar across the
whole frequency range of interest, could have been insufficient to excite them beyond the
noise floor of image-based MCS. This also explains low coherence for mode 5 and 6 in
Figure 10b.

Figure 12 presents modal assurance criterion (MAC) [53,54] calculated to quantify
the correlation between mode shapes for the first six translational modes. Overall, MAC
obtained against accelerometry for all MCS is above 0.987 which, for all practical purposes,
can be considered satisfactory. The most consistent agreement with accelerometry for mode
6 is found for LDV. The MAC for mode 6 for the other two systems which recovered this
mode shape, i.e., Imetrum and OptiTrack, deteriorates significantly relative to the MAC for
lower rank modes.
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available results.

The correlation of mode shapes obtained with ArUco with those obtained with ac-
celerometry deteriorates consistently with the mode shape rank. This is clearly visible in
Figure 13, which is a snapshot of the results presented in Figure 12.
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In conclusion to this section, the benchmark estimates of modal parameters are as-
sumed here to come from accelerometry and LDV, since they give corresponding results
in terms of the modal frequency, damping and generalised mass, as seen in Table 2 and
Figure 9, and the mode shape, as seen Figures 11 and 12. This is the case for all translational
modes considered in this study, with the exception of mode 2 of which identification is
affected by the proximity of a torsional mode. All image-based MCS give corresponding
results for the lowest modes, but the error between estimates of modal parameters increases
with the mode rank.

The errors in modal parameters obtained with image-based MCS are not out of range
with results reported from an exercise aiming to assess the consistency in modal identifica-
tion of a structure moved between twelve European laboratories [55]. The variability in the
estimated modal frequency, damping and generalised mass, obtained from accelerometry,
was within 4%, 30%, and 10%, respectively.

The performance of image-based commercial MCS—Vicon (similar to OptiTrack used
herein), based on three cameras and light-reflective markers, was compared to laser dis-
placement sensors (LDS) in Park et al. [56]. The measurements were taken from a scaled
model of a pylon subjected to uniform wind flow within a wind tunnel. The frequency
and damping estimates obtained from LDS for the first translational mode were 6.93 Hz
and 0.359%, respectively. The corresponding estimates from Vicon were within 0.3% and
177%, respectively. In a subsequent study [24], the performance of Vicon, consisting of
four cameras, was compared to accelerometry and LDS. The behaviour of a scaled model
of a 3D building frame having three storeys (rather than six storeys as in the model used
herein) and stiffened with bracing in one lateral direction to enforce dominant vibrations
in the other lateral direction, in response to an initial displacement, was of interest. There
were no errors, up to two decimal places, in the frequencies of three translational modes
between 1.07 Hz and 5.15 Hz and the error in modal damping, expected to fall within the
range of 0.2% to 0.84%, was within approximately 2%. However, none of these studies
reported modal mass estimates nor conducted EMA.

An alternative way to present the results obtained herein would be to normalise mode
shapes by the modal mass rather than the maximum amplitude at the measurement points.
The MAC obtained from such normalised mode shapes would remain the same yet the
modes themselves would carry the same error with the reported modal mass. However,
this would mask the fact that the relative movement of measurement points on the tested
structure is consistent in scale between all deployed instrumentation systems.

3.3. Initial Displacement Testing Results

Having established that image-based MCS provide modal parameters compatible
with benchmark estimates from accelerometry and LDV for mode 1 and 2, the focus in this
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section is on these two modes only. The LDV data were used herein as a benchmark to
avoid numerical errors associated with double-integration of the acceleration data and to
account for better performance of this system in capturing characteristics of mode 2. All
MCS data were up-sampled to a common frequency of 3 kHz for precise time alignment.

3.3.1. Vibration Amplitude

The envelopes of the amplitude of peak displacement identified within each vibration
cycle for the first two modes are shown in Figure 14. The data were obtained by applying
a two-way fourth-order Butterworth band-pass filter with cut off frequencies ±0.15 Hz
from the identified modal frequencies. The ArUco signal used in the comparison was
recorded at 0 degrees CGC incidence angle relative to the frame (see Figure 2). It can
be seen that all four image-based MCS are capable of measuring dynamic displacements
with sub-millimetre (and sub-pixel) accuracy. Visual inspection indicates that the motion
of the top plate in mode 1, shown in Figure 14a, is recovered with good accuracy for all
image-based MCS relative to the benchmark LDV data. For mode 2, the signals from
Imetrum and ArUco, shown in Figure 14b, diverge from the benchmark LDV data for
amplitudes below 0.05 mm. However, it needs to be noted that the motion amplitudes
recorded for mode 1 and 2 differ by more than an order of magnitude. The RMS errors in
peak displacement amplitudes relative to LDV are given in Table 3.
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Table 3. RMS errors in the amplitudes of peak displacement for mode 1 and mode 2 relative to LDV.

MCS Number of Cameras
Mode 1 Mode 2

RMS Error [mm] RMS Error [mm]

OptiTrack 8 6.74 × 10−3 1.23 × 10−3

Imetrum 2 7.15 × 10−3 2.61 × 10−3

ArUco 1 1.74 × 10−2 3.12 × 10−3

Template matching 1 1.98 × 10−2 1.34 × 10−3

The RMS errors are generally small for all MCS, falling below 0.02 mm. The best
match with LDV is found for OptiTrack. Although the accuracy generally improves with
the number of cameras in MCS (see Table 1), overall, the performance of MCS relying on a
single CGC either matches that of multi-camera systems or is not out of range by much.

3.3.2. Influence of the Angle of Incidence of CGC

A dedicated set of tests was conducted to establish the influence of the CGC angle
of incidence on the accuracy of vibration measurement with ArUco. The CGC was set at
three angles of incidence: 0, 15, and 30 degrees. The results of these tests, together with the
benchmark data from LDV, are presented in Figure 15a–c, respectively. It can be seen that
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all angles other than 0 degrees generate significant errors. This is predominantly caused by
the motion component out of plane relative to the camera and is consistent with the results
of static pose reconstruction discussed in Section 3.1.
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3.4. Limitations of This Study and Deployment Considerations on In Situ Structures

The way various systems were set up is of course specific to the conducted tests.
Although every effort was made to make informed decisions and apply best judgement, it
is possible that the systems were not operated at their optima. For example, the choice of
fiducial markers and, to some extent, their location on the structure, as explicitly studied
elsewhere [7], was often arbitrary, dictated by suggestions reported in the literature and
authors’ own experience.

There are certain limitations and difficulties in using optical MCS beyond those related
to their intrinsic design, which, ultimately, can lead to the reduced quality measurements
in structural vibration monitoring. These factors include uncertainty in system calibra-
tion, environmental effects, and deployment difficulties [1]. For example, light intensity
fluctuations during monitoring, e.g., those associated with alternating cloud coverage,
and light refraction can lead to drift and sudden discontinuities in the measured signals.
These problems can be minimised in post processing, e.g., with zero-normalised versions
of certain correlation criteria for template matching method [57]. Changes in atmospheric
pressure and wind speed can be prevalent [5]. Camera instability or drift associated with
settlement can be reduced by ensuring rigid camera mounting [58] or using an auxiliary
reference point within the captured image, stationary in the absolute reference frame, and
subtracting its motion from the measured structural displacement [6]. Camera vibration
can also be compensated for, to some extent, by incorporating an accelerometer recording
camera motion for use in post processing [59]. However, most of these challenges, which
are often coincident, cannot be completely eliminated during in situ investigations on
outdoor structures. Therefore, to obtain a benchmark performance of optical structural
vibration monitoring systems, a controlled environment is required, which shelters them
from the elements. This was achieved in the current study.

4. Conclusions

The performance of five optical motion capture systems (MCS) in experimental modal
analysis (EMA) is investigated in this study, based on the data obtained from a scaled
model of a frame of a 3D building. This includes Polytec laser Doppler vibrometer—LDV,
two commercial multi-camera systems—OptiTrack and Imetrum, and two open-source
systems utilising a single consumer-grade camera (CGC) based on feature- and area-based
template matching—ArUco and TM, respectively. The results obtained with accelerometry
are used as a validating benchmark. A complete set of modal parameters is considered,
including modal frequency, mode shape, modal damping and modal (generalised) mass.
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To the best of authors’ knowledge, this experimental study constitutes the broadest to date
comparative effort towards understanding the performance of optical MCS in EMA.

Dictated by the specification of some of the deployed MCS, the translational response
of the frame associated with the weak axis of the columns is of interest, up to the frequency
of 25 Hz. Six translational modes are identified by all systems, apart from ArUco which
could not recover mode 5 at 21.2 Hz and mode 6 at 24.9 Hz, and TM which could not
recover mode 6. The maximum discrepancy in modal frequency is below 0.2% and can be
explained by different sampling rates inherent to the deployed MCS. The modal assurance
criterion calculated for the empirical mode shapes does not fall below 0.987.

The modal parameters derived from LDV are in excellent agreement with accelerom-
etry for all considered modes. This is apart from the damping for mode 2, of which
reconstruction is affected by the neighbouring torsional mode, which is identified with
greater accuracy by LDV rather than accelerometry. All image-based MCS, i.e., OptiTrack,
Imetrum, ArUco and TM, can measure the displacement with sub-millimetre and sub-pixel
accuracy. A good match with a benchmark measurement from LDV is found for amplitudes
down to 0.05 mm. Considering all image-based MCS, the approximate maximum error
magnitude in modal damping and mass is, respectively, 7% and 10% for mode 1 at 2.7 Hz,
and 12% and 14% for mode 2 at 8.7 Hz. All modal parameters for mode 3 at 13.5 Hz and
mode 4 at 18.7 Hz are recovered reasonably well by all systems apart from ArUco, with the
maximum error in modal damping and mass below 12% and 20%, respectively. Another
exception is Imetrum for which the error in modal mass reconstruction for mode 4 is above
50%. The performance of all image-based MCS in the reconstruction of modal damping
and mass for mode 5 and 6 is unsatisfactory. This is caused by a combination of factors,
most notably low response levels at these modes, relatively low sensitivity and high noise
floor of these MCS, and mode 6 being close to the Nyquist frequency.

ArUco system, relying on feature-based template matching, performs best with the
CGC positioned at 0 degrees angle of incidence. This is found in static pose reconstruction
tests and in vibration tests. The more the angle of incidence deviates from 0 degrees, the
higher measurement error. When implemented with CGC at its preferable orientation, an
area-based template matching algorithm can match the performance of Imetrum, relying
on two cameras, in the lowest four modes. The error magnitude in modal damping and
mass is then below 20%.

In general, image-based MCS do not match the performance of conventional ac-
celerometers nor LDV in terms of sensitivity and noise levels. Therefore, for maximum
efficiency, the organisation of instrumentation systems during the tests and the testing
protocols needs to be carefully considered to ensure all modes of interest are sufficiently
excited by the force source and can be recovered in modal analysis. Since it is always a
good practice to conduct a survey to identify a suitable arrangement of instrumentation
prior to any modal test, the penalty associated with this task may not be significant.

Overall, the presented results suggest that MCS based on a single consumer-grade
camera and open-source tracking algorithm is capable of providing data enabling EMA to
be conducted when frequencies of interest fall below approximately 20 Hz, which is the
case for many civil engineering structures. The main advantage of a system of this type is
in the ease of deployment and economy—the cost, which can be limited to hardware only,
is a small fraction of that associated with commercial systems. Therefore, the outcomes
of this study encourage further efforts in exploring the performance and optimisation,
e.g., through hybrid solutions, of image-based optical motion capture systems in the
context of fully detailed EMA, rather than the identification of modal frequencies and
mode shapes only.
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