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Combination antiretroviral therapy has dramatically changed the outcome of HIV
infection, turning it from a death sentence to a manageable chronic disease. However,
comorbidities accompanying HIV infection, such as metabolic and cardio-vascular
diseases, as well as cognitive impairment, persist despite successful virus control by
combination antiretroviral therapy and pose considerable challenges to clinical man-
agement of people living with HIV. These comorbidities involve a number of patho-
logical processes affecting a variety of different tissues and cells, making it challenging
to identify a common cause(s) that would link these different diseases to HIV infection.
In this article, we will present evidence that impairment of cellular cholesterol
metabolism may be a common factor driving pathogenesis of HIV-associated comor-
bidities. Potential implications for therapeutic approaches are discussed.
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Introduction

Despite effective control of HIV infection by combina-
tion antiretroviral therapy (cART), HIV-infected people
remain at high risk for developing dyslipidemia,
accelerated progress of atherosclerosis, metabolic syn-
drome, lipodystrophy, myocardial disorder, diabetes,
abnormal hematopoiesis, cognitive impairment and many
other metabolic comorbidities [1–4], which pose
considerable challenges to clinical management of people
living with HIV (PLWH) [5]. Effective prevention or
treatment of these comorbidities requires identification of
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the key pathogenic factors that drive development of
these diseases in patients with suppressed HIV load. So far,
this issue remained contentious.

Antiretroviral therapy itself has long been considered the
main reason for comorbidities in HIV-infected people.
Indeed, some first-generation nucleoside reverse tran-
scriptase inhibitors, in particular thymidine analogues
(stavudine, zidovudine), have pronounced metabolic side
effects and were strongly implicated in the pathogenesis of
HIV-related lipodystrophy [6–8]. Similarly, the early
generation of protease inhibitors, including such widely
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used drugs as lopinavir/ritonavir combination, has been
associated with a high risk of dyslipidemia, metabolic
syndrome and increased fat accumulation [9–12].
Progress in antiretroviral drug development during the
last 20 years produced drugs from both classes with far
fewer metabolic toxicities (e.g. tenofovir, emtricitabine,
atazanavir, darunavir) [13,14]. Nevertheless, although
discontinuation of anti-HIV drugs with metabolic side
effects improves fat distribution [15,16], the negative
consequences of previous exposures (legacy effect) persist
and may contribute to increased risk of metabolic
comorbidities [17]. Moreover, the newest addition to
antiretroviral therapy (ART) regimens – integrase strand
transfer inhibitors, and in particular dalutegravir – have
been associated with excessive weight gain [18–20].
With regard to HIV-associated neurocognitive disorder
(HAND), some in-vitro studies suggested potential
neurotoxicity of various classes of cART [21,22],
although relevance of this observation to HAND
pathogenesis remains controversial [23,24]. Overall,
antiretroviral drugs may contribute to metabolic abnor-
malities, but current ART regimens are unlikely to be
the primary cause of HIV comorbidities. This leaves
HIV itself as a primary suspect [25]. A study of ‘elite
controllers’, a small group of HIV-infected people who
control HIV replication to undetectable levels without
anti-HIV treatments, demonstrated significantly
increased coronary atherosclerosis and monocyte activa-
tion relative to uninfected individuals [25], indicating that
the cause of this comorbidity is related to HIV infection.

Therefore, to find the cause of HIV-associated comor-
bidities, one has to look at indirect or direct effects of HIV
itself. One indirect effect of HIV infection with a known
influence on pathogenesis of various comorbidities is
inflammation [26]. Inflammation due to early damage to
gut mucosal tissue and subsequent leakage of microflora
into the blood is a characteristic feature of HIV infection
[27]. Given that recovery of gut mucosal tissue after ART
initiation is slow, inflammation persists in treated patients
for a long time (refer to [26] for an excellent review).
Similarly, in elite controllers, despite little damage to
lymphoid tissues [28,29], low-level HIV replication can
be detected in the gut, associated with impairment of gut
barrier function [30] and inflammatory responses [31].
However, while inflammation is strongly associated with
HIV comorbidities, no evidence to support its role as a
primary causative factor exists. In fact, inflammation may
be a marker of the disease, rather than its etiological factor.

The other potential cause of HIV comorbidities is direct
effects of HIV. Given that the number of HIV-infected
cells in ART-controlled infection is extremely low, to
instigate systemic diseases, such as metabolic or cardio-
vascular comorbidities, HIV must affect a large number of
uninfected cells at various body sites. Such effects can be
mediated by HIV proteins released into the blood within
extracellular vesicles produced by HIV-infected cells.
Since current anti-HIV drugs prevent infection of new
cells, but do not block HIV transcription and translation
in already infected cells, production of HIV proteins
persists in ART-treated patients [32,33]. Extracellular
vesicles containing HIV proteins, including Nef, are
detected in a large proportion of ART-treated patients
with undetectable HIV load, as well as in elite controllers
[34–37]. In a recent study, Nef was detected in 83% of
ART-naive individuals (median Nef level in the blood was
11.63 ng/ml and correlated with HIV load), in 47.4% of
ART-treated patients with undetectable viral load
(median Nef level was 8.25 ng/ml), and in 52.4% of
elite controllers (median Nef level – 8.78 ng/ml) [37]. It
should be noted here that due to Nef variability between
the HIV isolates even within the same clade [38],
immunological detection methods have inherently low
sensitivity. The limit of detection of the assay used in the
study by Ferdin et al. [37] was 5.46 ng/ml, so it is likely
that lower levels of Nef were present in samples tested
negative. In this article, we argue for the role of these Nef-
containing vesicles as the pathogenic factor in HIV-
associated metabolic comorbidities and propose a
mechanism for this effect. We do not intend to provide
a comprehensive review of existing literature on
pathogenic factors in HIV comorbidities (the readers
are referred to an excellent recent review [26]), but will
focus on cholesterol metabolism and the role of Nef.

Nef is not the only HIV protein potentially implicated in
metabolic disorders. HIV protein Vpr has been shown in
mouse models to inhibit peroxisome proliferator-
activated receptor gamma (PPAR-g) [39], which is
essential for adipocyte differentiation, leading to fatty acid
accumulation and lipotoxicity [39]. Exposure of rat
neurons to Tat led to upregulation of cholesterol
biosynthesis genes and increased levels of free cholesterol
and cholesteryl esters [40]. However, the role of
metabolic mechanisms in the effects of other than Nef
HIV proteins in HIV-associated comorbidities is not
sufficiently characterized.
HIV infection, Nef, cholesterol metabolism
and lipid rafts

Cholesterol is critical for HIV replication, as both HIV
entry into and exit from the target cells occur through
cholesterol enriched regions of the plasma membrane,
lipid rafts [41–49]. Depletion of cellular cholesterol by
chemical agents such as cyclodextrin [42,44,49–52]
or as a consequence of genetic predisposition to high
expression of ABCA1 [53,54], the cellular cholesterol
transporter mediating cholesterol efflux, lead to suppres-
sion of HIV replication in vitro and control of HIV
infection in vivo. Single nucleotide polymorphism in
PCSK9 gene controlling expression of LDL receptor was
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associated with higher HIV load in HIV/hepatitis C virus
coinfected women, presumably due to increased uptake
of cholesterol by cells [55]. It is therefore not surprising
that HIVevolved means to control cholesterol content of
target cells, and Nef appears to be the main viral tool in
this process.

HIV-1 protein Nef is a multifunctional protein responsi-
ble for many pathogenic effects of HIV infection. In virus
producing cells, Nef inhibits an innate anti-HIV factor
SERINC [56,57], thus promoting virus infectivity, and
suppresses antiviral immune responses by down-modu-
lating CD4þ, major histocompatibility complex (MHC)-
I, CD28 and several other immune receptors on infected
cells [58]. An important, but less appreciated pathogenic
effect of Nef concerns cholesterol metabolism. Nef
stimulates cholesterol biosynthesis and its delivery to lipid
rafts [59,60] and inhibits cholesterol efflux by suppressing
activity of cholesterol transporter ABCA1 [61]. The end
result of these activities is increased abundance of lipid
rafts in an infected cell, benefiting production of new
virions [48,62]. Importantly, lipid rafts in HIV-infected or
Nef-expressing cells are not only more abundant, but are
also functionally defective [63].

However, cholesterol-related effects of Nef are not
limited to HIV-infected cells. Nef is released from
infected cells either as a free protein coming from dying
cells, or being incorporated into extracellular vesicles
[35,64]. Although most published reports identify these
vesicles as exosomes [36,65,66], Nef incorporation into
extracellular vesicles of other origin, such as micro-
vesicles, cannot be ruled out [34,64]. These Nef-
containing extracellular vesicles can interact with
uninfected cells, impairing cholesterol metabolism on a
systemic level [67,68]. Our results indicate that Nef-
containing extracellular vesicles downregulate ABCA1,
suppress cholesterol efflux and increase abundance of lipid
rafts with corresponding stimulation of inflammatory
responses, similar to the effects observed for endoge-
nously produced Nef [69].

The accepted mechanism of Nef-mediated downregulation
of cellular membrane proteins is Nef binding to the
cytoplasmic domains and recruiting adaptor proteins to
target these receptors to the endocytic machinery and
degradation pathways (reviewed in [58]). Nef binds to
ABCA1, however, it was found that downregulation of
ABCA1 did not require a direct interaction of Nef with
ABCA1 [70]. Instead, Nef-mediated transport of cholesterol
to lipid rafts competed with ABCA1-dependent cholesterol
efflux pathwayaltering functional properties of the rafts [63],
displacing ABCA1 from the lipid rafts, and leading to its
degradation in lysosomes and proteasomes [63,70]. In
addition to this mechanism, Nef also affects de-novo
production of ABCA1 by blocking the interaction between
ABCA1 and calnexin, an endoplasmic reticulum chaperone
necessary for proper folding and maturation of
transmembrane glycosylated proteins destined for plasma
membrane [71]. Nef binds to the cytoplasmic tail of calnexin
causing structural changes, which affect interaction between
the luminal domain of calnexin and ABCA1 [72–74]. As a
result, maturation of ABCA1 and its functional activity are
impaired, leading to accumulation of intracellular choles-
terol and increased abundance of lipid rafts (Fig. 1). This
finding presents an interesting conundrum. Given that many
proteins, including HIV gp160 [75], mature through the
endoplasmic reticulum, the effect of Nef on calnexin may
potentially involve a large number of proteins and be
detrimental both to the cell and the virus. However, there is
certain selectivity in the effect of Nef: while it disrupts
interaction between calnexin and ABCA1, the interaction
between calnexin and gp160 was actually increased [74].
The mechanistic details of this selectivity, as well as
identification of other proteins affected by the interaction
of Nef with calnexin, await future studies.

Inhibition of ABCA1 may not be the only mechanism
connecting Nef with cellular cholesterol metabolism and
lipid rafts. In human aortic endothelial cells, factors
secreted by HIV-infected cells inhibited cholesterol efflux
to high density lipoprotein (HDL) without affecting
ABCA1 or other known cholesterol transporters;
contribution of Nef to this effect was relatively minor
[77]. In the same model Nef was responsible for increased
abundance of caveolae, a subset of rafts, while disrupting
caveolin-dependent cholesterol trafficking, again without
affecting ABCA1 [77]. Overexpression of caveolin-1 in
macrophages restored Nef-induced impairment of
cholesterol efflux without restoring ABCA1 abundance
[78]. Clearly, an interplay between different and often
redundant pathways involved in regulation of cellular
cholesterol trafficking and lipid rafts determines the
eventual outcome of Nef activity.

The mechanisms described above have been demonstrated
for endogenously produced Nef. How exogenous Nef
affects ABCA1 is still unknown. Given that Nef, added
either as free recombinant protein or with extracellular
vesicles, is delivered into the cells [34,69,79], a reasonable
expectation is that the mechanisms described for endoge-
nous Nef can be functional here as well. This assumption is
consistent with our unpublished results showing that the
compound blocking Nef-calnexin interaction (see below)
inhibits ABCA1 downregulation by Nef-containing extra-
cellular vesicles. Future studies will be needed to fully
characterize the molecular mechanisms behind the effects of
exogenous Nef on cellular cholesterol metabolism.
Cholesterol metabolism, Nef and
comorbidities of HIV infection

Impairment of cholesterol metabolism and overabun-
dance of lipid rafts are common elements in the
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Fig. 1. Schematic representation of the effects of Nef extracellular vesicles on target cells. The cell plasma membrane is shown
in light green, and membrane lipid rafts – in blue. Endoplasmic reticulum is shown in olive green around the cell nucleus. Nef,
ABCA1, and calnexin are represented by their scaled down three-dimensional structures. (a) Cell not treated with Nef
extracellular vesicles. In the endoplasmic reticulum, calnexin interacts with ABCA1 supporting ABCA1 maturation and
transport to plasma membrane. ABCA1 is recycled from the cell membrane, and some is internalized to the proteasomes
and degraded. (b) Cell treated with Nef extracellular vesicles. Extracellular vesicles carrying Nef molecules surround the cell
and deliver Nef into the cell. Nef interacts with cytoplasmic domain of calnexin, which ostensibly causes changes in the
calnexin structure, disrupting interaction of its intraendoplasmic reticulum domain with ABCA1. As a result, maturation of
ABCA1 is impaired and it is targeted to proteasomes reducing cholesterol efflux. This increases cell’s cholesterol content and
changes abundance and properties of lipid rafts, leading to decreased recycling of the plasma membrane ABCA1 and its
preferential targeting to proteasomes [63,69,73,76].
pathogenesis of almost any metabolic comorbidity
associated with HIV infection and are the metabolic
pathways targeted by HIV Nef, both produced intracel-
lularly as the result of infection or secreted by the infected
cells systemically. Most of Nef secreted by HIV-infected
cells comes in extracellular vesicles [80,81], ensuring
rapid systemic delivery of Nef to target cells and
protecting it from being neutralized by anti-Nef
antibodies [82]. It is therefore reasonable to suggest that
disturbances of cholesterol metabolism and lipid rafts in
bystander cells caused by Nef secreted by HIV-infected
cells in extracellular vesicles contribute to pathogenesis of
many comorbidities of HIV disease.

Inflammation
HIV infection is associated with a low-grade chronic
inflammation. The reason for HIV-associated inflamma-
tion is thought to be a compromised gut mucosal
epithelium leading to microbial translocation and ‘leaking’
of lipopolysaccharide (LPS) into blood [83]. Mechanisti-
cally, LPS and other microbial products induce inflamma-
tion through interaction with the inflammatory receptors.
Lipid rafts host many receptors involved in inflammatory
responses and play a key role in regulating their activity and,
consequently, the severity of inflammatory response [84].
Many receptors are activated through re-localization to
lipid rafts, including toll-like receptor 4, tumor necrosis
factor receptor 1, CD11b, immune receptors B-cell
receptor and T-cell receptor [85]. Augmentation of rafts
results in potentiation of inflammatory responses and
increased secretion of proinflammatory cytokines in
response to LPS [86], while disruption of rafts is anti-
inflammatory [87]. Formation of rafts stimulated by Nef
may therefore potentiate inflammation in response to
microbial translocation; whether or not Nef can also
induce a sterile inflammation is less clear.
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More generally, accumulation of cholesterol in cells
involved in inflammation almost inevitably results,
through the formation of rafts or other mechanisms, in
a strong inflammatory response (for review see [88]).
Inflammation, in turn, leads to accumulation of
cholesterol in cells, forming a vicious cycle. Such vicious
cycle would greatly amplify the effects of Nef on
accumulation of intracellular cholesterol and inflamma-
tion, and both will feed into pathogenesis of a number of
comorbidities of HIV disease, including atherosclerosis,
lipodystrophy, dementia, diabetes and metabolic syn-
drome [83].

Dyslipidemia
HIV infection causes hypobetalipoproteinemia [low level
of low density lipoprotein (LDL)], hypertiglyceridemia
and hypoalphalipoproteinemia (low level of HDL) [89–
91]. Hypobetalipoproteinemia is characteristic mainly for
the untreated HIV infection, it is usually reversed upon
commencement of modern ART regimen. Hypoalpha-
lipoproteinemia is unaffected by ART treatment [91,92],
and a leading cause of this condition is a deficiency or
functional impairment of liver ABCA1, a key element in
the pathway of HDL formation [93] and at the same time
the very target of Nef. In addition to the reduced levels,
the composition, size and functionality of HDL were
affected in HIV infection [91,94,95], a finding also
consistent with impairment of ABCA1. Generally,
lipoprotein profile in PLWH is very similar to that in
patients with Tangier disease, a monogenetic disorder
where HDL fails to form due to familial ABCA1
deficiency [96], further pointing to the key role of
ABCA1 deficiency in pathogenesis of HIV-associated
dyslipidemia. However, no HDL turnover studies in
PLWH directly supporting this notion were published
and contribution of indirect mechanisms, such as
inflammation and immune deficiency [94], to HIV-
associated hypoalphalipoproteinemia cannot be ruled out.

Low HDL levels are commonly associated with high
triglyceride levels due to lack of sufficient acceptor for
triglycerides transferred from very low density lipopro-
tein (VLDL) to HDL through action of cholesteryl ester
transfer protein. Deficiency of ABCA1 has been
implicated in overproduction of VLDL by liver [97].
HIV-associated hypertriglyceridemia may, however, have
additional contributing mechanisms due to insulin
resistance prevalent in HIV infection [96,98], which,
in turn, may be related to the impairment of cholesterol
metabolism (see below). Remarkably, hypetriglyceride-
mia and hypoalphalipoproteinemia were mitigated in
patients infected with Nef-deficient strain of HIV [99].
Mice injected with recombinant Nef displayed hypoal-
phalipoproteinemia, hypetriglyceridemia and reduced
level of ABCA1 in liver homogenates [68], reproducing
the observations in HIV-infected people and simian
immunodeficiency virus-infected monkeys [67]. Mice
injected with exosomes containing Nef also displayed
hypoalphalipoproteinemia as well as reduced levels of
ABCA1 in liver and peritoneal macrophages [69],
providing in-vivo evidence for the effect of Nef on
ABCA1.

Atherosclerosis
Hypoalphalipoproteinemia and hypertriglyceridemia
caused by HIV, often combined with hyperbetacholes-
terolemia caused by some ART regimens, constitute a
classical proatherogenic lipoprotein profile associated
with elevated risk of atherosclerosis in HIV infection
[100]. However, cardiovascular risk prediction based
entirely on changes in lipoprotein profile underestimates
the actual cardiovascular disease risk in HIV infection
[101], pointing to the contribution of additional factors,
both local and systemic. One of the systemic factors is
elevated inflammation (see above), an important element
in atherosclerosis [102]. A key local element in
pathogenesis of atherosclerosis is accumulation of
cholesteryl esters in the cells of vessel wall, macrophages
and smooth muscle cells, with formation of foam cells.
ABCA1 deficiency and impairment of cholesterol efflux
are key causes of the formation of foam cells and
development of atherosclerosis [103] and we have
demonstrated that ABCA1 deficiency triggered by both
intracellular and extracellular Nef causes formation of
foam cells in vitro and in vivo and development of
atherosclerosis in vivo [61,68,104]. Lipid rafts also play a
direct role in accumulation of cholesterol in macrophages
and formation of foam cells. Rafts are a location of
TREM-1, an important contributor to the foam cell
formation and atherogenesis [105]. Further, the current
understanding of the mechanisms of ABCA1-mediated
cholesterol efflux is that ABCA1 moves cholesterol from
rafts to the ‘activated lipid domains’ where it becomes
accessible to extracellular cholesterol acceptors [106].
Excessive rafts contribute to the impairment of choles-
terol efflux by affecting this capacity of ABCA1. Lipid
rafts also harbor CD36, a putative oxLDL receptor
responsible for the uncontrolled cellular uptake of
modified LDL [107]. Disruption of rafts with methyl-
b-cyclodextrin and with apolipoprotein A-I (apoA-I)
binding protein (AIBP) is antiatherogenic [108,109].
Thus, HIV Nef may contribute to the development of
atherosclerosis in HIV infection through four interrelated
mechanisms: causing dyslipidemia, potentiating systemic
and local inflammation, and inducing accumulation of
cholesterol and elevating the abundance of lipid rafts in
macrophages and smooth muscle cells.

Diabetes
Type 2 diabetes is highly prevalent in HIV infection [110].
Defects in cholesterol homeostasis and impairment of
lipid rafts are intimately linked to two key elements of
pathogenesis of type 2 diabetes: impairment of insulin
secretion from pancreatic b cells and insulin resistance. b
Cells are very sensitive to excessive cholesterol, and
impairment of cholesterol metabolism causes a sharp
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decline in their ability to regulate insulin secretion in
response to changes in blood glucose levels. Specifically,
studies in mice have shown that increases in cholesterol
levels in pancreatic b cells conditionally lacking Abca1 led
to markedly impaired insulin secretion [111]. Many
effects of impaired cholesterol metabolism are thought to
be mediated by overabundance of lipid rafts. In b cells,
lipid rafts are critically involved in regulation of glucose
sensing and insulin secretion through regulating the
activity of glucose transporters [112], shifting neuronal
nitric oxide synthase into a dimeric form [113], and
regulating activity of SNAP receptor complexes [114].
Increased abundance of lipid rafts is associated with
reduced glucose sensing and reduced insulin secretion
[115]. Furthermore, accumulation of excessive choles-
terol in insulin-containing b-cell secretory granules
impairs their secretion [116]. Cholesterol enriched
secretory granules and impaired glucose-stimulated
insulin secretion were observed in cells lacking ABCA1
[117]. Lipid rafts play a critical role in proper
compartmentalization of insulin signaling in adipocytes,
important players in maintaining insulin sensitivity [118];
extracellular Nef inhibited glucose transporter type 4
(GLUT4) trafficking and glucose uptake in these cells
[119]. In skeletal muscle cells, another tissue significantly
contributing to insulin sensitivity, lipid rafts are involved
in regulation of insulin-stimulated glucose uptake,
influencing translocation of GLUT4 from perinuclear
stores to plasma membrane [120]. Another contributor to
pathogenesis of type 2 diabetes is dyslipidemia: both
hypoalphalipoproteinemia and hypetriglyceridemia char-
acteristic for the HIV infection (see above) are also
important factors regulating insulin secretion and insulin
sensitivity [121]. Taken together, these observations
suggest that Nef-induced changes to cholesterol metabo-
lism and lipid rafts are an important pathogenic factor in
HIV-associated diabetes.

Hematopoiesis
Hematological abnormality is another important comor-
bidity of HIV infection [122]. It is characterized by
reduced growth and differentiation of multiple hemato-
poietic lineages suggesting impaired functionality of early
hematopoietic progenitors. Available data suggest an
important role of HIV protein Nef in pathogenesis of
hematopoietic abnormalities of HIV infection [123,124].
Prost et al. [123] described a mechanism where Nef acts as
a PPAR-g agonist reducing expression of signal
transducer and activator of transcription 5. However,
the molecular details of this mechanism remain unknown.
Several lines of evidence support an important role of
cholesterol metabolism in hematopoiesis and point to a
possibility that impairment of cholesterol metabolism by
circulating Nef may contribute to the abnormal
hematopoiesis. Mice deficient in the two key transporters
maintaining cellular cholesterol efflux, ABCA1 and
ABCG1, displayed a myeloproliferative disorder mani-
fested in profound leukocytosis and an expansion of the
population of hematopoietic stem progenitor cells
(HSPC) in bone marrow [125]. Significantly, this
phenotype favored hematopoietic lineage decisions
toward granulocytes rather than macrophages in the
bone marrow, leading to impaired support for osteoblasts
and decreased Cxcl12/SDF-1 production by mesenchy-
mal progenitors [126]. Conversely, stimulation of
cholesterol efflux by elevating expression of ABCA1 or
levels of ABCA1 ligands, apoA-I or apolipoprotein E, had
an opposite effect reducing HSPC proliferation and
monocytosis [127]. Stimulation of cholesterol efflux and
disruption of lipid rafts by apoA-I-binding protein
(AIBP)-regulated HSPC emergence from hematogenic
endothelium [128]. AIBP, ABCA1 and cholesterol efflux
are important regulators of lipid rafts that control
functionality of hematopoietic stem cells as many
receptors involved in regulation of hematopoiesis are
localized in rafts [129]. Quiescent HSPC contain very few
rafts, and formation of rafts is a prerequisite for HSPC re-
entry into the cell cycle; inhibition of rafts induces
hibernation of HSPC [130]. On the other hand,
disruption of lipid rafts with phospholipase C-b2
promotes egress of cells from bone marrow niches,
implying that rafts are required for retention of HSPC in
bone marrow [131]. Taken together, these findings are
consistent with a suggestion that impairment of reverse
cholesterol transport, accumulation of cellular cholesterol
and increased abundance of rafts, possibly due to action of
Nef, produce a phenotype that mimics at least some
elements of HIV-associated hematological disorder, such
as anemia and thrombocytopenia. Furthermore, some
other elements of hematological abnormality, such as
leukocytosis, may have their origin in impaired hemato-
poiesis, contributing to, rather than originating from,
HIV-associated inflammation.

Cognitive impairment
HAND is a frequent comorbidity of HIV infection.
Effective treatment of HIV infection has reduced the rate
of progression and severity of HAND symptoms, but the
overall incidence of HAND (about 50% of HIV-infected
subjects) remains unchanged [24,132,133]. HAND has all
clinical hallmarks of a neurodegenerative disorder with
progressive chronic loss of neurons, a spectrum of
declining cognitive functions, together with behavioral
changes and motor impairment. Neuroinflammation,
demyelination, apoptosis and accelerated development of
Alzheimer’s disease were implicated as possible patho-
genic mechanisms of HAND [134]. All these mechanisms
have abnormality of cholesterol metabolism as a key
element of their action.

Abnormal cellular cholesterol metabolism has been
documented for classical neurodegenerative diseases:
Alzheimer’s disease, Parkinson disease, prion diseases
and Niemann-Pick C disease [135–138]. A key element
of neurodegeneration is neuronal dysfunction leading to
neuronal death, and there is overwhelming evidence that
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protein misfolding and subsequent oligomerization/
aggregation is a primary cause of neuronal dysfunction
and death in many neurodegenerative diseases, such as
Alzheimer’s disease, Parkinson disease and prion diseases
[139]. Many, if not most, neurodegenerative diseases have
a ‘prion-like’ feature in their pathogenesis, where a
misfolded protein causes cascading misfolding of other
copies of itself [140,141] or of a different protein [142].
Two conditions are required for the misfolding process to
spread throughout the brain, causing progressive neuronal
dysfunction and death. The first is the initial presence of a
misfolded copy of an amyloid-like protein, which is a
result of a mutation, an infection, a trauma, or is a
spontaneous event. The second is a high local concen-
tration of normal protein to allow nucleation and
propagation of misfolding cascade to occur [141].
Accumulation of various amyloidogenic proteins is a
common feature of many neurodegenerative diseases, and
most amyloid proteins involved in neurodegeneration are
raft proteins [136,143–145]. Clustering of amyloidogenic
proteins in rafts makes them susceptible to modification
(e.g. phosphorylation), misfolding and aggregation when
a misfolded copy of the protein becomes available. It is
plausible that the abundance of rafts, and consequently
the availability of sites where proteins are present at high
local concentration, is a key ‘permissive’ element, or a risk
factor, in the pathogenesis of neurodegenerative diseases,
including HAND. The role of lipid rafts in inflammation
has been described above, and these considerations apply
to neuroinflammation characteristic to HAND. In
addition, increased abundance and altered composition
of lipid rafts may induce apoptosis of neurons and glia by
triggering apoptotic signaling [146–148]. Finally, defects
in myelination of axons is a common finding in
postmortem analysis of brain samples from HAND
patients [149]. Myelin is produced by oligodendrocytes
from cholesterol, which in the brain is synthesized almost
exclusively by glia [150,151]. Brain cholesterol is
extensively recycled from broken down myelin [152].
This recycling, which depends on ABCA1 [153], is
essential for both repair and production of new myelin
sheaths [154–156]. Therefore, Nef-induced impairment
of ABCA1 is expected to affect myelination.

These possibilities are not mutually exclusive, and Nef via
its effects on cholesterol metabolism and lipid rafts may
contribute to the development of HAND through all of
these mechanisms.

Nef in the brain may originate from blood or may be
secreted directly into CSF by HIV-infected cells in the
brain [65,80,157]. HIV stays in the brain in microglial
cells and astrocytes, as well as in perivascular macrophages
migrating through blood–brain barrier [158]. Remark-
ably, HIV infection in the brain persists in treated patients
without viremia [24]. The proposed lipid rafts-centered
hypothesis unifies many of the known mechanisms of
HAND, such as neuroinflammation, neuroapoptosis and
connection with the Alzheimer’s disease, demyelination,
as well as common features of neurodegeneration in
general, such as presence of misfolded proteins and
impairment of lipid metabolism.
Potential therapeutic strategies

The prominent role played by cholesterol metabolism and
lipid rafts in pathogenesis of HIV-associated comorbid-
ities opens a possibility for new therapeutic approaches.
Current approaches for treatment or prevention of HIV-
associated atherosclerosis do not differ much from
approaches used for general population (e.g. using
statins). A more specific, and probably more effective,
treatment would be to target the cause of HIV-associated
cholesterol metabolism impairment, that is either the
Nef-induced downregulation of ABCA1, or its down-
stream effect, modification of lipid rafts.

The first goal can be accomplished by stimulating the
ABCA1 expression to counteract the effect of Nef, or by
inhibiting the Nef activity. Among the most potent
stimulators of ABCA1 expression are agonists of liver X
receptor (LXR) [159]. LXR agonists are being developed
for the treatment of atherosclerosis, as synthetic LXR
agonists have been shown to inhibit the progression
[160,161] and even promote the regression [162] of
atherosclerosis in mouse models. They also were shown to
attenuate inflammation and improve prognosis of
neurodegenerative diseases in animal models [163].
However, introduction of LXR agonists into clinical
practice was impeded by a significant limitation: LXR
activation leads to increased fatty acid synthesis,
accumulation of triglycerides and the development of
fatty liver [164,165]. A new generation of LXR agonists
that do not induce lipogenic effects but preserve ABCA1-
inducing activity has been described [166–170], but so
far, these drugs have not yet moved beyond Phase I
clinical trials.

A search for inhibitors of Nef-mediated downregulation
of ABCA1 has just started. Given that work on Nef
inhibitors has produced a number of promising com-
pounds [171–174], it appears that a large choice of
potential candidates should be available. However, the N-
terminal region of Nef responsible for ABCA1 down-
regulation [74] is distinct from regions of the protein
responsible for downregulation of MHC-I, CD4þ and
SERINC5, which are targeted in most screens [171–
174]. Modeling of Nef-calnexin interaction (Fig. 2)
provided an opportunity for virtual screening of potential
inhibitors and resulted in identification of the first
compounds that specifically inhibit Nef interaction with
calnexin and release the Nef-mediated blockage of
calnexin-assisted ABCA1 maturation [73,74]. Develop-
ment of these compounds for clinical use is ahead.
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Fig. 2. Model of Nef-calnexin interaction. Interacting structures of Nef (green) and the calnexin cytoplasmic domain (magenta)
are shown relative to the endoplasmic reticulum membrane. The interaction sites (shown in yellow for calnexin and cyan for Nef)
were targeted in the virtual screening aimed at identifying potential small molecule inhibitors of this interaction [72,73]. The
model has been adopted from our earlier results [73] and enhanced using molecular dynamics simulation (unpublished data).
Another potential therapeutic approach to alleviate Nef-
mediated comorbidities is to reduce and normalize lipid
rafts affected by Nef-induced changes to cholesterol
metabolism. This appears to be a difficult proposition
given essential functions that lipid rafts play in cell
physiology, which requires therapeutic agents to discrim-
inate between affected and unaffected cells and provide a
measured effect that does not reduce rafts below
physiological levels. Currently available lipid raft-target-
ing agents, such as cyclodextrins, do not fit these criteria
and thus cannot be used for long-term treatment
necessary to control comorbidities associated with
chronic HIV infection. However, a recently identified
innate factor, AIBP [175–177], ideally fits this require-
ment. This protein enhances apoA-I-mediated choles-
terol efflux specifically from cells challenged by
proinflammatory agents while sparing nonactivated cells
[109,175,178–180]. Furthermore, AIBP appears to
selectively target lipid rafts on activated cells, normalizing
their abundance and function activated by inflammatory
stimuli [178]. Our unpublished results demonstrated that
AIBP reverses Nef-mediated effects on lipid rafts in
monocyte-derived macrophages and normalizes their
responses to inflammatory stimuli. Further work is
warranted to evaluate the therapeutic potential of
AIBP-derived agents for treatment of HIV-associated
comorbidities.
Conclusion

Findings described in this review point to an important
role that impairment of cholesterol metabolism and
downstream changes to lipid rafts play in pathogenesis of
HIV-associated comorbidities. While this pathogenic
mechanism likely contributes to most metabolic diseases,
there is a clear specificity in HIV infection related to the
prominent role of Nef. Therefore, potential treatment
strategies may combine HIV-specific, Nef-targeting
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agents, with approaches stimulating cholesterol efflux and
reducing lipid rafts in a nonspecific fashion.
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