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+is study focused on the application value of MRI images processed by a Support VectorMachine (SVM) algorithm-based model
in diagnosis of benign and malignant solitary pulmonary nodule (SPN). +e SVM algorithm was constrained by a self-paced
regularization item and gradient value to establish the MRI image segmentation model (SVM-L) for lung. Its performance was
compared factoring into the Dice index (DI), sensitivity (SE), specificity (SP), andMean Square Error (MSE). 28 SPN patients who
underwent the parallel MRI examination were selected as research subjects and were divided into the benign group (11 patients)
and malignant group (17 patients) according to different plans for diagnosis and treatment. +e apparent diffusion coefficient
(ADC) at different b values was analyzed, and the steepest slope (SS) and washout ratio (WR) values in the two groups were
calculated. +e result showed that the MSE, DI, SE, SP values, and operation time of the SVM-L model were (0.41± 0.02),
(0.84± 0.13), (0.89± 0.04), (0.993± 0.004), and (30.69± 2.60)s, respectively, apparently superior to those of the other algorithms,
but there were no statistic differences (P> 0.05) in the WR value between the two groups of patients. +e SS values of the time-
signal curve in the benign andmalignant groups were (2.52± 0.69) %/s and (3.34± 00.41) %/s, respectively. Obviously, the SS value
of the benign group was significantly lower than that of the malignant group (P< 0.01). +e ADC value with different b values in
the benign group was significantly lower than that of the malignant group (P< 0.01). It suggested that the SVM-L model
significantly improved the quality of lung MRI images and increased the accuracy to differentiate benign and malignant SPN,
providing reference for the diagnosis and treatment of SPN patients.

1. Introduction

In China, lung cancer ranks first for the incidence and
mortality amongmalignant tumors.Worldwide, lung cancer
has the highest mortality and its incidence ranks third.
Moreover, the number of patients with lung cancer is
constantly growing and the survival rate of lung cancer in
China is much lower than that in developed countries [1].
+e CT image of SPN is of high density with the D≤ 3 cm,
distinct or indistinct borders, and round or irregular shapes.
Single round or oval nodules in the lung parenchyma are not
accompanied with pulmonary atelectasis and lymphade-
nectasis and the like [2]. SPNs are roughly classified into
benign and malignant ones, but the majority is indistin-
guishable [3]. +e commonly used MRI imaging methods
include X-ray plain film, MSCT routine scan, enhanced

dynamic scan, and computed tomography perfusion (CTP).
+e X-ray easily misses the hidden part or small lesions, and
its detection rate of SPNs in adult lungs is only 0.1%–0.2%
[4]. PETor PET-CTstill has the problem ofmissed diagnosis,
which may increase the false negative rate [2]. CTP and
spectral CT technology are efficient in diagnosing pulmo-
nary nodules, but they require a high radiation dose, which
limits their clinical applications [5].

Recently, MRI has been widely applied in diagnosis of a
variety of diseases. It can reduce susceptibility artifact and
cardiovascular beat artifact arising from the air-tissue in-
terface when diagnosing lung diseases. MRI is characterized
by multiple-layer and multiple-sequence imaging and in-
tensified signals. It can also reflect the number of capillaries
and blood perfusion parameter values of benign and ma-
lignant lung nodules.
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+e dynamic contrast-enhanced-magnetic resonance
scan (DCE-MR) is a conventional noninvasive imaging
method to observe physiological characteristics of tumor.
+e blood perfusion parameter values can be used as the
imaging biomarkers to differentiate benign and malignant
nodules. However, there is no unified standard and quali-
tative threshold for DCE-MR in evaluating benign and
malignant SPNs [6]. SVM has achieved excellent results in
the field of themedical image segmentation. Yamamoto et al.
[7] used SVM algorithm to segment white matters, gray
matters, and other categories of MRI images for brain; Sun
et al. [8] used SVM algorithm to segment MRI images for
prostate tumor. However, the SVM algorithm has rarely
been applied to segment MRI images for the lung.

All in all, the SVM algorithm has already been applied to
segment MRI images for multiple organs, but rarely used in
lung segmentation. In the study, the SPN patients were
chosen as research subjects, and the SVM-based algorithm
was used to process the MRI images for the lung, to dif-
ferentiate benign and malignant SPNs, expected to provide a
theoretical basis for diagnosis and treatment of SPN.

2. Materials and Methods

2.1. Subjects and Grouping. 28 confirmed SPN patients, who
received thoracic surgery in the hospital from June 2019 to
September 2020, were chosen as subjects, and all patients
underwent MRI examination, including 9 male patients and
19 female patients. +e age of patients ranged from 19 to 65
years and the average age was 51.04± 6.52 years. All the
patients were divided into a benign group and malignant
group according to different clinical diagnoses and treat-
ments. +e benign group was made up of 11 patients, while
the malignant group had 17 patients. +e inclusion criteria
for the study are shown as follows: (1) +e chest CT ex-
amination in the hospital was chosen to specify the solid
nodules and lesions (≥1 cm, ≤3 cm) inside the lungs; (2) the
lesions had uniform density and no calcification or cavi-
tation and no satellite lesions around, with no pulmonary
atelectasis and lymphadenectasis caused; and (3) all patients
who got lesions after operations; their pathological results
were confirmed as sarcoidosis, and they had complete image
materials. Exclusion criteria: (1) the patients who failed to
receive DCE-MRI scanning; (2) the artifact in theMRI image
affected the observation of lesions; (3) the patients with
pulmonary atelectasis and pneumonia around lesions; and
(4) the patients who suffered from malignant tumors in
other parts. +e procedure was approved by the ethics
committee of the hospital, and all the subjects who were
included in the study signed the informed consent form.

2.2. Establishment of an SVM-BasedMRI Image Segmentation
Model. +rough nonlinear transformation, SVM trans-
forms the input space into a high-dimensional space, in
which the optimal linear discriminant surface is calculated.
+e medical image data are usually linear and undividable
[9]. +e data in the initial space are mapped to a new space
using nonlinear transformation. Provided that ϕ (x) is a
mapping function, xi is an m-dimensional input vector. Its
kernel function is expressed as

K x, xi( 􏼁 � ϕ(x)ϕ xi( 􏼁. (1)

Under this condition, the nonlinear SVM model is
expressed as
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In the abovementioned equation, crepresents the penalty
function to balance interval classification and misclassifi-
cation, xi indicates the m-dimensional input vector, yi is the
label of the sample, n represents the number of training
samples, and αi indicates the slack variable.

In the MRI image for the lung, the eigenvector for each
pixel is x and its training dataset is expressed as
A � (xi, yi), i � 1, 2, . . . , n􏼈 􏼉, where xi represents the no. I
training sample, yi indicates the real label of no. i training
sample, and n is the number of training sample. Based on
characteristics of the MRI image for the lung, the self-paced
regularization item is added to the article so as to constrain
the SVMmodel. +e specific calculation method for the self-
paced regularization item is shown as follows:
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In equation (3), L[yi, g(wxi + a)] indicates the training
error of each sample, vi represents the weight, w is the
decision function parameter, λ indicates the instantaneous
function parameter, η is the step length, and a is the penalty
coefficient.

Provided that xi is the sample set, i � 1, 2, · · · , m, and yi

is the category label number of sample set,
(x1, y1), . . . , (xi, yi) ∈ RD × − 1, 1{ }, the optimization prob-
lems for SVM are expressed as follows:
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(4)
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In equation (4), C is the regularization parameter, αi is
the slack variable, ω is the weight vector, and b is the error
item.

+e discriminant function of SVM is shown in equation
(2), in which Ns represents the number support vector, βi is
the multiplier of Lagrange and meets the condition of βi > 0,
G(x, xi) is the kernel function, and c is the threshold value of
classification.

f(x) � 􏽘
Ns

i�1
yiβiG x, xi( 􏼁 + c. (5)

Because the kernel functions are different, SVM algo-
rithms vary greatly from each other. In general, the kernel
function is only required to meet Mercer theorem [10]. In
this article, the radial basis is chosen as the kernel function
and expressed in equation (3), in which c is the radial basis
parameter.

K x, xi( 􏼁 � exp − c x − xi

����
����
2

􏼒 􏼓. (6)

If a group of training samples can be divided by the
optimal discriminant surface, the expected value of the error
rate of testing samples meets the following condition:

E[P(error)]≤
E(SV)

n
. (7)

In equation (7), n represents the number of training sets,
SV is the support vector, E[P(error)] indicates the expected
value of the error rate of testing samples, and E(SV) is the
expected value of the number of support vector. +e correct
rate discriminant weight wt is expressed as follows:
wt � 1 − (E(SV)/n).

In MRI image segmentation for the lung, how to pre-
cisely separate the border parts of the lung and remove the
adhesion between the lung and peripheral organs are the
core parts of segmentation algorithm. In the MRI image, the
pixel at the texture border usually has a higher gradient
value. +e information on the gradient value of textures is
collected to enhance the expression of texture characteris-
tics. +e gray-level and gradient-level co-occurrence matrix
[11] combines information on the gray level and gradient
level in the image and highlights the direction of texture.+e
pixel in the image is taken as the center to construct a
rectangle block (5× 5) and extract the characteristics of the
gray level and gradient level. +e calculation method for
advantages of small gradient is shown as follows:
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+e calculation method for the inverse difference mo-
ment is shown as follows:
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In equations (8) and (9), H(i, j) represents the number
of pixels in the rectangle block (5 × 5), with a pixel as the
center, i as the gray level, and j as the gradient value. P(i, j)

indicates the probability of co-occurrence of the gray level (i)
and gradient (j) in the rectangle block (5 × 5) with the
currently calculated pixel as the center.

In this article, the MRI image segmentation method
based on optimized SVM is named as SVM-L. +e scanned
MRI image is processed through the image processing
software to obtain the lung parenchyma area, passes through
co-occurrence matrix algorithms of different dimensions,
gray levels, and gradient values to construct the charac-
teristics vectors, undergoes the segmentation treatment
using the VSM model, and then, experiences the post-
treatment of 2D morphology to output the MRI segmen-
tation image. +e segmentation flow for the SVM-L model
MRI image is shown in Figure 1.

2.3. Comment on Quality of the SVM-Segmented MRI Image.
+e segmentation results of the MRI image for the lung are
analyzed in terms of Dice Index (DI), sensitivity (SE),
specificity (SP), and mean square error (MSE). +e Dice
index is to measure whether the segmentation results and
gold standard area are overlapped. +e calculation equation
for the Dice index is shown as follows:

Dice(A, B) � 2 ×
A∩B

A∪B
. (10)

In equation (10), A represents the standard value seg-
mented by a doctor and B represents the predicted value
segmented by the SVM-based model. +e value range of the
Dice index is [0, 1]. +e Dice index is increasingly rising,
which means the predicted result is closer to the real value.

+e sensitivity is mainly to measure and segment the
proportion of the correctly detected target area, while the
specificity is used to assess the ratio of automatic segmen-
tation to the exclusion of nontarget areas.+e algorithms for
sensitivity and specificity are shown as follows:

SE �
|A∩B|

B
,

SP �
A1 ∩B1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
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.

(11)

In equation (11), A1 and B1 represent the comple-
mentary set of set A and B. +e value range of SE and SP is
[0, 1]. +e higher the value range of SE and SP is, the better
the segmentation effect is.

+e calculation method for MSE is shown as follows:

MSE(f, g) �
1

MN
􏽘

M

i�1
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N
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(f(i, j) − g(i, j))

2
. (12)

In equation (12), f represents the MRI image segmented
by a doctor, g represents the SVM model segmentation
image, M × N represents the dimension of the segmented
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image, and i and j are pixel values.+e smaller theMSE value
is, the better the image quality is.

2.4. MRI Scanning Method. +e SIEMEMENS 3.0 T mag-
netic resonance machine is used to conduct routine MRI flat
scanning and DCE-MRI scanning for all patients. +e
routine MRI scanning: (1) the repetition time (T1) of
weighted imaging of axial electrocardiogram gating spin
echoes is 1800ms, spin echo time is 2.4ms, slice thickness is
5mm, slice gap is 1mm, scan field of view is 360mm, and
scanning time is 73s. (2) +e repetition time (T2) of
weighted imaging of fast spin echoes is 3000ms, spin echo
time is 83ms, slice thickness is 5mm, slice gap is 1mm, scan
field of view is 360mm, and scanning time is 195s. (3) +e
thickness of the DCE-MRI-enhanced scan slice is 3.6mm,
slice gap is 1.2mm, scan field of view is 380mm, and flip
angle is 2°. At the dose of 0.2mmol/Kg and rate of 0.2ml/s,
the dimeglumine Gadopentetate is injected through the
cubital vein. In 30 seconds after injection, the no. 30 phase of
the nodule area scanning is conducted.

2.5. MRI Image Processing Method and Observation
Indicators. +e MR-scanned data are transmitted to the
Siemens syngo MRD image processing workstation. +e
quantitative parameter values (DCE-MRI) of all data are
measured by 2 physicians who have more than 3 years’
experience in the radiology department, and the mean value
of the 2 physicians is determined as the final data. +ree
regions of interest (ROIs) on the solid part of lesions with the
largest sections are sketched manually, to avoid the mea-
sured scope including calcification, necrosis, cystic change,
and hemorrhage area. Each ROI covers an area of
0.3cm2–0.5 cm2.

At different b values, the ADC values of ROI of two
groups of patients are analyzed. +e obtained data are used

to draw a time-signal curve. +e curve type is determined
according to the classification standard of Schaefer. +e
proportion of two groups of patients in different curve types
is calculated. With time as the X-axis and signal intensity
variation as the Y-axis, the SS and washout ratio (WR) are
calculated.

2.6. Statistical Method. +e SPSS19.0 statistical software is
used to process experimental data, and the mean value of
measurement data ± the standard deviation is expressed as
x ± s. +e comparison of mean values of all groups is
verified by t. +emeasurement data are expressed by percent
(%) and tested by χ2, and P< 0.05 indicates the statistical
significance in differences.

3. Results

3.1. Analysis on the Result of SVM-Based MRI Image
Segmentation. In this article, the MSE value of the SVM-
based optimized SVM-L model was compared with that of
fuzzy C-means (FCM), Convolutional Neural Network
(CNN), SVM, local binary fitting (LBF), and Generative
Adversarial Network (GAN) algorithms. +e comparison
result showed that, in 15 detected MRI images, the MSE
value of SVM-L models was apparently lower than that of
other algorithms and the average MSE value was 0.41± 0.02
(Figure 2).

+e DI values of MRI images segmented through dif-
ferent algorithms were compared (Figure 3). +e compar-
ison result showed that the DI values of SVM-Lmodels in 15
detected MRI images were apparently lower than those of
other algorithms and the average DI value was 0.84± 0.13.

3.2. Analysis on SE and SP of SVM-Based MRI Segmentation.
When 15 MRI images were processed through different
algorithms, the SE value of the SVM-based optimized
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Figure 1: Segmentation flow for the SVM-L-based MRI image.

4 Contrast Media & Molecular Imaging



SVM-L model was compared with that of other five algo-
rithms. +e result showed that the SE values had higher
volatility and the SE value of SVM-L models was relatively
higher than that of other algorithms.+e average SE value of
the SVM-Lmodel was 0.89± 0.04, while the average SE value
of FCM, CNN, LBF, and GAN algorithms was 0.68± 0.13,
0.71± 0.13, 0.73± 0.11, 0.77± 0.10, and 0.76± 0.13, respec-
tively (Figure 4). +e average SE value of the SVM-L model
was obviously higher than that of other algorithms.

When MRI images were processed through different
algorithms, all the SP values had a higher volatility
(Figure 5(a)). +e average SE values of 15 different MRI
images segmented through different algorithms were cal-
culated and analyzed (Figure 5(b)). +e average SP value of
SVM-Lmodel, FCM, CNN, LBF, SVM, and GAN algorithms
was 0.993± 0.004, 0.986± 0.006, 0.986± 0.008, 0.987± 0.006,
0.988± 0.005, and 0.987± 0.006, respectively.+e average SP

value of the SVM-L model was apparently higher than that
of other algorithms.

3.3. Analysis on Time of SVM-Based MRI Segmentation.
When 28 different MRI images were processed through the
SVM-L model, the segmentation time was as shown in
Figure 6(a). +e segmentation time of different MRI images
varied greatly from each other and ranged from 14.15 s to
43.06 s. +e average segmentation time of 28 MRI images
processed through different algorithms was further com-
pared (Figure 6(b)).+e average segmentation time of SVM-
L model, FCM, CNN, LBF, SVM, and GAN algorithms was
30.69± 2.60, 36.52± 2.02, 38.17± 3.11, 37.85± 2.95,
35.83± 1.98, and 39.07± 3.03, respectively. +e segmenta-
tion time of MRI images of the SVM-L model was evidently
lower than that of other algorithms.

3.4. MRI Features of SPN Patients. In this article, the MRI
images of SPN patients were processed through the SVM-
based optimized MVM-L model to analyze the MRI features
of SPN. +e lesions of SPN patients were oval in shape
(where the red arrow is) and had nonuniform signals and
rough borders. T1W1 showed that the lesion had equivalent
signals (Figure 7(a)), T2W1 showed that the lesion had
distinctly higher signals (Figure 7(b)), DW1 indicated that
the lesion with rough borders had obviously high signals
(Figure 7(c)), and ADC indicated that the lesion had low
signals (Figure 7(d)).

3.5. Comparison of Time-Signal Curve Types of MRI Images of
SPN Patients. +e statistics on time-signal curve types of
MRI images of SPN patients was analyzed (Figure 8). +ere
were no statistical differences in time-signal curve types of
different MRI images of the two groups of patients in terms
of the proportion of patients (P> 0.05).

3.6. Comparison of Parameters for the Time-Signal Curve of
MRI Images of SPN Patients. In the time-signal curve, the
two groups of SPN patients were compared for the SS and
WR value of MRI images (Figure 9). +e SS value in the
benign group was (2.52± 0.69) %/s, and the SS value in the
malignant group was (3.34± 00.41) %/s. Obviously, the SS
value in the benign group was significantly lower than that in
the malignant group (P< 0.01). +e WR values of the two
groups were not statistically different (P> 0.05).

3.7. Comparison of ADC Values of MRI Images at Different b
Values of Benign andMalignant SPN Patients. At different b
values, the two groups of SPN patients were compared for
the ADC values of MRI images (Figure 10). At different b
values, the ADC value of benign SPN patients was evidently
lower than that of malignant group, showing a remarkable
difference between the two (P< 0.01).
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Figure 3: Comparison of Dice indexes of MRI images segmented
through different algorithms.
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4. Discussion

+e Dice index is also named as the F1 score in the in-
formation retrieval domain and has been widely applied in
verification of the segmentation effect of 3D medical images
[12]. +e Dice index can be used to depict a better seg-
mentation effect [13]. In this study, an MRI image seg-
mentation model (SVM-L) was established based on the
SVM algorithm, and its performance was evaluated factoring
into DI, SE, SP, and MSE.+e results herein showed that the
DI, MSE, SE, and SP values of lung MRI images segmented

through SVM-L models were obviously superior to those of
MRI images segmented through other algorithms. +ese
results manifested that the SVM-L model, which was con-
structed based on SVM algorithm, had better effect in
segmentation ofMRI images for the lung and was apparently
superior to the nonoptimized SVM algorithms. As com-
pared with the study results of Khan et al. [14], the SE and SP
of lung MRI images segmented through the SVM-L model
have been dramatically improved. +e reasons are analyzed
as follows: the well-trained SVM is used in the study to
classify roughly segmented MRI images of the lung. +e
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Figure 5: Comparison of SP ofMRI images segmented through different algorithms. (a) Distribution of SP values ofMRI images segmented
through different algorithms; (b) comparison of average SP values of MRI images segmented through different algorithms.
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Figure 4: Comparison of SE ofMRI images segmented through different algorithms. (a) Distribution of SE values of MRI images segmented
through different algorithms; (b) comparison of average SE values of MRI images segmented through different algorithms.
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gray-level, gradient-level, texture characteristics of featured
2DMRI images as well as special information characteristics
of 3D MRI images are entered to more precisely divide the
lung position in MRI images and remove adhesion in the
lung [15], so that SE and SP of MRI segmentation for the
lung are notably raised, and its segmentation time is ob-
viously shortened as compared to other algorithms.

At present, the multislice helical CT is the gold standard
for assessing morphological characters of SPN and

pulmonary distribution. However, the radiation dose of
multitemporal scanning of dynamically enhanced CT qua-
druples is higher than that of the conventional CT scanning,
the radiation hazard of which severely restricts its scope of
application [16]. MRI is featured by multilayer, multi-
sequence, and intensified signal characterizers. Its diagnosis
rate of a pulmonary nodule with d> 5mm attains 100% [17].
+e study results herein manifested that, in terms of the
proportion of patients in time-signal curve types of different
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Figure 6: Comparison of segmentation time of MRI images segmented through different algorithms.
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MRI images, there was no statistical difference between the
benign and malignant SPN patients (P> 0.05). It is very
difficult to identify benign and malignant SPN using MRI

curve types, which is consistent with the research results put
forward by Feng et al. [18] and Wielpütz et al. [19]. +e SS
value in the time-signal curve of the MRI image is more
relevant to the microvessel density of tumors [20]. +e study
results herein showed that the SS values of benign SPN
patients were apparently lower than those of malignant
patients (P< 0.01). According to analysis, such result was
perhaps caused by active tumor vascular proliferation and a
sharp increase in microvessel density inside the malignant
SPN [21].+eWR in the time-signal curve of the MRI image
is relevant to interstitial diseases (resilience and collagenous
fiber) [22]. +e study result herein showed that there was no
statistical difference inWR values in the time-signal curve of
MRI images of the two groups of patients (P> 0.05), which
was consistent to the research result of Guan et al. [23]. As
the b value is growing, the diffusion-weight of the MRI
image is also increasing, and the ADC value is closer to the
actual diffusion value of the tissue; meanwhile, the MRI
image encounters a drop in the signal-noise ratio and de-
formation under the interference of a magnetic susceptibility
artifact of the lung [24]. +e result herein manifested that
when the b value was within 500–1000, the ADC value of
MRI images of benign SPN patients was apparently lower

(a) (b)

(c) (d)

Figure 7: MRI features of SPN patients. (a) T1W1 image; (b) T2W1 image; (c) DW1 image; and (d) ADC image.
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Figure 8: Comparison of time-signal curve types of MRI images of
the two groups of SPN patients.
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than that of the malignant group (P< 0.01). +e optimal b
value and ADC threshold to distinguish benign and ma-
lignant SPN with MRI should be selected from a larger
number of samples for further discussion.

5. Conclusions

In this article, the SVM-L model was established based on
SVM algorithm and was applied to process MRI images for
the lung, to differentiate benign and malignant SPNs. +e
result showed that the SVM-L model highly raised the
segmentation effects of MRI images for the lung, which was
suggested in clinic. However, the study still has many

shortcomings; for example, the sample size is small, which
will reduce the power of the study. An expanded sample size
is necessary to confirm the optimal b value and ADC
threshold to differentiate benign and malignant SPNs using
the SVM-L model. In conclusion, the SVM-L model can
significantly improve the segmentation effects of MRI im-
ages and increase the accuracy to differentiate benign and
malignant SPNs, providing reference for the diagnosis and
treatment of SPN patients.
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