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Abstract

Background: A fundamental unsolved problem in psychophysical detection
experiments is in discriminating guesses from the correct responses. This paper
proposes a coherent solution to this problem by presenting a novel classification
method that compares biomechanical and psychological responses.

Methods: Subjects (13) stood on a platform that was translated anteriorly 16 mm to
find psychophysical detection thresholds through a Adaptive 2-Alternative-Forced-
Choice (2AFC) task repeated over 30 separate sequential trials. Anterior-posterior
center-of-pressure (APCoP) changes (i.e., the biomechanical response RB) were
analyzed to determine whether sufficient biomechanical information was available to
support a subject’s psychophysical selection (RΨ) of interval 1 or 2 as the stimulus
interval. A time-series-bitmap approach was used to identify anomalies in interval 1
(a1) and interval 2 (a2) that were present in the resultant APCoP signal. If a1 > a2 then
RB = Interval 1. If a1 < a2, then RB= Interval 2. If a2 - a1 < 0.1, RB was set to 0 (no
significant difference present in the anomaly scores of interval 1 and 2).

Results: By considering both biomechanical (RB) and psychophysical (RΨ) responses,
each trial run could be classified as a: 1) HIT (and True Negative), if RB and RΨ both
matched the stimulus interval (SI); 2) MISS, if RB matched SI but the subject’s
reported response did not; 3) PSUEDO HIT, if the subject signalled the correct SI, but
RB was linked to the non-SI; 4) FALSE POSITIVE, if RB = RΨ, and both associated to
non-SI; and 5) GUESS, if RB = 0, if insufficient APCoP differences existed to distinguish
SI. Ensemble averaging the data for each of the above categories amplified the
anomalous behavior of the APCoP response.

Conclusions: The major contributions of this novel classification scheme were to
define and verify by logistic models a ‘GUESS’ category in these psychophysical
threshold detection experiments, and to add an additional descriptor, “PSEUDO HIT”.
This improved classification methodology potentially could be applied to
psychophysical detection experiments of other sensory modalities.
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Background
A major goal of the psychophysical experiments that we carry out in our laboratory

has been to find if changes in one or more biomechanical or physiological variables

correlate with the ability to correctly detect small anterior translational perturbations

(≤16 mm) of the platform upon which a subject was standing.

The primary test protocol was based on a 2-Alternative-Forced-Choice (2AFC) pro-

cedure, where the subject was forced to choose which of two sequential intervals

exclusively contained the platform perturbation. The displacement length was fixed,

and the platform acceleration was iterated over a sequence of tests to identify a per-

ceptual threshold. This iteration was carried out via a modified Parameter Estimation

Sequential Testing protocol (PEST) [1]. However, a major difficulty existed in deter-

mining whether a correct response reported by the subject indicated an underlying

ability to detect a perturbation or indicated a guess, especially when an acceleration

level was close to detection threshold. Hence, we sought profiles in our data that could

be used to distinguish biomechanical changes seen during “real” psychophysical detec-

tion of the stimulus from those “correct” psychophysical responses caused by other

conditions, including chance guesses. We made an explicit assumption in this paper

that a stimulus that was perceived must have had a concomitant physiological, biome-

chanical or neurophysiological response. The logic of this assumption is as follows:

IF a stimulus evoked a certain biomechanical response at some threshold, PB, AND

IF there existed a psychophysical detection threshold, PΨ, for that stimulus, AND

IF detection was somehow linked to that biomechanical response,

THEN studying the biomechanical and psychophysical responses together would

enable us to account for guesses and other non-congruent responses.

This rule might be equivalent to looking a pupillary response to light flashes of vary-

ing intensities, and tying those responses to psychophysical detectability. As noted in

the rule, we employed two different signal detection mechanisms. First was a psycho-

physical one where a subject responded by choice of interval where he/she thought

that they felt the move. The second mechanism was in terms of a biomechanical

response, the Anterior-Posterior Center of pressure (APCoP). We did not claim that

the biomechanical response that we chose (i.e., APCoP) was the sole response that

could occur, or that detection depended on its occurrence. But we started with that

premise to develop our theory and methods. In later papers, we will look at other vari-

ables and across multiple variables.

The time-series trajectories of the Center of Pressure (CoP) (related to the vertical

projection of the Center of Mass onto the surface upon which this person stands) have

been analyzed by many as a measure of postural stability [2-5]. Nearly every modern

study on postural control has collected such CoP data as crucial to the experimental

analysis. When studying how the body reacts to large perturbations of the platform,

the CoP signal provided a clear indication of postural control response that can be

directly correlated with the stimulus. However, under quiet standing conditions (with

no platform motion as stimulus), the CoP signal still showed significant transient beha-

vior, and could be modeled as a random walk [6]. Research described in this paper

focused on the intermediate situation where the body was subjected to small
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perturbations (meant to mimic the start of a slip or stumble) in an attempt to under-

stand postural control at the borderline of movement perception. Our previous studies

have primarily addressed the identification of a perception threshold - the minimum

platform motion that could be detected by a test subject [7-10].

A fundamental unsolved problem in psychophysical detection experiments is in dis-

criminating guesses from the correct responses. This paper proposes a coherent solu-

tion to this problem by presenting a novel classification method that compares

biomechanical and psychological responses. This present paper focuses on newly devel-

oped analysis techniques that allow us to characterize and classify APCoP behavior in

response to small perturbations and to improve our understanding of the relationship

between the APCoP signal and perception threshold.

Methods
In these methods, we outline a new probability model for 2AFC experiments that captures

our refined categorization, and give a detailed description of how we identify anomalous

behavior. For analysis, our specific computational technique required significant data

dimensionality reduction, achieved by symbolic representation of abstracted data. Our

other innovation (presented here) is a modified time-series-bitmap (TSB) approach [11] to

identify anomalies present in the biomechanical response (i.e., a change in APCoP). It iden-

tified “anomaly” not with respect to the full data set, but rather, with respect to a small

moving window, providing an estimate of the instantaneous information content, which we

could then use to evaluate whether there was sufficient information to differentiate

between the two stimulus presentation intervals. Traditional low pass filtering technique

could not be used as it does not really amplify the biomechanical response behavior, result-

ing into failure of differentiating responses. Original work of TSB method was modified by

separately the anomaly score into the two separate anomaly score measures.

Subjects

We analyzed the performance of 13 healthy adults [2 M, 11 F] over 49 y.o. [median

age 58 y.o., (min/max 50/67)] and without diabetes or lower limb peripheral neuropa-

thy (as verified by clinical nerve conduction velocity testing). This data was collected at

the Shreveport, Louisiana, VA Medical Center under an Institutional Review Board

(IRB) approved protocol. Subjects were screened for balance, sole tactile acuity, clini-

cally determined nerve conduction velocities, and other measures as outlined in

[12,13]. All screens were within normal limits.

Experimental Procedures

To avoid extraneous clues due to movement vibration for these small perturbation

experiments, we developed test hardware and software that we collectively call SLIP-

FALLS-STEPm (for Sliding Linear Investigative Platform For Assessing Lower Limb

Stability with Synced Tracking, EMG and Pressure measurements). This equipment

performs precisely controlled vibration-free horizontal translations through the use of

air bearings and a linear motor [14]. Processed SLIP-FALLS-STEPm data from past

experiments provided various time-series signals that include position, acceleration,

APCoP, and EMG data. For each subject, a maximum of 30 trials are performed per

run to prevent fatigue, and each trial collects these and other time-series data.
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We determined psychophysical threshold by using a 2-Alternative-Forced-Choice

(2AFC) protocol in which the subjects were required (i.e., “forced”) to choose in which

one of two sequential intervals that they perceived the presented perturbation. In this

protocol, the subject sequentially received the commands “Ready”, “One”, “Two,” and

“Decide”, at the start of intervals of 3 to 6 s each, with a stimulus either in interval

One or Two [15-18]. After the word “Decide”, the subject pressed a telemetered door-

bell button once or twice to signal in which interval he/she felt that the stimulus

occurred. The length of the move was 16 mm, and a set of maximum 30 trials was col-

lected for each subject. Data collected included various signals like platform position,

and acceleration, a subject’s APCoP and medial-lateral CoP (MLCoP), as well as hori-

zontal ground reaction forces and tri-axial head acceleration. However, the variable of

interest for the analysis presented in this paper was APCoP. Data were sampled at

1000Hz and converted offline into engineering units, filtered and downsampled to 100

Hz. A typical anterior horizontal 16 mm position move time-series profile is shown in

Figure 1 (i, j), for which the acceleration profile resembles a single sinusoid [14]. The

test stimulus variable (i.e., the Peak Acceleration value of the positive [or negative] half

sinusoid-like profile) was iterated to threshold using a modified PEST routine [1].

Modeling 2AFC Behavior

In our 2AFC experiment, a subject was presented with two sequential intervals, one of

which contained a stimulus and the other of which did not. The subject was required to

select an interval, and the experimental outcome recorded as to whether the choice was

correct or not. Note that the designation of “correct” simply implied that the stimulus

interval was correctly signalled. It did not imply that the subject actually detected the sti-

mulus. When used to evaluate the subject’s ability to detect some stimulus (threshold

experiments), the standard probabilistic model for “correct” response is

P(correct) P(correct|non-detect) P(non-detect) P(correct|d= + eetect) P(detect)

The assumption was that if the stimulus was not psychophysically detected, then the

probability of choosing the correct interval was p = 1/2 (assuming an unbiased experi-

ment). Conversely, if the signal was detected, then the subject would have answered

correctly. Letting z indicate the probability of detecting the signal yielded the simplified

model

P(correct) ( z) / z ( z) /= − + = +1 2 1 2 (1)

The immediate result of this model was that any particular correct answer could not

be viewed as “detection,” because half of the time the subject would have been gues-

sing correctly, even when the stimulus was not observable. This is why classical detec-

tion thresholds were set at 75% on better. The procedures for implementing a 2AFC

test with a threshold determination scheme (PEST) explicitly accounted for this model.

For our SLIP-FALLS data analysis, our goal was to data-mine the detailed time series

to better understand the body response to low-level perturbations. Because the signal-

to-noise ratio was quite small, we would have been working with a significant stochas-

tic component in the measured APCoP response [6]. This, in turn, meant that ensem-

ble averaging would have been appropriate. However, simply averaging across “correct”

or “incorrect” responses failed to adequately resolve the difference between guessing
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(correctly or incorrectly) and correctly responding to a stimulus signal. Figure 1 shows

the APCoP data for a 50 years old female subject, clustered by stimulus interval, and

by whether the subject’s response was correct or incorrect. Trials were sorted by the

magnitude of the stimulus acceleration. By visual inspection, it appeared that many of

the “correct” response runs had less signal strength than some “incorrect” runs, with

the ensemble averages (Figures 1c,d,g,h) showing very little difference between the two

cases.

Figure 1 APCoP (mm) plots from a 30 trial run for subject f50z031. Categorization of trials into
CORRECT (a, b) and INCORRECT (e, f) for Interval 1 (a, e) and Interval 2 (b, f). Plots (c, d, g, h) give the
point-by-point ensemble average. The scale of (c, d, g, h) also applies to the individual plots in the raster.
The individual time series in each raster are sorted such that those with the highest acceleration value are
at the top of each plot. The platform position (mm) signals from the highest and lowest acceleration
values tested are shown in i and j. The horizontal dashed lines illustrate the experimentally determined
detection threshold, while the vertical dashed lines are set at the end of the averaged position signal in
Interval 1 and 2. Observe that the ensemble average of CORRECT versus INCORRECT runs shows very
similar APCoP response to the stimulus, indicating that classifying based on correctness of response may
be of limited value for data mining of the average signal.
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We propose here an alternative probabilistic model based on the following partition

of observation space into three distinct categories: (a) If the stimulus was very small,

the signal could also have been so much smaller than noise such that there was no

apparent stimulus signal present in the APCoP data, indicating that the subject made a

pure guess (denoted G), (b) The stimulus resulted in sufficient information in the

APCoP data that the stimulus was detectable, denoted D. (Note - detectable indicated

the presence of signal in the APCoP data that was above some noise threshold, not

that the subject perceived that signal.); (c) The APCoP signal could have been above

threshold; but not due to the stimulus signal, such that the APCoP signal was mislead-

ing (denoted M), in that it indicated a signal that caused the subject to choose contrary

to the actual stimulus. [Note: In some sense, this categorization lacks precision because

it does not specify how much signal was required in the APCoP signal to assign the

designation “detectable.” In the subsequent section, we will make those definitions pre-

cise, basing that classification on the specific measurement of our anomaly detection

algorithm.]

If we denote a “correct” response by C, we have new probability model

P C P C G P G P C D P D P C M( ) ( | ). ( ) ( | ). ( ) ( | ).= + +
Guess Hit

      PP M( )
PseudoHit

   (2)

where again we have assumed an unbiased experiment with respect to guessing.

Each of these summands now associates to a specific classification of a particular

2AFC experimental run: (a) a correct “guess,” (b) a “hit,” and (c) a “pseudo-hit”

(defined later), as labeled above. The alternative outcomes from the experiments

occurred when the subject chose the incorrect outcome for the stimulus, denoted as

C’, modeled as,

P C P C G P G P C D P D P C( ’) ( ’ | ). ( ) ( ’ | ). ( ) (= + +
Guess Miss

      ’’ | ). ( )M P M
False Positive

   (3)

with summand descriptors of (a) incorrect “guess,” (b) a “miss” (because the subject

missed the detectable signal), and (c) “false positive,” (where the subject responded

consistent with the misleading CoP signal).

Time Series Bitmap Based Analysis

Background

Our hypothesis was that an unexpected or anomalous pattern in a subject’s APCoP

time-series data might have been used by a subject to quantify a stimulus, shedding

light on detection strategies behind a given subject’s psychophysical response. In this

section, we provide an explicit description of our processing techniques that support

this hypothesis. Our basic approach remained the same as the preliminary report of

Bhatkar et al. [19], but we have fine-tuned the parameters of the algorithm to increase

the effectiveness of the method as a classifier of the APCoP.

Preprocessing, Dimensionality Reduction, and Data Abstraction

To reduce the time-series from a large n dimension to a much smaller w dimension,

the data was divided into w equal sized “frames”. A Piecewise Aggregate Approxima-

tion (PAA) was used to abstract the data, where a time-series C of length n is
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represented in a w-dimensional space by a vectorC c cw= 1,..., . The ith element of C

was calculated by the Equation 4 [20]:

c
w

n
ci j

j
n
w

i

n
w

i

=

= − +

−

∑
( )1 1

(4)

PAA replaced equally sized frames by their mean values, discretized in the time

domain. After applying the SAX algorithm, the PAA data was then spatially scaled by

z-score, where each spatial interval was represented by a letter from a finite alphabet,

producing a SAX word representation of the data stream. The alphabet size, s, could
be chosen arbitrarily. For s = 3, the alphabet would be taken as {a, b, c}. Figure 2

shows a short time-series being converted into SAX word baabccbc [11]. Because our

data consisted of lengthy time-series, the ability to convert subsequences of time-series

data into the much lesser dimensional SAX word representation facilitated anomaly

detection.

Time Series Anomaly Detection

Our approach to time-series anomaly detection was also inspired by work done by Li

Wei et al. Two adjacent windows called the lead window and the lag window were slid

across the time-series. Each window was converted to SAX representation as above,

and frequencies of SAX subwords were calculated (see Figure 3). It was the matrix of

frequency information that was viewed as the time-series-bitmap (TSB) for the speci-

fied window. The “distance” between two windows was computed as the Frobenius

norm on the matrix of word frequencies, and that value was recorded as the anomaly

score at that instant. As the windows moved along the time series, a new data point

was ingressed and an old data point egressed, with the frequency matrices updated at

each step, providing for efficient computation of the time-series scores [19]. We high-

light that our technique and choice of window sizes was different from the approaches

presented by Wei et al. and Bhatkar et al. By computing over the small lead and lag

windows, our anomaly computation described a local rate of change of signal charac-

ter, rather than measuring a difference from the normal behavior of the full sequence.

Specific parameters used for analysis are listed in Table 1.

Figure 2 A real valued time-series can be converted to the SAX word baabccbc . The y-axis
represents z-scores. Note. Adapted with permission from “Assumption-Free Anomaly Detection in Time
Series,” by Wei et al. [11].
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Figure 3 Method illustrating Time-Series-Bitmap Algorithm. Illustrating conversion of data
subsequences into SAX symbols to calculate anomaly scores for each instance of the lag and the lead
windows using the known time-series data of platform position taken from a move in Interval 1. Note.
Adapted with permission from Bhatkar et al, 2006 [19].

Table 1 The list of the parameters used for the modified TSB algorithm.

Parameter Value

bin size 30

word length (lag) 16

lag window size 480 ms

word length (lead) 12

lead window size 360 ms

alphabet size 6 {a, b, c, d, e, f}
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Algorithm Implementation

The anomaly score could be associated to the relative entropy of the empirical distri-

butions of the lead and lag windows, and could be thought of as a generalization of

the derivative. When the signal was changing rapidly in character, one could expect a

large anomaly score. Analysis of the anomaly score for PLATFORM POSITION is

shown in Figure 4 to illustrate this ability to detect a change, albeit in platform posi-

tion. Our goal was not only to find the APCoP changes that were influenced by plat-

form perturbations, but also to relate these APCoP excursions to the correctness of

the subject’s decision for movement detection. Figure 5 is a typical plot of the change

in platform position, the resultant change in APCoP, and the anomaly score for that

APCoP. Note that although there was a clear deterministic response apparent in the

APCoP for this run, such a clear deterministic response was not always present.

Use of anomaly score to classify biomechanical response

A subject’s response to a perturbation could be characterized in two different ways.

One is the psychophysical response, RΨ, indicating in which interval the subject per-

ceived that the movement occurred, experimentally collected by simply having the sub-

ject respond by button press. Another is the subject’s biomechanical response, RB,

which can be a neurophysiological (i.e., EMG) or a biomechanical (e.g., APCoP)

response to a perturbation. We chose to use the biomechanical response to classify sig-

nals. We performed this classification by focusing on APCoP and its associated anom-

aly scores. We considered this aspect to be a crucial contribution of our work. We

tailored the numerical classifier to act in accordance within the psychological rules

imposed by the experiment, such that it modelled how the body might by using that

data to perform the 2AFC task of the experiment.

In our classification system, a1 and a2 were the root mean square (RMS) values of

the anomaly score during interval 1 and interval 2 respectively, RB was calculated

Figure 4 Time series record of the platform position (a) and anomaly score (b). Both signals indicate
where actual movement has occurred. The dotted lines in this and subsequent figures denote the four
test intervals.
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based on the difference between these two values. When the difference between the

two anomaly scores was greater than a specified threshold value (the value of threshold

was set to be 0.1, but that choice is discussed below), the RB value was set to the sti-

mulus interval with the greater anomaly score. If a1 > a2, then RB was set to 1. Conver-

sely, if a1 < a2, then RB was set to 2. When this difference was less than threshold (i.e.,

there was an insignificant distinction between interval 1 and interval 2 anomaly scores),

RB was set to 0.

Our justification for using an anomaly score to classify a biomechanical response was

based on the strong correlation between the anomaly score difference and the actual

stimulus interval. Figure 6 illustrates this relationship, where data from 372 runs across

13 subjects were analyzed for anomaly score differences. A positive difference was

associated with increased APCoP anomaly in the second interval, and should have

been correlated with the actual stimulus in that interval. An empirical curve (based on

a moving average) indicated that the likelihood that the stimulus was in interval 2

increased monotonically in a sigmoidal fashion as the anomaly score difference

increased. A logistic regression line to this data is also shown. The logistic intercept

(equal probability of interval 1 or 2) regression coefficient of -0.02 was statistically

indistinguishable from 0, supporting the conclusion that the experiment was unbiased

between the two intervals. The anomaly score correctly indicated the stimulus interval

at an accuracy rate of 81.4%, which is significantly better than the subject’s response

accuracy of 71.8%.

Using the logistic regression model of the data, we observed that if a2 - a1 < 0.1, the

probability that stimulus was in interval 2 ranged from 43% to 57%. With so little dis-

criminating power, we considered this to be equivalent to guessing, leading to our

choice of assigning 0.1 as the threshold for RB. Restricting to cases that exceeded this

threshold, the classification accuracy rose to over 83%. We could now rigorously define

“detectable” as those cases where RB matched the stimulus and “misleading” when RB

Figure 5 (a) Platform movement, (b) associated APCoP signal, and (c) the computed anomaly score.
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was counter to the stimulus, with “guess” defined by an anomaly score difference being

below threshold.

Results
Classification of detection strategies using both biomechanical and psychophysical

responses

Our new categorization considered three factors: (a) the subject’s psychophysical report

of his/her detection of a stimulus interval; (b) the actual interval in which the stimulus

occurred; and (c) the subject’s biomechanical response, based on the differentiability of

information content of the two presentation intervals, regardless of whether that signal

was due to a stimulus presentation or noise. Our categorization terminology is defined

below, expressed in terms of our specific platform perturbation experiment and col-

lected CoP data:

’HIT’: Where the subject’s psychophysical response matched with both the biome-

chanical response and the actual movement interval. If RB and RΨ both match to the

stimulus interval, we assume that the subject has responded correctly to actual move-

ment of the body in response to the stimulus (Figure 7).

Figure 6 The relationship between difference in anomaly score and stimulus interval. Observed data
from 13 subjects (circles), where each data point represents a single run that is plotted as either a 0 (if
stimulus was in interval 1) or 1 (if stimulus in interval 2). The difference in the anomaly score (anomaly
score 2 - anomaly score 1) forms the horizontal axis, The green curve shows a moving average of the data,
representing an empirical likelihood that the anomaly score difference would indicate a interval 2 stimulus.
The red curve shows a logistic model fit to that data.
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’TRUE NEGATIVE’: Congruent with a HIT above, where the subject did not choose

the non-stimulus interval. The biomechanical response in that stimulus was far below

that of the stimulus interval. If RB and RΨ both matched to the stimulus interval, then

non-stimulus interval is considered as true negative (Figure 7).

’MISS’: Where the biomechanical response matched the movement interval, but the

subject’s psychophysical response was incorrect, indicating that the subject might have

missed the potential biomechanical indicators. RB matched the stimulus (indicating

that sufficient signal was present for detection) but the subject’s reported response was

incorrect (Figure 8).

’PSEUDO HIT’: Where the subject psychophysically selected the stimulus interval,

but the biomechanical response (anomaly) was present in non-stimulus interval. If the

subject reported the correct stimulus interval, but RB was observed in the non-stimulus

interval, this indicated that subject’s decision might have been affected by something

other than body movement measured by CoP changes (Figure 9).

Figure 7 Interval 1 HIT. A high anomaly score is seen in interval 1 (the Stimulus Interval) indicating a HIT.
Interval 2 shows a TRUE NEGATIVE with low anomaly (Non-stimulus Interval).

Figure 8 Interval 1 MISS. A MISS is indicated since a high anomaly score was seen in interval 1 (the
Stimulus Interval) but subject selected Interval 2.
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’FALSE POSITIVE’: Where the subject’s psychophysical response matched the bio-

mechanical response, but where both indicators were contrary to the actual stimulus

interval. We interpreted this case as that the subject responded to a “noisy” biomecha-

nical signal, where the noise caused a spike above detection threshold. In these trials,

RB = RΨ, but both were associated to the non-stimulus interval. We interpreted these

trials as the subject responding to actual body motion, but with that motion not due

to the stimulus (Figure 10).

’GUESS’: Where no significant difference existed in the biomechanical signal anoma-

lies between stimulus and non-stimulus intervals, such that the APCoP provided

ambiguous information to the subject. If no other information were to be available to

the subject, then regardless of whether their psychophysical response was correct or

not, it could be viewed as a chance result (Figure 11).

We employed this classification scheme to perform ensemble averaging across multi-

ple trials and to find that it appeared to provide a robust method for grouping beha-

vioural response. By considering both the biomechanical and psychophysical responses,

we were able to classify each trial run at the resolution indicated by Equation 2 and

Equation 3. Though only six categories were mentioned above, there were actually

eight combinations present together for both the intervals. Figure 12 summarizes this

categorization for a standard 2AFC test.

Table 2 implements this classification for a 66 year old female [f66z067] for a set of

29 trials. Figure 13 shows this subject’s PEST iteration process towards psychophysical

threshold.

Ensemble Averaging

Our classification method based on anomaly detection used the information content in

the APCoP signal as its primary measure, with the measurement at any particular

instant based on only a small window of the data. If we clustered data runs based on

this scheme, we could ensemble average across like-classified runs to compute a point-

by-point ensemble average of the time series. In this methodology, we could then look

Figure 9 Interval 1 PSEUDO HIT. While the stimulus was in Interval 1 and the subject chose that interval,
the higher anomaly score was in interval 2. This was thus scored as a Interval 1 PSEUDO HIT.
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for observable patterns and behaviours in the ensemble average, using those patterns

to infer behavior of the postural control system.

Ensemble averages were constructed via point-by-point time averages of the data

time-series acquired from 29 trials in a 16 mm run for the subject of Table 2. This

technique amplified the anomalous behavior of the APCoP response and showed sig-

nificant anomalies present in the expected interval for each category. The ensemble

averaged profiles of 1-HIT, 1-MISS, 1-PH, 1-FP, and GUESS cases respectively are

shown in Figure 14. Visually, it appeared this refined classification was now able to

appropriately group the data runs, such that the ensemble average was a good repre-

sentation of the group. We found similar results for the Interval 2 profiles.

Group Responses

The classification procedure described above was applied to classification results sum-

marized in Table 3 for all subjects. One additional subject from that test group was

Figure 11 GUESS. High APCoP anomalies existed in both the intervals, with correct detection of the
stimulus interval.

Figure 10 Interval 1 FALSE POSITIVE. With the stimulus in Interval 1, the higher anomaly score was in
the interval 2 and the subject also selected Interval 2. This was thus coded as an Interval 1 FALSE POSITIVE.
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analyzed, but these anomaly scores were extreme outliers, and the original PEST

experiment failed to find a threshold for this subject. These separate indicators war-

ranted removal of this subject’s data from the group analysis.

Under the assumption that the marginal data provided a useful representation of

population behavior, we estimated the conditional probabilities associated with the var-

ious classifications. For example, the proportion of correct answers when the signal was

detectable (based on APCoP anomaly score) was approximately 0.77, with 95% confi-

dence interval

. P(C | D) .71 82≤ ≤ (5)

Figure 12 Categorization of trials based on Stimulus Interval.
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Table 2 Categorization of 30 trials of a 16 mm perturbation.

Trial Accel. Stim RB RY CPh A_Score
Int 1

A_score
Int 2

5 13.02 1 1 1 1-HIT, 2-TN 1.94 1.51

9 13.02 1 1 1 1-HIT, 2-TN 2.17 1.81

10 13.02 1 1 1 1-HIT, 2-TN 2.10 1.89

11 13.02 1 1 1 1-HIT, 2-TN 3.38 1.87

20 17.54 1 1 1 1-HIT, 2-TN 1.91 1.08

26 17.54 1 1 1 1-HIT, 2-TN 1.98 1.46

2 19.04 2 2 2 2-HIT, 1-TN 1.45 3.18

3 19.04 2 2 2 2-HIT, 1-TN 1.95 2.56

4 13.02 2 2 2 2-HIT, 1-TN 1.92 2.43

13 12.27 2 2 2 2-HIT, 1-TN 1.19 2.09

19 17.54 2 2 2 2-HIT, 1-TN 1.57 1.89

21 17.54 2 2 2 2-HIT, 1-TN 1.21 1.71

22 16.03 2 2 2 2-HIT, 1-TN 1.51 2.04

27 17.54 2 2 2 2-HIT, 1-TN 1.44 1.71

8 10.01 1 1 2 1-MISS 2.19 1.89

23 16.03 1 1 2 1-MISS 3.00 1.75

25 16.78 1 1 2 1-MISS 1.70 1.29

12 11.52 1 2 2 1-FALSE POSITIVE 1.51 1.92

18 14.53 1 2 2 1-FALSE POSITIVE 1.70 2.11

7 7.00 2 1 1 2-FALSE POSITIVE 2.12 1.90

17 13.02 2 1 1 2-FALSE POSITIVE 2.01 1.82

6 7.00 1 2 1 1-PSEUDO HIT 1.48 2.77

14 12.27 2 1 2 2-PSEUDO HIT 2.14 1.91

24 16.78 2 1 2 2-PSEUDO HIT 1.36 1.19

1 7.00 2 0 1 GUESS 1.70 1.72

15 12.27 2 0 1 GUESS 1.21 1.25

16 13.02 1 0 1 GUESS 1.60 1.58

28 17.54 1 0 1 GUESS 1.46 1.55

29 17.16 2 0 1 GUESS 1.79 1.79

For 66 year-old female f66z067.

Figure 13 PEST iterations for 66 year-old female subject f66z067 (refer to Table 2).
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using a binomial model. Similar, the probability of correct given that APCoP data was

misleading was 0.5, with 95% confidence interval

. P(C | M) .36 64≤ ≤ (6)

We note that, if the subjects were using only the APCoP data to decide on interval,

then the misleading signals should have generated a much lower rate of correct

responses. The ability to (sometimes) disregard the APCoP indicator and answer cor-

rectly when that signal was misleading might contribute in explaining the 25% error

rate observed when the signal was detectable.

Figure 14 Ensemble Averaged Profiles of APCoP and Anomalies. (a) Interval 1 HIT, (b) Interval 1 MISS,
(c) Interval 1PSEUDO HIT, (d) Interval 1 FALSE POSITIVE, (e) GUESS for the subject whose data is in Table 3.
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As the final marginal probability, we observed that the proportion of correct

responses when the signal was classified as guess was 0.66, with confidence interval

. P(C | ) .48 81≤ ≤G (7)

If these runs were a pure guess (with no information available to the subject), we

would have expected approximately 50% of the response to be correct. Although the

95% confidence interval did preclude this pure guess possibility, the one-tailed p-value

was p = 0.045, indicating that there was statistical evidence that the rate was higher

than 50%. The result could be viewed as consistent with the other proportions in that

it provided evidence that the body was using additional indicators beyond the CoP sig-

nal to assess for movement of the platform. We note that this implication held only

for the group statistics, and not for an individual, as we observe that much of the

deviation from pure guess could be associated to the performance of three subjects

(m64z011, f57z088, f58z097), with the rest of the group having approximately equal

number of correct and incorrect responses for the guess categorization.

Discussion
A primary contribution of this paper is the development of two new outcome categori-

zations for a 2AFC trial. This analysis yielded five categories and a guess. The novel

classification scheme helped us understand psychophysical postural detection strategies

when a subject was presented with the small anterior perturbations at the borderline

of movement perception. To our knowledge, all previous work had simply described

the outcome as either “correct” or “incorrect,” depending on whether the subject cor-

rectly identified the presented stimulus. Also, traditional signal detection could only

yield four categories, HIT, MISS, FALSE ALARM, and CORRECT REJECTION. Our

innovative analysis introduced a new category called ‘PSEUDO HIT’, and identified a

way to distinguish a GUESS where traditional signal detection theory cannot.

Table 3 Summary classification results for the 13 subjects.

Subject Hit Miss Pseudo-hit False Pos Guess - Correct Guess - Incorrect Trials

f50z031 13 10 1 3 1 2 30

f51z065 17 7 3 2 1 0 30

f51z160 22 1 2 1 2 2 30

f53z077 9 2 4 4 2 2 23

f57z088 17 2 4 3 4 0 30

f58z097 19 3 3 2 3 0 30

f60z025 14 2 1 2 1 0 20

f62z021 25 4 0 1 0 0 30

f66z067 14 3 3 4 2 3 29

f67z125 20 6 1 0 1 2 30

f67z161 16 11 1 1 1 0 30

m50z028 16 7 2 2 2 1 30

m64z011 14 7 3 3 3 0 30

Totals 216 65 28 28 23 12 372

Subject codes listed in the first column provide the following information: m/f - Gender, next two digits - age, z - testing
group, last two digits - subject number.
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As our secondary contribution, we present a methodology that classifies psychophysi-

cal detection strategies based on the information content of the biomechanical data. By

assessing the anomaly of the biomechanical measurement, we could determine whether

there was sufficient information available such that the signal was detectable. Our key

innovation is that, rather than using the full time-series of information to discover data

patterns, the analysis technique should respect the psychology of the experiment. As

consequence, we were able to classify the biomechanical information in our experi-

ments as either indicating that there was a detectable signal or that there was insuffi-

cient information that the signal was actually misleading with respect to the decision

task at hand.

We applied a modified time-series-bitmap based approach to analyze human postural

control. We remark now that analysis via our “anomaly score” metric should be viewed

as vastly different from standard linear filtering techniques, using a non-linear discreti-

zation of the data to maximize the information content while using a very small alpha-

bet of states. The discretization enabled us to transform the data in a second non-

linear process, which identified anomalies by comparison of probability distributions,

which in turn can be related to Markov models and information theoretic approaches

such as cross-entropy or Kullback-Leibler divergence [21]. Although not presented in

this paper, we also examined a vast array of standard filters applied to this problem.

We chose to pursue the non-linear transformation described in this paper because we

were unable to find a standard linear filtering (to include examination of signal deriva-

tives) that allowed us to differentiate within the expected biomechanical detection

response behaviours. The techniques of this paper were closely related to the work of

Lin, Keogh, Wei, and their collaborators [11,20,22], with slight modifications in method

that significantly affected their applicability to the 2AFC environment: (a) by consider-

ing only a small (moving) lead-lag window, our method identified “anomaly” as those

time periods where the signal was changing rapidly in character, as opposed to where

the signal was being differentiated from the full time series, (b) we used knowledge of

the experiment to average over the specific test interval in the same way that the sub-

ject was asked to differentiate. This analysis allowed us to classify runs based on the

psychological and biomechanical implications of the experiment. The resultant ensem-

ble averages then served as motifs to characterize specific human behaviours of the

experiment.

The implication of these departures from the standard TSB based methods is signifi-

cant. As described [20], motifs can be identified in data sets, but the analysis considers

the whole time series. If data runs were grouped in this way, the only conclusion to

draw was that “this group of time series signals was similar,” without any valid way to

associate them to a specific psychophysical or biomechanical situation reflective of the

experiment. A similar weakness would apply to any attempt to classify the signals via

pattern matching and identification. Consequently, we claim as a very important con-

clusion that the motifs identified by our method are descriptive of important psycho-

physical aspects of the experiment.

As additional remark on these methods, we note that the data reduction technique

relied on a discretization based on an assumption that the data was approximately nor-

mally distributed. For the APCoP signal, we found this to be reasonable. For other

physiological data collected in this experiment (such as EMG data), other discretization
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schemes could be required. However, regardless of the method used to partition the

space and assign symbols to the time-series data, the rest of the method (comparison

using frequency tables) can still be directly applied.

Another major contribution was our pairing a biomechanical indicator with a psy-

chophysical indicator in a 2AFC environment, providing a unique characterization that

(to our knowledge) has not been previously described. Our categorization of trials into

HITs, MISSes, PSEUDO HITs, FALSE POSITIVEs, TRUE NEGATIVEs, and GUESSes

provided a detailed view of the experimental results that would not be possible if we

considered only the subject’s stated response. We would imagine that in other 2AFC

experiments, modern data collection schemes (e.g., iris tracking in a visual perception

experiment) might easily provide the necessary biomechanical data to allow similar

classification. To our knowledge, this refined characterization scheme for the 2AFC

experiments represents a major contribution in the psychophysical literature. Addition-

ally, we believe our techniques have broader applicability in other psychophysical appli-

cations of threshold detection.

Biomechanical Event

A primary conclusion was that the APCoP signal could be used to assess the effect of

platform movement on body motion under the low level perturbations of the experi-

ment, though not with complete accuracy (81.4% correct). For those situations where

there was a detectable signal, even then many subjects answered correctly on only

about 3 out of 4 trials, indicating that (a) the subject could not correctly interpret the

APCoP information or (b) the subject used other additional information in making the

perceptive decision. However, we do note that most psychophysical testing defines

threshold at 75%, thus the 81% was above that value. That other information was used

appears to be supported by higher expect rates of correct responses for both the mis-

leading and guess APCoP signals. We intend to pursue richer data models to support

an analysis of collected EMG data to better capture this aspect.

One source of conceptual error in our model was the assumption that the APCoP

signal was fully describing the postural response to platform perturbations. Although

valid at a superficial level, we noted that the APCoP signal did reflect a postural

response, regardless of the initiating signal, to include conscious movement and sub-

conscious reactions of the subject. As anecdotally observed, a subject who was immedi-

ately convinced that they were sensing platform movement in interval one would

“relax” in interval two, where normally the relaxation took place in the “decide” inter-

val of the experiment. As such, the body motion in interval 2 was “anomalous,” per-

haps at levels larger than might have been caused by an interval 1 stimulus. The

subject’s correct response to interval 1 move would be recorded as a PSEUDO-HIT,

but that classification was actually the result of a “correct detection” in interval 1.

The GUESS categorization can be viewed as somewhat of a misnomer, with a better

description being that those trials were ambiguous with regard to APCoP information.

It was likely that other information was used to provide the subject with greater accu-

racy than a pure guess. With the small size of the data sets, however, it was not clear

whether this group statistic reflected that some subjects were using additional informa-

tion while most were not. We have evaluated other choices for the guess threshold

0.05 ≤ at ≤ 0.25, and within this ranges the results were reasonably consistent in that
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there was a borderline distinction that might have been associated with just a few indi-

viduals. Choosing a smaller threshold significant reduced the sample size, while choos-

ing a larger value began to bring in more trials where the anomaly difference provided

a clear indication of the stimulus. We are now exploring additional statistical techni-

ques to attempt to better resolve the guess-like behavior.

In the future, we wish to apply this classification to subjects of a wide age range,

with and without diabetes. We expect that the refined analysis based on an ensemble

average taken across the appropriate classifications developed in this paper will support

more rapid discovery of postural control behaviours. The ensemble averaging employed

to date has focused on averaging across a single individual, resulting in a motif descrip-

tion of that category. Our next step is to explore those motifs across a range of sub-

jects to identify common characteristic on the group. For example, we want to

characterize the features of a HIT, where those features are common to the ensemble

average of all the subjects in a group. Also, our immediate focus is on how EMG data

might be used to improve the accuracy of the classifier.

Based on this work, a physiological or biomechanical threshold detection experiment

could be designed to see whether a change in the APCoP (or some other variable) cor-

responds to a presentation of a stimulus, independent of a psychological response or

choice. The classification of “detectable” is currently only a description of whether

motion is detectable in the CoP signal. As the further analysis might reveal how the

body uses other biomechanical indicators to determine a perturbation, we intend to

incorporate those features into the classification methodology. This new threshold

detection technique could help in designing threshold iteration schemes in a way that

could automatically account for GUESSes and PSEUDO HITs without requiring a psy-

chophysical response (e.g., a button press) from the subject. Such an automated thresh-

old detection mechanism could provide a new tool not only to study human balance

mechanisms, but also to investigate true detection thresholds for other sensory

modalities.
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