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Abstract

Single-arm one- or multi-stage study designs are commonly used in phase II

oncology development when the primary outcome of interest is tumor response,

a binary variable. Both two- and three-outcome designs are available. Simon

two-stage design is a well-known example of two-outcome designs. The objective

of a two-outcome trial is to reject either the null hypothesis that the objective

response rate (ORR) is less than or equal to a pre-specified low uninteresting

rate or to reject the alternative hypothesis that the ORR is greater than or equal

to some target rate. Three-outcome designs proposed by Sargent et al. allow a

middle gray decision zone which rejects neither hypothesis in order to reduce

the required study size. We propose new two- and three-outcome designs with

continual monitoring based on Bayesian posterior probability that meet

frequentist specifications such as type I and II error rates. Futility and/or efficacy

boundaries are based on confidence functions, which can require higher levels

of evidence for early versus late stopping and have clear and intuitive interpreta-

tions. We search in a class of such procedures for optimal designs that minimize

a given loss function such as average sample size under the null hypothesis. We

present several examples and compare our design with other procedures in the

literature and show that our design has good operating characteristics.
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1 | INTRODUCTION

In oncology drug development, phase II studies are typically conducted based on a surrogate endpoint to screen for
potentially efficacious treatments. Single-arm one- or multi-stage study designs are commonly used when the primary
outcome of interest is tumor response, a binary variable. Simon two-stage procedures1 are often used in this setting.
These procedures allow early stopping after stage 1 for futility when the experiment treatment is unlikely to have the
targeted response rate and therefore reduce the number of patients treated with a toxic but ineffective therapy. Sargent
et al. proposed one- and two-stage designs2 that have three possible outcomes in order to reduce the number of patients
needed. In addition to the outcomes of rejecting the null or alternative hypothesis, these three-outcome procedures
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allow a middle gray zone which rejects neither. If a study outcome falls in this inconclusive decision zone, one may
need to consider additional information in making a decision regarding whether and how to move forward in develop-
ing the experimental therapy. As many valid study designs meet any given error rate and power specifications, one may
choose to use a procedure that is optimal in some sense such as minimizing the maximum sample size or minimizing
the average sample size under the null hypothesis or some other meaningful loss function.

Three-stage designs with and without early efficacy boundaries have also been proposed in the literature.3,4 In gen-
eral, multi-stage designs are more efficient in the sense that they tend to have a smaller average sample size due to the
possibility of early stopping. However, these multi-stage procedures are rigid as, for a given stage, the sample size and
decision boundaries are fixed. In practice, the actual number of patients for a given stage is often not exactly the same
as planned. If this happens, the decision boundary would not be clearly defined and the operating characteristics of any
decision based on the study data would not be known. Green and Dahlberg5 investigated several empirical approaches
to adapting stopping rules in this situation. Koyama and Chen6 proposed a method for inferences using both planned
and actual sample sizes. Lee and Liu7 proposed a two-outcome sequential design based on Bayesian predictive probabil-
ity (PP) that allows continual monitoring after each additional patient and meets pre-specified error rate requirements.
The design can have stopping boundaries for futility and/or efficacy and can potentially reject the null or the alternative
hypothesis at any time during the study. The authors compared these more flexible procedures with the Simon two-
stage design when either procedures have early stopping for efficacy and concluded that the predictive probability
design may have a smaller average sample size under the null hypothesis.

In this paper, we propose a new design that meets typical frequentist specifications, such as type I and II error rates,
and allows continual monitoring. It may have early boundaries for futility and/or efficacy. Boundaries are based on
Bayesian posterior probabilities and confidence functions (CF). It has the flexibility to require varying levels of evidence
for early stopping (e.g., requiring a higher level of confidence that the therapy is efficacious in order to stop early com-
pared to reaching such conclusion at the final analysis). An optimal design can be obtained by searching a group of
valid procedures to minimize a given loss function such as average sample size under the null hypothesis.

In Section 2, we formally define our three-outcome posterior probability design based on confidence functions. We
also outline a search algorithm for finding such procedures. Section 3 presents a two-outcome design as a simple deriva-
tive of our three-outcome design. We search for an optimal design among a class of valid procedures that minimizes a
given loss function. Finally, in Section 4, we provide several examples and compare our design with Simon, Sargent
et al., and the predictive probability design by Lee et al.

2 | THREE-OUTCOME PROCEDURES

In the phase II setting of oncology drug development, let p � (0, 1) be the underlying objective response rate (ORR) of
interest for an experimental therapy. We design a single-arm trial to test

H0 : p≤ p0

versus

Ha : p≥pa

where p0 is the response rate of standard of care and pa is the target response rate for the experimental treatment.
Following Sargent et al.,2 we define

α=
max

p� 0,p0ð �
Pr rejectH0jH0 is trueð Þ

β=
max

p� pa,1½ Þ
Pr rejectHajHais trueð Þ

η=
min

p� 0,p0ð �
Pr rejectHajH0is trueð Þ

π=
min

p� pa,1½ Þ
Pr rejectH0jHa is trueð Þ
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That is, α and β are the false positive and false negative error rates, π is the probability of correctly rejecting H0

(i.e., power), and η is the probability of correctly rejecting Ha (when H0 is true). Note that 1 − α − η and 1 − β − π rep-
resent the probabilities of landing in the inconclusive or gray decision zone under H0 and Ha, respectively.

Let n be the maximum planned sample size for a study. Let ~X1, ~X2,…, ~Xn represent responses for the first, second, ...,
and the nth patient with ~Xi =1 if the ith patient is a responder and 0 if non-responder. Define Xi =

Pi
j=1

~Xj, the number
of responders up to patient i. For any given i = 1, 2, …, n, Xi follows a binomial distribution with i trials and probability
of success p, Bin(i, p). We let ri and si (ri< si) be integers representing boundaries for rejecting Ha and H0, respectively,
after patient i, i = 1, 2, …, n. That is, we reject Ha if Xi≤ ri and reject H0 if Xi≥ si. Define

pLi pð Þ=Pr Xi ≤ ri,rj <Xj < sj for 1≤ j≤ i−1 j p� �
pUi pð Þ= Pr Xi≥si,rj <Xj < sj for 1≤ j≤ i−1 j p� �

Then pLi is the probability of crossing the futility boundary at the i
th patient when the true response rate is p and that

neither futility nor efficacy boundary was crossed before. Similarly, pUi is the corresponding probability of crossing the
efficacy boundary at the ith patient.

It is immediately clear that

α =
Xn
i=1

pUi p0ð Þ

β =
Xn
i=1

pLi pað Þ

η =
Xn
i=1

pLi p0ð Þ

π =
Xn
i=1

pUi pað Þ

ð1Þ

When designing a trial, we wish to find appropriate values of n, ri, and si (1 ≤ i ≤ n) so that α and β are less than or
equal to their respective pre-specified values and η and π are greater than or equal to theirs. Any procedure specified by
{n, ri, si, i = 1, 2, …, n} that meets these specifications is a valid study design.

2.1 | Bayesian posterior probability and stopping boundaries

Suppose p follows a Beta distribution. We assume a non-informative prior of Beta(0.5,0.5). However, when appropriate
one could consider using a more informative prior based on data already available. At the time the ith patient has been
treated and followed sufficiently for response assessment, the posterior distribution of p is Beta(0.5 + Xi,0.5 + i − Xi).
Let b(θj Xi, i) be the corresponding density function. The posterior probability that response rate p is lower than the tar-
get pa, or Ha is not true, is

PPa Xi, ið Þ=Pr p< pajXi, ið Þ=
ðpa
0
b θjXi, ið Þdθ ð2Þ

Similarly, the posterior probability that response rate p is greater than the null value of p0, or H0 is not true, is

PP0 Xi, ið Þ= Pr p> p0jXi, ið Þ=
ð1
p0

b θjXi, ið Þdθ ð3Þ

We formulate stopping boundaries ri and si based on PPa(Xi, i) and PP0(Xi, i) respectively. Specifically, let ωU
i and

ωL
i � 0,1ð � for i = 1, 2, …, n. We define si so that
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si =
min

0≤ x ≤ i
PP0 x, ið Þ≥ωU

i

� �
, i=1,2,…,n ð4Þ

In other words, si is the minimum number of responses needed in the first i patients such that the posterior
probability that H0 is not true is ≥ωU

i . If no value of x exists that satisfies Equation (4), we let si = i+1, which means no
stopping for efficacy at i patients as Xi is never greater than the number of patients. Note that if ωU

i =1, we will not be
able to stop for efficacy at i.

Analogously, we define

ri =
max

0≤ x ≤ i
PPa x, ið Þ≥ωL

i

� �
, i=1,2,…,n ð5Þ

If no x satisfies Equation (5), we let ri = − 1, meaning no stopping for futility at i. This way, stopping boundaries {ri,
si, i = 1, 2, …, n} are completed determined after we specify ωU

i and ωL
i , i = 1, 2, …, n. Note that ωU

i and ωL
i are the mini-

mum threshold posterior probabilities, or confidence levels, for rejecting H0 and Ha at patient i.

2.2 | Confidence functions

We introduce confidence functions (CF) for determining futility and/or efficacy boundaries described above. Let f(t, c)
be a function defined for t � (0, 1] and c � (0, 1] that satisfies the following conditions:

1. 0 < f(t, c) ≤ 1 for all t and c
2. For any give value of t, f(t, c) is continuous and monotone non-decreasing in c
3. For any give value of t, limc ! 1f(t, c) = 1
4. f(t = 1, c) is strictly increasing in c

We shall call such functions confidence functions. Consider a function in the above family. When c is given, we can
visualize a curve plotting f(t, c) against t over the interval (0, 1]. As c increases, the curve is lifted upward (even though
its shape might change), and as c approaches 1, the curve gets closer and closer to the horizontal straight line at 1.

It is easily seen that the following functions meet the above conditions.

f t,cð Þ= c, t� 0,1ð �andc� 0,1ð � ð6Þ

f t,cð Þ=1− t3 1−cð Þ, t� 0,1ð �andc� 0,1ð �
f t,cð Þ= I t<1ð Þ+ cI t=1ð Þ, t� 0,1ð �andc� 0,1ð � ð7Þ

where I(.) is an indicator function.
Such confidence functions can also be formed based on many common α-spending functions as shown below:

f t,cð Þ=1−g t,1−cð Þ

where g(t, α) is an α-spending function. A useful family of confidence functions is

f γ t,cð Þ= 1−
1−exp −γtð Þ
1−exp −γð Þ

� �
1−cð Þ, if γ≠0

1− t 1−cð Þ, if γ=0

8<
: ð8Þ

for t � (0, 1] and c � (0, 1]. Equation (8) is based on the gamma-family error spending functions introduced by Hwang
et al.8 Note that Equation (8) is a strictly decreasing function in t for any given c and γ. The decrease is steeper for t close
to 1 when γ has a large negative value. On the other hand, when γ has a large positive value, the decrease is more rapid
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when t is close to 0. See Figure 1. The family of functions in Equation (8) is useful because it can represent many diver-
sified patterns. As can be seen later in Section 2.3, this allows for study boundaries corresponding to varying levels of
evidence before early stopping, and c is the threshold posterior probability for the final analysis. We note that functions
in Equation (8) converge to Equation (6) when γ ! ∞, and converge to Equation (7) when γ ! − ∞. It will become
clear that the latter is useful in constructing our study design when no early stopping for efficacy (or futility) is desired.

2.3 | Boundaries based on confidence functions

Let n be the maximum number of patients planned for a study. Given confidence functions f U(t, c) and f L(t, c) for
efficacy and futility boundaries respectively, for any values cU and cL, we let

ωU
i = f U i=n,cU

� �
, i=1,2,…,n

ωL
i = f L i=n,cL

� �
, i=1,2,…,n

ð9Þ

Here i/n can be viewed as the information time, and confidence functions resemble error-spending functions for a
group sequential design but have very different interpretations. From ωL

i and ωU
i , we obtain stopping boundaries ri and

si based on Equations (5) and (4) in Section 2.1. Note that ri and si are functions of cL and cU as well as n. For a given
value of n, ri and si go up or down when cL and cU increase or decrease. When si decreases, the false positive
rate α increases. Similarly, the false negative rate β increases as ri increases. Therefore, we can adjust cL and cU to obtain
ri and si that meet α and β specifications. Additionally, we can increase the total study size n so that the η and π
requirements are also met.

When confidence function (6) or (8) with a large positive γ is used, the resulting threshold posterior probability for
stopping is constant with respect to the timing of analysis. However, when conducting a clinical study, we typically
would consider early stopping only if early evidence is overwhelmingly convincing. Therefore, it is generally recom-
mendable to design trials so that early stopping boundaries require a higher level of confidence than late boundaries.
For our CF design, this can be achieved by using a confidence function that is decreasing in t. Several functions
described in Section 2.2, including Equation (8), possess this property.

For confidence functions in Equation (8), we note that f(1, c) = c. Therefore the parameter c is the threshold
posterior probability, ωU

n or ωL
n , required for rejecting H0 or Ha at the final analysis with n patients. This shows that

parameter c in our confidence function f(t, c) in Equation (8) has a clear and intuitive interpretation.

2.4 | Search algorithm

For given confidence functions f U(t, c) and f L(t, c), we search for the minimum value of n such that stopping bound-
aries ri and si as defined in Section 2.3 meet all specifications regarding α, β, η, and π.

FIGURE 1 Plot of confidence functions in

Equation (8) for select values of γ and c = 0.9
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Step 0: Let n = 1.
Step 1: Find values of c for f U(t, c) and f L(t, c) respectively so that the corresponding efficacy and futility boundaries,

as defined in Equations (4), (5), and (9), meet α and β specifications.
1a: Assuming no futility boundary (i.e., ri = − 1, i = 1, 2, …, n), find the value of c = cU such that the corresponding

efficacy boundary {si, i = 1, 2, …, n} meets the α requirement (i.e., less than or equal to the specified α value). Because f
U(t, c) is a monotone function in c, for a given efficacy boundary corresponding to c, its α value is a monotone function
of c. Therefore we can perform a binary search for cU.

1b: With the above efficacy boundary in place, find the value of c = cL such that the corresponding futility boundary
{ri, i = 1, 2, …, n} meets the β requirement by performing a binary search similar to 1a.

1c: Given the new futility boundary, the actual α corresponding to the current efficacy boundary may be reduced
and become smaller than necessary. With the new futility boundary, update cU so that α is as large as possible but still
meets specification.

1d: Because the new efficacy boundary corresponding to the updated cU may be lower (therefore more likely to
cross), actual β corresponding to the current futility boundary may be reduced (because we cannot cross the futility
boundary if we already crossed the efficacy boundary earlier) and become smaller than necessary. With the new efficacy
boundary, update cL so that β is as large as possible but still meets specification.

1e: Repeat 1c and 1d a sufficient number of times so that cU and cL converge to stable values and note the
corresponding boundaries {si, i = 1, 2, …, n} and {ri, i = 1, 2, …, n}.

Step 2: Check whether the boundaries from Step 1 meet the power specifications regarding η and π.
2a: For the boundaries from Step 1, obtain η and π as shown in Equation (1).
2b: If either η or π does not meet specification (i.e., less than the desired value), increase n by 1 and go to Step 1.
2c: If both η and π meet specifications, stop and we have found the minimum maximum study size n (for the given

confidence functions) and futility and efficacy boundaries {ri, si, i = 1, 2, …, n} that meet all error rate and power
specifications.

2.5 | Procedures without early stopping for efficacy

Sometimes we may prefer a study design that only allows early stopping for futility without the possibility of early stop-
ping for efficacy. We can achieve this by using confidence function (7) for f U(t, c) when searching for a procedure as
described in Section 2.4. As the posterior probability required for early stopping for efficacy is 1 prior to the final analy-
sis with n patients, there is no possibility of efficacy early stopping. Alternatively, we can use confidence function (8)
with a large negative value for γ to achieve the same as Equation (8) converges to Equation (7) when γ ! − ∞.

2.6 | Group sequential procedures

The study design we described above is a sequential procedure which allows continual analysis of the accumulating
study data after every additional patient. If for some reason, such as operational, we would like to start analyzing the
data only after a pre-specified minimum number of patients and/or perform subsequent analyses only after a pre-
specified number of additional patients have been included, we can use a group sequential design. The same search
algorithm with a minor adjustment can be used to find a group sequential design. As in Equation (9), we let
ωU
i = f U i=n,cUð Þ and ωL

i = f L i=n,cLð Þ, but only for i values at which we plan to perform analyses; for other i values, we
let ωU

i = i+1 and ωL
i = −1 so that early stopping is made impossible.

3 | TWO-OUTCOME AND OPTIMAL PROCEDURES

3.1 | Two-outcome procedures

In Section 2, we presented a three-outcome procedure that includes an inconclusive decision zone in order to reduce
the study size. The same method can be used to obtain a two-outcome design by requiring the following:
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η=1−α

π=1−β

Because this forces the probability of landing in the gray decision zone to be zero, the resulting procedure will only
have two possible outcomes: rejecting H0 or rejecting Ha.

3.2 | Optimal designs

As described above, for any given confidence function, a valid two- or three-outcome design with the smallest n possible
can be obtained. When many confidence functions are acceptable for use in a given setting, we can search among the
corresponding study designs for an optimal procedure that minimizes a given loss function. For example, we consider
designs based on the family of confidence functions in Equation (8) indexed by the parameter γ. When multiple values
of γ are considered reasonable, we can search for γ such that the corresponding design minimizes the average sample
size under H0, E(Nj p0). Alternatively, one may choose to minimize the maximum study size (i.e., minimax). However,
as one-stage designs typically have the smallest maximum sample sizes and they are valid CF procedures corresponding
to very large negative values of γ, when searching for a minimax design, it is recommended to exclude very large nega-
tive values of γ in the search unless one is interested in a one-stage procedure. Other alternative loss functions can
also be considered. Jung et al.9 considered a loss function that is a weighted average of the maximum study size n and E
(Nj p0) that results in Bayesian admissible designs.

4 | EXAMPLES

As examples, we present several designs with and without an early efficacy boundary. We compare our confidence
function (CF) based two-outcome procedures without early efficacy boundary with Lee et al.7 predictive probability
(PP) procedures and Simon1 optimal and minimax designs. Three-outcome CF designs without early efficacy boundary
are compared with Sargent et al.'s minimax and optimal designs. In this Section, “optimal” refers to a study design that
minimizes the expected number of patients under H0, E(Nj p0). All optimal and minimax CF designs in this
section were based on CF (8) and obtained using grid search over specified ranges of γ.

Example 1. An optimal three-outcome procedure with early stopping boundaries for both efficacy and futility.
We design a three-outcome single-arm clinical trial testing

H0 : p≤ p0 = 0:2

versus

Ha : p≥pa=0:4,

where p is the underlying true ORR of the experimental therapy. We require that α ≤ 0.1, β ≤ 0.1, η ≥ 0.8, and π ≥ 0.8.
The first analysis of the accumulating data is planned only after the tenth patient has been treated and followed for
response. After that, data are analyzed continually after every additional patient. Suppose that, for the family of confi-
dence functions (8), γ values between 0 and −10 are all considered acceptable for deriving both the futility and efficacy
boundaries. Additionally, we allow the two boundaries to be based on different confidence functions and therefore dif-
ferent γ values, γL and γU. We search the two-dimensional grid defined by −10 ≤ γL ≤ 0 and −10 ≤ γU ≤ 0 with step size
of 0.01 to find the design that minimizes E(Nj p0), the average sample size under H0.

The optimal CF procedure corresponds to γL = − 4.25 and γU = − 0.95. It has E(Nj p0) = 17.39. The maximum num-
ber of patients needed is 26. The minimum posterior probability as defined in Equation (2) for rejecting Ha at the final
analysis with 26 patients is ωL

n = cL =0:9158 . That required for rejecting H0 at the final analysis is ωU
n = cU =0:9457.

See Table 1 for more details. See Table 2 for efficacy and futility boundaries and probabilities of stopping at each analy-
sis under H0 and Ha, respectively.
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Two-stage three-outcome procedures by Sargent et al. do not have an early efficacy boundary. For comparison, we
obtain our procedure again without an early efficacy boundary by letting γU = − ∞. Our optimal procedure that mini-
mizes E(Nj p0) has n = 27 and E(Nj p0) = 18.56. Sargent et al.'s optimal and minimax designs have E(Nj p0) = 20.97 and
21.19, respectively. See Table 3 for more details, which also includes the CF minimax design. Table 4 shows boundaries
and stopping probabilities for the CF optimal design without an early efficacy boundary.

Example 2. An optimal two-outcome procedure without early stopping for efficacy.

Lee et al.7 devised a Bayesian predictive probability (PP) two-outcome procedure for testing the same hypotheses in
Example 1 but without an early efficacy boundary and compared it with the Simon optimal and minimax two-stage
designs. In addition to the flexibility of allowing continual monitoring of accumulating data, the authors found that the

expected number of patients for the predictive probability procedure (E(Nj p0) = 27.67) is smaller than that for the
Simon minimax 2-stage design (E(Nj p0) = 28.26) but larger than the Simon “optimal” design (E(Nj p0) = 26.02). Lee
et al. also included designs with larger maximum sample sizes, some of which have a lower E(Nj p0). For example, the
design with maximum n = 42 has E(Nj p0) = 23.56.

TABLE 1 Optimal three-outcome

CF design with both early futility and

efficacy boundaries and its operating

characteristics for Example 1

α β η π γL γU n cL cU E(Nj p0)
0.0982 0.0976 0.8002 0.8106 −4.25 −0.95 26 0.9158 0.9457 17.39

TABLE 2 Boundaries and stopping probabilities for optimal CF design with both early futility and efficacy boundaries in Example 1

i ri si ωL
i ωU

i

Stopping probability
under H0

Stopping probability
under Ha

10 0 5 0.9950 0.9849 0.1402 0.0388

12 1 6 0.9926 0.9812 0.1753 0.0180

13 1 6 0.9910 0.9792 0.0072 0.0072

15 2 7 0.9871 0.9750 0.1452 0.0158

16 2 7 0.9846 0.9728 0.0048 0.0048

17 2 7 0.9816 0.9705 0.0076 0.0076

18 3 7 0.9781 0.9682 0.1274 0.0231

20 4 8 0.9692 0.9631 0.1196 0.0215

21 4 8 0.9635 0.9605 0.0055 0.0055

22 4 8 0.9568 0.9578 0.0082 0.0082

23 5 9 0.9489 0.9549 0.0763 0.0138

24 5 9 0.9396 0.9520 0.0022 0.0022

25 6 9 0.9287 0.9489 0.0725 0.0228

26 6 9 0.9158 0.9457 0.1080 0.1166

TABLE 3 Comparison of CF and Sargent et al. three-outcome designs for Example 1

Design α β η π γL γU n1 n cL cU E(Nj p0)
CF optimal 0.0711 0.0989 0.8056 0.8062 −2.73 −∞ 27 0.9353 0.8911 18.56

CF minimax 0.0889 0.0999 0.8147 0.8074 −9.07 −∞ 24 0.9039 0.8677 19.80

Sargent optimal 0.0999 0.0931 0.8170 0.8560 13 29 20.97

Sargent minimax 0.0889 0.0987 0.8130 0.8070 16 24 21.19
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TABLE 4 Boundaries and stopping probabilities for optimal CF design without early efficacy boundary in Example 1

i ri si ωL
i ωU

i Stopping probability under H0 Stopping probability under Ha

10 0 - 0.9921 1.0000 0.1074 0.0060

12 1 - 0.9893 1.0000 0.1718 0.0145

15 2 - 0.9839 1.0000 0.1429 0.0136

18 3 - 0.9767 1.0000 0.1168 0.0125

20 4 - 0.9704 1.0000 0.1169 0.0187

23 5 - 0.9583 1.0000 0.0777 0.0140

25 6 - 0.9480 1.0000 0.0721 0.0195

27 6 9 0.9353 0.8911 0.1944 0.9011

TABLE 5 Comparison of CF, PP,

and Simon designs for Example 2
Design α β γL n cL cU E(Nj p0)
CF optimal 0.097 0.100 −0.80 38 0.9581 0.8359 21.75

CF minimax 0.0847 0.0995 −5.88 36 0.9295 0.8763 24.84

Simon optimal 0.095 0.097 37 26.02

Simon minimax 0.086 0.098 36 28.26

PP with min n 0.088 0.094 36 27.67

PP with n = 42 0.099 0.083 42 23.56

TABLE 6 Boundaries and stopping probabilities for optimal CF design without early efficacy boundary for Example 2

i ri si ωL
i ωU

i Stopping probability under H0 Stopping probability under Ha

10 0 - 0.9920 1.0000 0.1074 0.0060

12 1 - 0.9902 1.0000 0.1718 0.0145

15 2 - 0.9873 1.0000 0.1429 0.0136

19 3 - 0.9832 1.0000 0.0934 0.0075

22 4 - 0.9799 1.0000 0.0868 0.0078

25 5 - 0.9763 1.0000 0.0735 0.0075

28 6 - 0.9725 1.0000 0.0606 0.0069

30 7 - 0.9699 1.0000 0.0617 0.0106

33 8 - 0.9657 1.0000 0.0421 0.0081

36 9 - 0.9612 1.0000 0.0320 0.0069

38 10 11 0.9581 0.8359 0.1278 0.9105

TABLE 7 A group sequential CF

design for Example 3
α β γL γU n cL cU E(N| p0)

0.0982 0.0967 4.60 −∞ 43 0.9712 0.8219 22.37

i ri si ωL
i ωU

i

Stopping probability
under H0

Stopping probability
under Ha

10 1 - 0.9809 1.0000 0.3758 0.0464

15 2 - 0.9768 1.0000 0.0990 0.0094

20 3 - 0.9744 1.0000 0.0621 0.0037

25 5 - 0.9729 1.0000 0.1460 0.0120

30 6 - 0.9721 1.0000 0.0390 0.0025

35 8 - 0.9716 1.0000 0.0858 0.0075

40 10 - 0.9713 1.0000 0.0692 0.0101

43 11 12 0.9712 0.8219 0.1231 0.9084
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We obtain our optimal two-outcome CF procedure based on confidence function (8) and compare with the above
designs. We set γU = − ∞ so that no early stopping for efficacy is possible and restrict γL � [−10, 0] when searching for
a procedure that minimizes E(Nj p0).

Our optimal CF design corresponds to γL = − 0.80 with 38 as the maximum number of patients. The expected num-
ber of patients under H0 is E(Nj p0) = 21.75, which is lower than that of the PP and the Simon designs. See Table 5 for
additional information. Boundaries and probabilities of stopping for each analysis under H0 and under Ha are shown in
Table 6. We also search for the CF design that has the smallest maximum sample size n. This minimax CF design corre-
sponds to γL = − 5.88 with n = 36 and E(Nj p0) = 24.84. The boundary for rejecting Ha at the final analysis is
r36 = 10.

Example 3. A group sequential two-outcome procedure without early stopping for efficacy.

Consider the same study setting as in Example 2. Suppose due to operational considerations, we prefer analyzing the
data after every five additional patients following the first analysis at 10 patients. Of course, we always plan to analyze
the study at the planned maximum number of patients even if it is not a multiple of 5. We derive such a study design
based on confidence function (8).

For illustrative purposes, we search γL � [−10, 10] by step size of 0.01. Our CF design that minimizes E(Nj p0)
requires n = 43 patients unless early stopping occurs. The average number of patients under H0 is 22.37. See
Table 7.

Example 4. Additional Examples.

In Tables 8 and 9, we provide additional examples comparing our two- and three-outcome CF designs based on
Equation (8) with traditional two-stage two- and three-outcome procedures (i.e., Simon and Sargent et al.). As these tra-
ditional designs do not have an early efficacy boundary, for comparison, we restrict our CF procedures to those without
an early efficacy boundary. The specified α and β values are 0.1. For three-outcome procedures, η ≥ 0.8 and π ≥ 0.8 are
targeted. For optimal and minimax CF designs, we searched all procedures with γL � [−10, 0] using step size of 0.01 all-
owing for continual monitoring after the first 10 patients. In general, our CF designs compare favorably to the tradi-
tional two- and three-outcome procedures.

5 | DISCUSSION

Tumor response has been frequently used in oncology phase II clinical trials. Because, without effective treat-
ment, spontaneous and substantial tumor shrinkage that qualifies as a response according to RECIST10 is very
rare, a concurrent randomized control may not be necessary. In the single-arm study setting, two- and three-stage,
two- and three-outcome designs1-4 have been widely used. Within the constraint of the number of stages, these
designs are globally optimal with respect to the given loss function as they are obtained by searching among all
valid procedures. Even though no particular requirement is imposed on the interim and final boundaries (e.g., a
high level of evidence for rejecting Ha after stage 1), these designs are usually reasonable. When the number of
stages increases, especially when continual monitoring is desired, searching for an optimal design among all valid
procedures becomes computationally prohibitive due to the large number of potential designs that one needs to
consider.

In this paper, we propose a two- and three-outcome Bayesian posterior probability design based on confidence func-
tions that allows for continual monitoring with or without an early efficacy boundary. Our CF design is based on the
frequentist hypothesis testing framework meeting error rate and power specifications, but decision boundaries for futil-
ity and/or efficacy are formulated according to Bayesian posterior probability that Ha or H0 is not true. Instead of
searching globally, we search for an optimal design among procedures corresponding to a family of confidence func-
tions. By specifying appropriate confidence functions to use, we can also require higher levels of evidence for rejecting
H0 or Ha early. The required level of evidence for futility and/or efficacy at each analysis has a clear and intuitive inter-
pretation. Through several examples, we compared our design with commonly used two-stage procedures by Simon1
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and Sargent et al.2 as well as Bayesian predictive probability-based designs by Lee et al.7 We found that our design typi-
cally has a lower average patient number, E(Nj p0).

Despite typically lower average study sizes, analyzing accumulating data continually during the conduct of a clinical
study could present substantial operational challenges. When sequential analyses are overly burdensome, group
sequential designs as described in Section 2.6 or traditional two- or three-stage procedures such as Simon and Sargent
et al. may be considered. This is especially true when enrolment pause needs to be implemented for each analysis in
order to limit patient enrolment overrun.

Our design, given that data can be analyzed sequentially, has some similarities to the sequential probability ratio
test (SPRT),11 which was originally developed for use in quality control studies in manufacturing. With SPRT, new data
are collected and analyzed continually, without a maximum limit on sample size, until pre-defined boundaries are
crossed. For clinical trials, however, we typically need to cap the maximum study size so that a decision whether to
reject the null or alternative hypothesis is made when the maximum study size is reached. Additionally, SPRT has con-
stant boundaries while for clinical trials, it is often desirable to require higher levels of evidence to stop early for futility
or efficacy. With our proposed design, this is achieved by specifying a desired confidence function. Furthermore, a
family of confidence functions can be used to derive an “optimal” design that minimizes a specific loss function.

In oncology, there is typically a time gap of at least a few weeks between start of treatment and tumor response. A
patient needs to be followed for a minimum amount of time before becoming evaluable for response. Even though E
(Nj p0) is commonly used as a loss function for designing clinical studies, others could be considered. In practice, with
continuous patient enrolment, by the time the ith patient is evaluable, more patients may be already enrolled into the
trial. Therefore, futility at that time would mean a cost of i patients plus any enrolment overrun. In this situation, a loss
function taking potential patient overrun into consideration may be helpful. Additionally, for settings where an infor-
mative prior for p, say g(p), is available at study planning, one may choose to minimize expected value of E(Nj p) under
the prior distribution of p,

Ð
E(Nj p)g(p)dp. In the absence of any reliable prior information on p, it is advisable to obtain

both the minimax and optimal designs and compare them before deciding on the design for a given study. If, for exam-
ple, E(Nj p0) for the minimax design is only fractionally higher than that of the optimal design and the optimal design
requires many more patients in maximum, it may make good sense to choose the minimax design.

For any clinical trial with early stopping boundaries, if there is enrolment overrun at the time of early stopping, the
final result including all enrolled patients might not always be consistent with the result at the time of early stopping,
even though such an inconsistent outcome should be rather rare. However, decisions based on the pre-defined early
stopping boundaries ensure that false positive and negative rates are controlled regardless of the “final” result. In the
current setting of signal-generating phase II studies, any decision on future development should be made based on the
totality of data available at the time of the decision.

Our CF design allows an optional early efficacy boundary in addition to a futility boundary. Even though there is
no compelling ethical reason to stop a single-arm study early due to early signals of efficacy when every patient is on
the promising therapy, an early boundary for efficacy can still be useful in certain situations. For example, one may
wish to initiate a confirmatory trial as soon as early efficacy boundary is crossed in order to reduce the overall develop-
ment time. We use the term early stopping for efficacy in this article loosely to mean early rejection of the null hypothe-
sis and do not necessarily mean enrolment will be stopped. However, even though the type I and II error rates are
strictly controlled for making a drug development go/no-go decision, the resulting point estimate of ORR may be biased
after early stopping.12 Therefore, even if the efficacy boundary is crossed, if one needs a more precise and unbiased esti-
mate of ORR, the study should be allowed to continue until the planned maximum number of patients because there is
no ethical concern to treat additional patients when the experimental therapy is promising.

Finally, when monitoring a single-arm phase II study continually, it is important to follow the natural order of
patient enrolment. For the analysis at the ith patient, the first, and only the first, i patients enrolled consecutively into
the trial should be included. Without following such a predefined order, type I and II error rates may become ambigu-
ous and not controlled. For example, if we include the first i patients who complete study treatment, the analyzed group
may be enriched with patients who progress and discontinue treatment earlier, therefore biasing the data and results.

An executable Java application with a graphical user interface has been developed for obtaining the proposed study
designs and it is available from the author upon request.
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