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SUMMARY 13

In temporal lobe epilepsy, interictal spikes (IS) – hypersynchronous bursts of network activity – 14

occur at high rates in between seizures. We sought to understand the influence of IS on working 15

memory by recording hippocampal local field potentials from epileptic mice while they performed 16

a delayed alternation task. We found that IS disrupted performance when they were spatially 17

non-restricted and occurred during running. In contrast, when IS were clustered at reward loca- 18

tions, animals performed well. A machine learning decoding approach revealed that IS at reward 19

sites were larger than IS elsewhere on the maze, and could be classified as occurring at spe- 20

cific reward locations – suggesting they carry informative content for the memory task. Finally, a 21

spiking model revealed that spatially clustered IS preserved hippocampal replay, while spatially 22

dispersed IS disrupted replay by causing over-generalization. Together, these results show that 23

IS can have opposing outcomes on memory. 24
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INTRODUCTION 27

Temporal lobe epilepsy (TLE) is the most common focal epilepsy syndrome, and is often co- 28

morbid with cognitive impairments. Deficits in episodic memory and working memory are com- 29

mon1–6. One clearly pathological feature of memory processing in TLE is that memory tasks 30

promote interictal spikes (IS)7, hyper-synchronous network events observed as large spikes in 31

local field potential (LFP) recordings. The recruitment of elevated IS rates during memory tasks 32

suggests that the network mechanisms that promote IS may be hijacking dynamics that are 33

typically engaged by memory processes8. Whether or not the underlying neural dynamics of 34

IS resemble healthy processing and are thus helpful for memory performance, or are divergent 35

enough to constitute interfering signals is an open question. 36

The exact timing of IS during a memory task has different impacts on performance9–11 12, but 37

the mechanisms of such timing selective impairments are poorly understood. It is known that 38

spatial working memory task performance is disrupted in rodent models of TLE13, however, it is 39

not known if the exact timing of IS with respect to different task phases contributes to the memory 40
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deficit. One possibility is that different phases of memory tasks rely on neural dynamics that are 41

more or less similar to IS dynamics, and therefore more or less susceptible to interference. For 42

example, as animals navigate the maze, the hippocampal network is in a low synchrony state 43

and engages in movement related theta oscillations which orchestrate the sequential activation 44

of individual neurons over second long time scales14–18. On the other hand, as animals consume 45

reward or sit quietly during delay phases of the task, the network shifts to a high synchrony 46

state and engages in brief periods of physiological network synchrony called sharp wave ripples 47

(SWR)19, which replay memory relevant ensembles of neurons at compressed time scales20. It 48

is possible that if IS recruit hippocampal neurons in a similar enough manner to how SWR do, 49

and if they are activated in the same task contexts as SWR, then they may play a similar role in 50

memory. 51

There is evidence to suggest that there are parallels between IS and SWR neuronal dynamics 52

and that, in principle, they could partially fulfill analogous functional roles. For example, both 53

recruit ensembles of CA1 pyramidal cells, are accompanied by brief fast oscillations measured 54

in cell layer LFP (pathological high frequency oscillations for IS and ripple oscillations for SWR), 55

and coordinate with the cortex via sleep spindles21–24. Furthermore, in epilepsy, when IS rates go 56

up during a memory task, SWR rates go down25, indicating that IS may actually replace SWR. 57

If IS were simply hijacking SWR during working memory, it is plausible that task processes 58

that rely on such activity would be maintained in epilepsy. Of course, this would depend on 59

whether IS recruit proper memory relevant ensembles, which is not always the case26. A further 60

complication is that SWR play diverse roles in memory tasks, such as amplifying salient cues, 61

remote replay of past animal positions and rewards, or preplay of future trajectories27–32. Thus it 62

is possible that IS can mimic some, but not all SWR dynamics. 63

During active locomotion, IS may interact with theta oscillations in a way that SWR do not. 64

During theta oscillations in healthy animals, co-active ensembles of neurons are relatively small, 65

due to rhythmic inhibition, which ensures precise encoding of environments33,34. Notably, SWR, 66

which recruit larger co-active ensembles, are very rarely observed during locomotion-related 67

theta states19 due to the elevated levels of inhibition which suppress synchrony and neuromod- 68

ulatory signals that are strong during theta35 . This suggests that hyper-synchrony during loco- 69

motive theta states is not a normal feature of healthy hippocampal circuits. Interestingly, when 70

inhibition is reduced experimentally, theta oscillations during running can grow into large ampli- 71

tude spikes that resemble bursts of interictal spikes36. Furthermore, in epilepsy, IS have been 72

reported to encroach on theta states23, however whether IS during theta states impact memory 73

is unknown. In other words, IS may create interference by promoting aberrant population level 74

synchrony during theta states. 75

Given the relationship between IS and SWR, the differing roles of SWR in memory, and the 76

observations that IS can encroach on theta states, there are several possible ways in which IS 77

could mechanistically alter spatial working memory. To study these questions, we employed in 78

vivo electrophysiology in freely moving TLE mice while they performed the delayed alternation 79

spatial working memory task. We characterized when IS occur with respect to task phase to 80

interpret impacts on behavioral performance. To gain further mechanistic understanding of our 81

observed results, we developed a behavioral model to explain interactions between IS rate and 82

task engagement. Furthermore, we employed a machine learning-based decoding approach to 83

study whether IS features might be informative of task demands. Finally, a spiking neural network 84

model was created to test the impact of IS during working memory on hippocampal replay. 85
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RESULTS 86

Epileptic mice exhibit persistent focal interictal activity 87

To test how hippocampal dynamics during spatial working memory are impacted by interictal 88

activity, saline (control) or kainic acid (KA) injected mice were implanted with drivable micro- 89

electrodes which were positioned in the hippocampus over several days (Table 1). Once elec- 90

trodes were in their final positions mice were video monitored to determine rates of seizures and 91

interictal discharges during restful periods (total of 13.0 ± 2.0 monitoring hours/mouse). As ex- 92

pected, mice injected with KA experienced frequent subclinical seizures (12 ± 11 of seizures/hour, 93

Table 2), confirming that they suffer from focal temporal lobe epilepsy (Figure 1A). In addition to 94

subclinical seizures, we observed seemingly sustained interictal spiking that was categorized 95

into two types: solitary interictal spikes (IS) and chains of spikes called Brief Interictal Rhyth- 96

mic Discharges (BIRDs). Events were classified as solitary IS or BIRDs based on inter-spike 97

intervals similar to37 (Figure 1B-D, Table 3). 98

Epileptic mice have impaired performance on a spatial working memory 99

task 100

In addition to video-LFP-monitoring, mice were recorded during daily behavior sessions com- 101

prising a spatial working memory task flanked by rest sessions. While performing the delayed 102

alternation spatial working memory task, mice had to alternate between visiting two sides of a 103

Figure-8 shaped maze (Figure 2A) to receive food (or liquid sucrose for m7) rewards with a 30 104

second delay period between trials (see methods for training details)38. Over the five sessions of 105

testing, control mice (n=6) performed significantly better than KA mice (n=7) (repeated measures 106

ANOVA, F(1,11)=7.25, p=0.021) (Figure 2B). The difference in behavior was also observed when 107

averaging performance across the five sessions of testing (Figure 2C) (control, n = 6, 76.4 ± 3.1 108

%; KA, n = 7, 59.34 ± 5.2 %, unpaired t-test, d.f.= 11, t-stat = 2.69, p = 0.021). Notably, the KA 109

group did not perform better than the chance level of 50% correct choices (one sample t-test, 110

t-stat = 0.63, d.f.=6, p = 0.55), whereas control mice did perform significantly higher than chance 111

level (one sample t-test, t-stat = 3.2, d.f.=5, p = 0.023) (Figure 2C). We also noted that de- 112

spite poor overall performance, the KA group exhibited individual sessions of good performance 113

(Figure 2D), suggesting that the mechanisms underlying poor performance may be dynamic. 114

IS occur during working memory and their spatial distribution correlates 115

with memory performance 116

To determine what mechanisms underlie impaired and variable memory performance in KA ani- 117

mals, we recorded hippocampal local field potentials during task performance. Animals had high 118

rates of IS while performing the working memory task (0.50 ± 0.07 Hz, n = 35 sessions = 7 119

animals × 5 sessions) (Figure 3). Spikes either occurred as solitary interictal spikes (IS) (0.027 120

± 0.003 Hz) or in BIRDs (0.035 ± 0.003 Hz). BIRDs were typically short in duration (4.5 ± 0.42 121

seconds) and comprised several spikes (14 ± 2 spikes). We noted that for some mice the spa- 122

tial distribution of spikes were confined to specific areas of the maze, and were even consistent 123

across sessions of memory testing (e.g., m1 and m7 3A). Other mice exhibited patterns of spik- 124

ing that extended across large portions of the maze and were more variable session to session 125

(e.g., m3 and m6). Consistent with this observation, we found that the spatial information of in- 126

terictal spikes, which is a measure of how well spiking activity predicts mouse location, was quite 127

variable across sessions (Figure 3B, left), with some sessions exceeding values of 2 bits/spike. 128
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Such high values of spatial information match those reported for individual place cells in healthy 129

hippocampus39. High spatial information of interictal spikes was weakly, but significantly asso- 130

ciated with a better performance on the working memory task (Figure 3B, right, p = 0.049; see 131

Table 4 for further statistical details). 132

To further investigate contributions to the variable nature of spatial information of interictal 133

spiking, we calculated running speeds at the times of IS and BIRDs. Solitary IS occurred during 134

periods of rest as reported by others22, while BIRDs tended to occur when the mouse was 135

running at faster speeds (Figure 3C, see Table 5 for statistics). Interestingly the first spike in a 136

BIRD had a speed-tuning distribution that overlapped with solitary IS (Table 5), indicating that 137

BIRDs may initiate from quiet restful states but can encroach onto running states if the animal 138

begins movement mid-BIRD. We reasoned that BIRDs during running would drive lower spatial 139

information, and indeed sessions with BIRDs that spanned larger distances on the maze were 140

associated with lower total information per spike (Figure 3D, GLME fixed-effect for distance term, 141

p-value = 0.02, Table 6 for more statistics). 142

The distribution of IS in the behavioral maze is augmented in specific spa- 143

tial zones of the maze 144

To see whether IS were more likely to occur at specific maze locations, we divided the maze 145

into “Delay,” “Choice,” “Reward,” and “Outer Arm” zones and calculated both the total time each 146

animal occupied that zone and the IS rate in that zone (Figure 4A-B). The occupancy distribution 147

was significantly different from the distribution of spikes in each zone (χ2 test, p-value = 2.6 × 148

10−9, dof = 1,χ2 stat: 35.44 Figure 4B), indicating that the interictal spike-generating process 149

is non-stationary. To understand the zone-specific effects on the IS rate, we modeled the non- 150

stationarity as a non-homogeneous Poisson process in which a “baseline” spike rate, ρa, which 151

is specific to each animal, is scaled by zone-specific gain factor, ηz, unique to each zone but 152

shared between all animals (Figure 4C). 153

The posterior distributions of ηz in each zone were compared to a null value of 1 indicating 154

the absence of a zone-specific modulatory effect on the IS rate. The ”Reward” zone’s gain sig- 155

nificantly deviated from 1 (Figure 4D; ηreward = [1.5, 2.3], 1 − α = 95% highest posterior density 156

(HPD) interval, N = 7 animals × 5 sessions × 4 zones) and the “Outer Arm” zones’ term also 157

deviated from 1 (ηouter arm = [1.1, 1.6] HPD interval). In other words, the IS rate was significantly 158

elevated from baseline when the animal occupied reward zones and when the animal ran down 159

outer arms to the reward zones, but the IS rate was consistent with baseline at all remaining 160

locations on the maze. These results are consistent with our findings regarding spatial infor- 161

mation, as we would expect that sessions with IS augmented at reward sites would have high 162

spatial information, whereas sessions that had IS while the animal ran down outer arms of the 163

maze would drive lower spatial information. 164

The model’s fit and inferences were inspected to assess model plausibility. We validated the 165

model’s inferences by confirming that the distribution of posterior means of ρa (0.46 ± 0.23 Hz, 166

n = 7 mice, mean ± 95% CI) agreed with the “naı̈ve” time averaged IS rate (0.50 ± 0.07 Hz, n 167

= 7 mice × 5 sessions), which was not explicitly given as data to the model. The mean values 168

predicted by the model were compared directly to the observed data, where it was found the 169

model distribution qualitatively agreed with the observed data (Figure 4E). 170
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Reward zone LFP discriminability predicts animals’ working memory per- 171

formance 172

Given the significantly elevated IS rate in reward zones (Fig. 4D), which in some animals ex- 173

hibited place cell like precision across sessions (Figure 3), we hypothesized that the IS LFP at 174

reward zones may contain latent information regarding the location of the animal on the maze. 175

Several studies have shown that features of the hippocampal LFP signal can be decoded to re- 176

veal a continuum of generating mechanisms40–44, and even into variables describing the animal’s 177

behavioral state including position45–47 and social context48. After non-linearly embedding each 178

IS LFP into a 2-dimensional space (Fig. 5A), a bagged ensemble of trees binary classifier49, 179

sometimes referred to as a ”random forest”50, was trained to discriminate between IS which oc- 180

curred at reward sites versus those that did not. The classifier’s performance as measured by 181

the receiver operating characteristic (ROC, see Supplemental Figure S1) area-under-the-curve 182

(AUC), was able to predict the animal’s mean performance on the alternation task (Fig. 5B). Fur- 183

thermore, when considering a classifier on only spikes that occurred in the reward zones, east 184

and west reward sites could also be discriminated above chance level (Fig. 5C). This suggests 185

that mice which generate IS in reward zones that are sufficiently distinct from IS in other loca- 186

tions on the maze have better spatial working memory, and that reward-IS carry spatial signals 187

that are helpful for solving the task. This is consistent with reports that SWR in healthy animals 188

recruit cells which encode locations near rewarded locations27,31. The effect of classifier AUC 189

on predicting animals’ performance was consistent when controlling for mean spatial informa- 190

tion, suggesting that both discriminability of reward-related IS and spatial information of IS are 191

important and explain different aspects of the variance (Supplemental Table S1). Interestingly, 192

IS which occurred in reward zones had significantly larger relative amplitudes than those that 193

occurred in other locations on the maze (Fig. 5D). Similarly, when considering only IS within 194

reward zones, the relative amplitudes for those which occurred during correct choices were also 195

significantly larger than those during incorrect choices (Fig. 5D). This is consistent with reports 196

that SWR in healthy animals at reward sites are larger in amplitude and longer in duration than at 197

unrewarded locations27. Thus, the reward-related changes in IS features we have observed mir- 198

ror those of reward SWR, suggesting that the decodability and amplitude differences we observe 199

in IS may be driven by similar mechanisms that also recruit larger SWR and engage ensembles 200

that encode locations near rewards. 201

Task-engagement state is related to performance and IS rates during the 202

delay phase 203

A key phase of working memory is the delay phase. In our case, this corresponds to the 30 204

second period between trials when animals must maintain representations of the past to inform 205

future decisions or ’hold on’ to a future plan. In healthy animals, it is known that SWR during delay 206

phases often replay locations of recently visited reward locations32, which is thought to support 207

future decisions to not revisit that location on the next trial. Furthermore, interrupting SWR in 208

between components comprising a multi-step task selectively impairs memory performance29, 209

suggesting that SWR are critical for memory processes which take place on similar timescales 210

as behavior. We therefore were interested in IS in the delay phase and whether or not delay 211

phase IS play the role of delay phase SWR. 212

First, we accounted for variations in engagement with the memory task which may co-vary 213

with IS rates. Task engagement is known to fluctuate in healthy animals between distinct states 214

with different error rates51. Therefore, we first estimated distinct task engagement states. Using 215

the mice’s trial-to-trial performance, we inferred three discrete task-related behavioral states 216
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corresponding to low (p(Correct) =19%), medium (53%), and high (75%) success rates using a 217

hidden Markov model scheme (HMM, Fig. 6). Naturally, the medium level state is consistent with 218

a random guess, and the high-level engaged state corresponds to performing the task correctly 219

with few errors. The low performance state is consistent with the strategy of perseveration, 220

i.e. choosing the last visited site repeatedly. Within a single day, the mice typically transitioned 221

from an initial “guessing” state to an “engaged” state, or relatively less often a “perseveration” 222

state characterized by many errors in a row (Figure 6A). Control animals’ performance also was 223

represented with an HMM (Supp. Fig. S2) of similar structure to that in Fig. 6B. Importantly, 224

the probability of remaining in a perseveration state was lower in controls than epileptic mice 225

(Supp. Fig. S3). In agreement with computational and psychophysical investigations of reaction 226

time and decision certainty52–54, mean time to exit the delay zone was inversely related to the 227

probability of correct choice as summarized in Table 8. 228

To understand the relationship between the inferred task-related behavioral state and IS, we 229

examined whether the rate of IS in the delay zone on each trial was different in each state. We 230

found that the distributions of the rate of delay zone IS in each behavioral state, estimated by 231

the Viterbi algorithm, did not share a common center location, suggesting that the rate of IS in 232

the delay zone are related to behavioral performance (Kruskal-Wallis rank sum test χ2 approxi- 233

mation, p-value<0.0001, χ2 = 19.4, dof = 2). To estimate the magnitude of state-specific effects 234

on IS rate, a firing rate model similar to the maze zone analysis (Fig. 4) was built to infer a 235

“baseline” IS rate only in the delay zone for each animal, ρa (0.51 ± 0.36 Hz, n = 7 mice, mean 236

± 95% CI of posterior means) (Figure 6C). With the interpretation of a gain of 1 being a neutral 237

effect, the model predicts that the “guess” state (ηGuess = [0.27, 0.65], 95% HPD credible inter- 238

val, N = 504 = 7 animals × 5 sessions × M trials/day, where M is different for each animal on 239

each day) was associated with a significant reduction in delay zone IS, while both perseveration 240

(ηPerseveration = [0.51, 1.26]) and engagement (ηEngaged = [0.51, 1.22]) IS rates were not modulated 241

and were thus relatively high (Figure 6). These results indicate that both engagement and per- 242

severation are associated with baseline interictal activity during the delay period, and raises the 243

interesting possibility that IS are mimicking delay phase SWR replay dynamics, but that the con- 244

tent of replay is either helpful (engagement) or harmful (perseveration). In contrast, when there 245

is no information available, reflected by suppressed IS rates, the animal resorts to guessing. 246

A simple model of interictal spikes and hippocampal place-coding reveals 247

major differences between SWR and IS 248

Replays during SWR55,56 are thought to be important for prospective planning and consolidation 249

of recent actions28,32,57,58. We sought to assess the plausibility that IS during behavior (at reward 250

and on outer arms) interfere with mechanisms of spatial memory, especially in regards to replay 251

events during inter-trial periods (i.e. during the delay phase). Therefore, we built an idealized 252

model of CA3 and CA1 place coding. We modified an existing model of place coding induced by 253

spike-timing dependent plasticity (STDP;59–61) to include IS which were simulated by delivering 254

bursts of spikes to CA3 pyramidal cells (Figure 7A-C). A single burst was delivered per trial in 255

the same relative location in the track. In the model, a mouse “explores” a linear track where 256

it can go left or right with 90% chance of picking the opposite of the last trial (Fig. 7C) and is 257

“teleported” back to the center of the maze to begin the next trial. After training with STDP, the 258

spontaneous network activity was then studied to get a general sense of high frequency oscil- 259

lation (HFO) dynamics in the epileptic network. Networks that received interictal-like pulses on 260

the maze produced larger amplitude and higher frequency HFOs compared to control networks 261

(Fig. 7D-G). Simply by including interictal-like stimuli during training, the network spontaneously 262

generated population events that recapitulated the major qualitative differences observed in the 263
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LFPs of ripples and pathological HFOs23. 264

We then studied the spiking content of spontaneously generated replay events in the model. 265

Like previous reports59,60, we observed spontaneous “replay” events of place cells in the of- 266

fline state in control and epileptic networks (Supp. Fig. S4A). We used the population vector 267

approach62 to reconstruct the maze positions represented by the network activity during each 268

replay event and in each simulated subfield (Supp. Fig. S4B). Like in previous reports using 269

similar models59,60, such replays were generally longer lasting and involved longer trajectories 270

than are observed in real data, but nonetheless give a lens for comparing between control and 271

epileptic networks. 272

Spatial distribution of IS during simulated online exploration affects the 273

quality of offline replay events 274

Our in vivo experiments showed significant variability in the distributions of IS on the maze 275

(Fig. 3A and B). We were interested in how the spatial distribution of IS during exploration 276

of the maze impacted the content of delay zone replays that replay remote locations (like re- 277

ward locations). We simulated “cued” replay by stimulating a subset of place cells with a brief 278

pulse of activity to induce a population event59. Such cued replays were performed in two 279

cases that reflected the two extreme patterns of IS distributions we observed in our real data 280

(Fig. 8A): the first regime (high spatial information) where simulated IS were delivered at the 281

same relative locations on the virtual maze (like in Figures 7 and Supp. Fig. S4) and a sec- 282

ond regime (low spatial information) where the location of each IS was varied randomly from 283

trial to trial. We considered the location of the IS in the high information case as a ’refer- 284

ence point’. Then, the relative spread of replay content beyond the cued zone was measured 285

as r = log
(

# place cell spikes outside cue
# place cell spikes inside cue

)
as a function of distance between the place fields corre- 286

sponding to cued cells and the reference point (Fig. 8A and B). In the high spatial information 287

case, generalization of the replay beyond the cued zone (r ≫ 0, i.e. beyond the case where 288

# place cell spikes outside cue = # place cell spikes inside cue) was restricted to cue distances 289

< 30 cm from the reference point. In the low spatial information case, generalization occurred at 290

all cue distances from the reference point (excluding edge effects > 70 cm). In the < 30 cm re- 291

gion, the r values of high and low spatial information converged (Fig. 8B). These results suggest 292

that when IS are scattered across the maze, the network is unable to generate precise replays 293

during the delay phase of the working memory task. For example, the animal would not be able 294

to replay previously visited reward locations (or any other locations on the maze) in isolation. 295

Such corruption of replay could drive the low performance we observed in animals that had IS 296

with low spatial information. 297

DISCUSSION 298

IS affect active encoding of spatial memory 299

Our recordings in freely behaving epileptic mice reveal that interictal spikes (IS) occurred fre- 300

quently during a hippocampal dependent spatial working memory task (Fig. 1 and 2). IS rates 301

were augmented during the active encoding phases of the task; both proximal to reward sites 302

and also as animals ran down maze arms (Fig. 3). These two IS patterns had different im- 303

pacts on working memory performance. When IS were spatially unrestricted, and thus carried 304

low spatial information, animals performed poorly. Our data suggest that BIRDs which sustain 305

themselves during locomotion (Figure 3C & D) “smear” IS across the maze and are responsible 306
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for the low spatial information. On the other hand, when IS near reward sites were distinct in 307

LFP shape from other IS on the maze (Fig. 5), which is indicative of these IS reliably engaging 308

ensembles with spatial information, animals performed well. 309

First, considering the former case where IS were spread across the maze, our observa- 310

tions raise the possibility that altered rates and phase-of-firing of inhibitory neurons during theta- 311

states, like described in63 and64, allow IS to transiently break through even during locomotion. 312

The mechanism allowing IS encroachment on theta states may be impaired inhibition in epilepsy, 313

which may share commonalities with experimental blockade of CA2 inhibition of CA3 that en- 314

ables the generation of IS-like events during theta36, referred to by the descriptive name of 315

place-seizures or “pleizures”65. Another possibility is that cholinergic drive, which is typically 316

high during running and is known to inhibit population synchrony35 might be reduced in epilepsy. 317

Our result that the spatial information of IS was correlated with memory performance (Fig. 3B), 318

suggests that the smearing of IS by BIRDs is detrimental to memory performance. The detri- 319

mental effect may be a consequence of aberrant activation of place cells during those IS that 320

occur during running, which according to23, significantly reduced individual cells’ spatial infor- 321

mation. We hypothesize that ensembles formed by spatially non-specific IS are a mechanism 322

that contribute to the observed reduction in place field specificity and stability in epileptic mice 323

reported in several studies64,66–70. 324

In the latter case we report IS being restricted to reward sites and exhibiting reward related 325

changes, which taps into an interesting line of investigation between reward and replay-based 326

memory mechanisms. We find a suite of reward-related changes in IS that mirror those which 327

have been reported for SWR. This includes that IS rates are elevated in reward zones (Fig. 4), 328

which may be an analog to reward zone related increases in SWR that have been extensively 329

explored in healthy animals27,31,32,71. We also see that the amplitude of IS are larger in rewarded 330

contexts (Fig. 5D) which could be linked to mechanisms which drive increases in number of 331

pyramidal cell recruited to SWR in rewarded contexts in healthy animals27. Finally, we find the 332

ability to discriminate IS LFP waveforms triggered in reward zones from those triggered in other 333

locations predicts memory performance (Fig. 5B-C), which to our knowledge has no analog for 334

SWR that has been reported. There is a connection between reward-related neuromodulation 335

and epilepsy in general72,73 . Dopamine and serotonin receptors are a potential target for anti- 336

convulsant drugs74–76. Dopamine is also of interest to IS specifically, since in slice preparations, 337

adding dopamine agonists has been shown to increase the rate of epileptiform bursting77 and its 338

spread across cortical tissue76,78. Future work should focus on dissecting whether activity in the 339

dopamine system can explain the reward-related changes in IS rate and waveform changes we 340

have observed, and whether the spiking content underlying IS is also modulated by reward in a 341

way that explains performance. 342

IS both aid and interfere with memory-based planning during inter-trial de- 343

lay phases 344

Our modeling results suggest that errors made in different behavioral states can be explained 345

by the content replayed in the hippocampus during the delay period. While we do not directly 346

observe the spiking content replayed in each IS in vivo, the decoding analysis in Figure 5 sug- 347

gests that working memory may depend on generating delay and choice zone IS which have 348

features that are distinct from those of reward zone IS. Furthermore, the cueing simulations in 349

Figures 8 suggest a biologically plausible mechanism for error generation. In the case of Per- 350

severation, spread of replay content to un-cued areas during IS in the delay zone could lead 351

to the mouse repeatedly visiting the last visited reward area due to a failure to form a cognitive 352

representation of state transitions needed to complete the task efficiently79,80. However, if the 353
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replay during an IS remains contained to the cued area (perhaps in the Engaged state, or if the 354

animal has ”high information” IS spatial distribution as like in Fig. 8) this could enable the ability 355

to make optimal plans58,81 or to maintain an accurate cognitive map for alternation behavior32, 356

or a mixture thereof82,83. In other words, the IS-induced replay could serve a role analogous to 357

SWR-mediated replay under certain conditions but can also generate completely pathological 358

activity depending on the patter of IS elsewhere on the maze. 359

IS gain estimation framework may simplify comparisons across epilepsy 360

models 361

To get a handle on behavior/location- and state-dependent changes in IS rate, we used hierar- 362

chical Bayesian models which factorized firing rate into animal- and zone- (Fig. 4) and state- 363

dependent terms (Fig. 7). This factorization in the model’s structure relies on two key assump- 364

tions to handle variability in the IS rate: (1) that there is indeed some enduring ”baseline” firing 365

rate unique to each animal and (2) that the magnitude of modulations applied to the baseline 366

are shared between animals. Furthermore, we relied on weakly informative priors to regularize 367

estimation of these parameters to values that were physiologically plausible based on video-LFP 368

monitoring data and on the range of values reported in the literature for animal models23,37 and 369

those found in human epilepsy monitoring studies84–86. This model structure allows us to sepa- 370

rate inter-animal variability in IS rate from potentially meaningful fluctuations around this mean 371

value that is ”universal.” Therefore, the variables of study here are not the IS rates or burdens 372

themselves which fluctuate between distinct regimes37, but instead the latent unit-less modula- 373

tion factors η in equations 8 and 17. This hierarchical paradigm may allow for more meaningful 374

translational comparisons (i.e. between animal models of epilepsy or between species) of IS- 375

induced memory deficits since variance introduced by subject- or systematic disease/model- 376

differences can be accounted for as a part of the grouping structure of the model87. The unit- 377

less paradigm could also render meaningful estimates of η even when IS rates are highly variable 378

between subjects or when IS rate is underestimated because monitoring time is limited due to 379

clinical factors85,88,89. 380

Limitations and future directions 381

Our study makes several predictions about the impact of IS on working memory. First, although 382

we did not record single units, our data suggest several possibilities about the relationship be- 383

tween IS and single cell dynamics. Several studies in rodents with TLE have revealed disruption 384

of single-cell properties including reduction in place field specificity and stability23,64,66–70, con- 385

tamination of phase-of-firing relationships to underlying theta and gamma oscillations63,64,70,90,91, 386

and aberrant post-ictal remapping92. An interesting possibility is that IS, especially those that 387

encroach on theta states93–95, contribute to the development of such single cell pathology. In 388

addition, with follow up single unit studies, our predictions that hippocampal replay becomes 389

generalized when IS are unrestricted during theta states can be directly tested. It will also be 390

important to explore whether IS show the same impacts on working memory in female mice, as 391

this study was limited to male mice. Finally, a key finding of this study is that IS are not always 392

negative for memory processing - and in fact, at times seem to functionally replace SWR. Such 393

complexity indicates that future studies aimed at targeting IS to ameliorate memory deficits will 394

need to be ’smart’. For example, studies employing optogentic blockade of all IS, versus se- 395

lective blockage of those deemed more pathological will be essential to determine the proper 396

course of therapeutic intervention. 397
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MAIN FIGURE TITLES AND LEGENDS 411

Figure 1 412

Figure 1: KA mice exhibit spontaneous seizures and interictal activity. (A) Two examples of
seizures recorded from the hippocampus bilaterally where the right hemisphere was injected
with KA. Spikes were detected continuously both during subclinical seizures and in the interictal
period. (B) For each KA animal, the inter-spike intervals (ISI) between each interictal spike (IS)
was used to classify IS as solitary IS or chains of IS called brief rhythmic interictal discharges
(BIRDs). IS with ISI greater than 2 seconds were considered solitary, and less than 2 seconds
as part of BIRDs. (C) Examples of solitary IS (light blue dots) and BIRDs (dark blue dots), with
BIRD durations shown as bars. (D) A Poincaré plot shows a sampling of ISI pairs which can
be divided into ”First”, ”Within” and ”Last” spikes of BIRDs or solitary spikes using the same 2
second threshold as in (B).
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Figure 2 413

Figure 2: KA mice have impaired working memory performance. (A) The Figure-8 maze used for
delayed spatial alternation with salient locations highlighted. (B) Control animals’ performance in
the delayed alternation task (dark blue line) was significantly higher than that of KA animals (light
blue). (C) Furthermore, the mean performance across all 5 sessions was higher than chance
(50%) only for control (CTRL) animals. (D) Day-to-day performance of KA animals was variable
but interspersed with ”good” sessions (>70% performance dashed line).
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Figure 3 414

Figure 3: IS and BIRDs occur during execution of a working memory task. (A) The locations of
BIRDs (dark blue dots) and solitary IS (light blue dots) on the maze for all animals on three of
the five sessions. (B) The spatial information per interictal spike was computed for each session
(N=35 = 7 mice × 5 sessions, left). Higher values of spatial information corresponded to a
higher alternation performance predicted by a GLM (right) (p = 0.049, see Table 4 for details).
(C) The running speed during solitary spikes (light blue), BIRDs (dark blue), and the first spike
of each BIRD (dashed) was compared to reveal that BIRDs occur at faster running speeds than
solitary IS or the first spike in each BIRD. Table 5 contains statistics for the comparisons shown
in C, *** p<0.001, n.s. p>0.05. (D) Using a GLME, it was found that working memory sessions
that had BIRDs associated with long running trajectories significantly explained lower values of
spatial information (fixed-effect for distance term, p-value = 0.02, see Table 6). The marginal
(unconditional) fixed effect mean and 95% CI are shown in the blue shaded region.
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Figure 4 415

Figure 4: IS and BIRD rates are augmented in certain spatial zones of the maze. (A) For
choice, delay, outer arm, and reward zones, (B) the proportion time spent and proportion of IS
in each zone differed significantly from each other (χ2 test, p-value = 2.6× 10−9, dof = 1, χ2 stat:
35.44 ). (C) To examine how each zone affected the IS rate of each animal, a Bayesian model
was estimated (see Methods for details), where a zone-specific gain ηz = 1 was interpreted as
a ”neutral” effect. (D) The ”outer arms” and ”reward” zones had 95% highest posterior density
(HPD) intervals of ηouter arm = [1.1, 1.6] and ηreward = [1.5, 2.3], respectively. (E) As a posterior
predictive check, the distributions of IS spike counts actually observed were compared to those
predicted by the Bayesian model. The bulk of the distributions (i.e. for means <400 spikes)
agree whereas observed over-dispersion in the tails was not fully captured.
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Figure 5 416

Figure 5: The ability to decode reward zone occupancy from the IS LFP predicts animals’ mem-
ory performance. (A) The normalized LFP from each IS was non-linearly embedded into a
2-dimensional space using the t-SNE algorithm96. A bagged ensemble of trees binary clas-
sifier49,50 was trained on the embedded IS LFP to decode whether the IS happened within a
reward zone (blue) or not (gray dots). The t-SNE embedding of two representative animals’
LFP are shown. (B) The classification was evaluated using the receiver operating characteristic
(ROC) area-under-the-curve (AUC). The AUC value was associated with the animal’s mean per-
formance across the five sessions of behavior (p = 0.0206, see Table 7 for further details). Solid
line is the mean and light lines are 95% CI of the regression model, error bars show 95% CI
of individual data points. (C) The analysis was repeated for IS generated in reward zones only
to see if animals maintained a representation of east v.s. west reward zones. The population
mean of the AUC values was significantly greater than 0.5 chance level (tStat = 2.24, df = 6, sd
= 0.12, p = 0.033, one-sided t-test; * p < 0.05). (D) The root-mean-squared amplitude, normal-
ized by the standard deviation per given animal, was computed for each IS waveform. The left
panel shows IS at reward zones was larger than all other zones (tStat = -40, df = 16299, sd =
1.3, two-sided t-test; **** p < 0.001). The right shows for spikes in reward zones only, IS during
which the animal was rewarded were slightly larger (tStat = -8.2, df = 4721, sd = 1.2, p =< 0.001,
two-sided t-test).
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Figure 6 417

Figure 6: Mice switch between distinct behavioral states with differing IS rates from trial-to-
trial. (A) The performance of two example animals are shown. The shaded areas represent
the estimated marginal probability of being in one of three states (B) determined using a hidden
Markov model, the trial-to-trial performance was partitioned into three states. The dots show
the outcome (correct v.s. incorrect) for each trial. (B) The probability of a correct alternation
followed a Bernoulli random variable (rounded here for simplicity of interpretation). (C) In the
state labeled as ”Guess,” the rate of IS in the delay zones was down-modulated by a gain term
ηGuess = [0.27, 0.65], indicating a 95% HPD excluding unity. The other gain terms were consistent
with unity, i.e. a neutral effect on the baseline rate.
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Figure 7 418

Figure 7: Providing IS-like input to a model of hippocampal place coding induces IS with spon-
taneous high-frequency oscillations (HFOs). (A-C) A schematic of the ”exploration” phase of the
spiking model. The virtual track was divided into two halves and interictal spikes were delivered
at two locations shown schematically by the lightning bolts. (B) The STDP weight updating rules
for pyramidal cell synapses during exploration are shown schematically. Representative simu-
lated LFP traces generated from a (D) control and (E) epileptic network are shown with scale
bars (250 ms and 1 or 2 mV, respectively). (F) 10 replica networks were created and the re-
sulting spectrograms of their spontaneous replay-like bursts are shown with the group means in
dark lines. (G) The mean replay oscillations from one replica network are shown along with their
continuous wavelet transforms.
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Figure 8 419

Figure 8: Low spatial information IS distributions lead to globally-impaired cued- replay. (A)
A schematic demonstrating a simulated network with IS carrying high spatial information (left,
blue) and the same for IS carrying low spatial information (right, green). The reference point is
shown as a dashed box. In the low spatial information case, one IS (lightning bolt) was delivered
at a random location on the maze which was changed for each trial. The mazes below show
representative sessions and their IS/BIRDs (colored as in Fig. 3) with IS distributions which
resemble these two statistical regimes (duplicated from Fig. 3 m1 d1, and m6 d1 left and right,
respectively). The delay zone (boxed region) is not considered. (B) A cue zone was varied along
one limb of the maze with respect to the rference point. The ratio of elicited place cell spikes
outside and in the cue-zone was computed. The error bars show the standard error of the mean
(SEM). The drop after 60 cm in the low spatial information case is likely due to edge effects from
the ”choice point” where simulated trials were initiated. The insets show schematic examples
of cue-elicited spikes in each to extreme cueing situations. A one-way ANOVA was conducted
between each pair of 10 simulations at each cue zone, ** p < 0.01, *** p < 0.001, p-values
adjusted using Benjamini-Hochberg false discovery rate.
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MAIN TABLES, INCLUDING TITLES AND LEGENDS 420

Table 1 421

Animal ID Type Threshold
(µV)

Low
pass-
band
(Hz)

High
pass-
band
(Hz)

F1/2 Score Precision
(%)

Recall
(%)

m1 Tetrode 900 2 400 0.45 50% 32%
m2 Tetrode 900 16 400 0.92 97% 76%
m3 Tetrode 1900 1 400 0.86 90% 71%
m4 Tetrode 1300 1 400 0.58 69% 35%
m5 Tetrode 1100 1 400 0.99 99% 99%
m6 Tetrode 700 1 400 0.78 83% 62%
m7 Probe 1700 1 400 0.70 75% 56%

Table 1: Interictal and ictal spike detection parameters for each animal. Settings were optimized
according to the procedure detailed in the Methods.

Table 2 422

Animal ID Number of
Monitoring
Sessions

Mean
Seizure

Rate (hr-1)

Max. Rate (hr-1) Min. Rate (hr-1)

m1 10 6.5 18.0 0.0
m2 12 5.0 15.0 0.0
m3 12 10.9 21.7 3.7
m4 14 7.2 29.1 0.0
m5 15 7.4 26.8 1.0
m6 15 11.5 24.7 1.0
m7* 14 36.9 50.1 6.0

Table 2: Rates of spontaneous seizures during monitoring. Mean, maximum, and minimum
seizure rates were pooled across all monitoring sessions. Seizures were defined as trains of
spikes with inter-spike intervals less than 2 s with a train duration of at least 10 s. *Animal m7
was monitored during the light-cycle, whereas all others were monitored during the dark-cycle.
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Table 3 423

Animal ID Number
of Mon-
itoring
Ses-
sions

Mean
Interic-

tal
Spike
Rate
(Hz)

Std.
Dev. In-
terictal
Spike
Rate
(Hz)

Mean
Solitary
Spike
Rate
(Hz)

Std.
Dev.

Solitary
Spike
Rate
(Hz)

Mean
BIRD
Rate
(Hz)

Std.
Dev.
BIRD
Rate
(Hz)

m1 10 0.792 0.589 0.034 0.013 0.041 0.019
m2 12 0.227 0.139 0.020 0.006 0.030 0.012
m3 12 0.468 0.136 0.049 0.005 0.072 0.008
m4 14 0.356 0.203 0.039 0.006 0.064 0.031
m5 15 0.214 0.139 0.018 0.006 0.030 0.013
m6 15 0.266 0.067 0.033 0.009 0.043 0.008
m7* 14 0.708 0.136 0.038 0.007 0.069 0.008

Table 3: Rates of interictal events during monitoring sessions. *Animal m7 was monitored during
the light-cycle, whereas all others were monitored during the dark-cycle.

Table 4 424

Parameter Estimate SE tStat p-value
Intercept 0.5 0.05 10.0 < 1× 10−5

SI 0.08 0.04 2.0 0.049

Table 4: GLM coefficients comparing spatial information (SI) to animals’ per session perfor-
mance, adjusted R2 = 0.085, d.f. = 33, dispersion = 0.035.

Table 5 425

Groups p-value z-value Rank sum
IS vs BIRDs 1× 10−16 −8.3 6.6× 106

BIRD vs first spike of BIRD 9× 10−15 7.8 1.3× 108

IS vs first spike of BIRD 0.07 −1.8 1.0× 106

Table 5: Running speeds of IS and BIRDs. Results of Wilcoxon rank sum test for the running
speed distributions in Figure 3.
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Table 6 426

Parameter Estimate SE tStat d.f. p-value
Intercept 1.4 0.4 3.5 33 0.001
⟨dk⟩ 0.01 0.004 2.4 33 0.02

(1|animal) 0.99

Table 6: Coefficient values for the gamma GLME in Eq. 6, estimated dispersion was 0.08.
Adjusted R2 = 0.82 SE = standard error, d.f. = degrees of freedom.
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Table 7 427

Parameter Estimate SE tStat d.f. p-value
Intercept -22.2 24.6 -0.9 5 0.41
⟨AUC⟩ 126.1 37.8 3.3 5 0.02

Table 7: Coefficient values for the regression model in Figure 5B. Adjusted R2 = 0.628 SE =
standard error, d.f. = degrees of freedom. Comparison against constant model: F statistic =
11.1, p = 0.0206

Table 8 428

State (% corr.) Mean delay exit time (s, 95% Conf. interval)
Perseveration (19%) [11.9, 12.2]

Guess (53%) [7.8, 7.9]
Engaged (75%) [7.55, 7.6]

Table 8: The mean delay exit time (time to exit delay zone after 30 s interval elapsed) was
estimated from 1000 samples drawn using the hierarchical bootstrap method97 for each discrete
state estimated by the Viterbi algorithm.
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Table 9 429

Parameter (units) Value (pyr., int.)
Cm (pF) 180, 118
gL (nS) 4.3, 7.5
EL (mV) -75, -74
θ (mV) -24, -57.7

∆T (mV) 4.23, 4.6
Vpeak (mV) (when a “spike” is detected) -3.25, -34.78
Vreset (mV) (reset voltage after spike) -29.7, -65

tref. (ms) (refractory period) 5.9,1
τw (ms) 83.4, 178.58
a (nS) -0.27, 3.05
b (pA) 206.84, 0.91

Table 9: Spiking neuron parameters for model equations 18.

Table 10 430

Pre, Post Weight
(nS)

Delay
(ms)

Rise time
(ms)

Decay
time (ms)

Prob.
connec-

tion
CA3 pyr., CA3 pyr. STDP 1 1.0 9.0 0.1
CA3 pyr., CA1 pyr. STDP 1 1.0 9.0 0.1
CA3 pyr., CA3 int. 0.85 1 1.0 9.0 0.1
CA1 pyr., CA1 int. 0.85 1 1.0 9.0 0.1
CA3 int., CA3 pyr. 0.65 1 0.3 3.0 0.25
CA1 int., CA1 pyr. 0.65 1 0.3 3.0 0.25
CA3 int., CA3 int. 5 1 0.3 3.0 0.25
CA1 int., CA1 int. 5 1 0.3 3.0 0.25

DG, CA3 pyr. 20 1 0.65 5.4 0.25

Table 10: Synaptic parameters during “offline” state modeled after59.
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37. Heining, K., Kilias, A., Janz, P., Häussler, U., Kumar, A., Haas, C. A., and Egert, U. (2019). 536

Bursts with high and low load of epileptiform spikes show context-dependent correlations 537

in epileptic mice. eneuro 6. 538

38. Hoxha, M., and Sabariego, M. (2020). Delayed alternation task for the study of spatial 539

working and long term memory in rats. Bio Protoc. 10, e3549. 540

39. Skaggs, W., Mcnaughton, B., and Gothard, K. (1992). An information-theoretic approach 541

to deciphering the hippocampal code. Advances in neural information processing systems 542

5. 543

40. Navas-Olive, A., Valero, M., Jurado-Parras, T., de Salas-Quiroga, A., Averkin, R. G., Gam- 544

bino, G., Cid, E., and de la Prida, L. M. (2020). Multimodal determinants of phase-locked 545

dynamics across deep-superficial hippocampal sublayers during theta oscillations. Nature 546

communications 11, 2217. 547

41. Navas-Olive, A., Amaducci, R., Jurado-Parras, M.-T., Sebastian, E. R., and de la Prida, 548

L. M. (2022). Deep learning-based feature extraction for prediction and interpretation of 549

sharp-wave ripples in the rodent hippocampus. eLife 11. http://dx.doi.org/10.7554/ 550

{eLife}.77772. doi:10.7554/{eLife}.77772. 551

26

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.13.623481doi: bioRxiv preprint 

http://dx.doi.org/10.7554/{eLife}.77772
http://dx.doi.org/10.7554/{eLife}.77772
http://dx.doi.org/10.7554/{eLife}.77772
http://dx.doi.org/10.7554/{eLife}.77772
https://doi.org/10.1101/2024.11.13.623481
http://creativecommons.org/licenses/by-nc-nd/4.0/


42. Navas-Olive, A., Rubio, A., Abbaspoor, S., Hoffman, K. L., and de la Prida, L. M. (2023). 552

A machine learning toolbox for the analysis of sharp-wave ripples reveal common features 553

across species. BioRxiv. http://biorxiv.org/lookup/doi/10.1101/2023.07.02.547382. 554

doi:10.1101/2023.07.02.547382. 555

43. Sebastian, E. R., Quintanilla, J. P., Sánchez-Aguilera, A., Esparza, J., Cid, E., and de la 556

Prida, L. M. (2023). Topological analysis of sharp-wave ripple waveforms reveals input 557

mechanisms behind feature variations. Nature Neuroscience 26, 2171–2181. http://dx. 558

doi.org/10.1038/s41593-023-01471-9. doi:10.1038/s41593-023-01471-9. 559

44. Sebastian, E. R., Esparza, J., and M de la Prida, L. (2024). Quantifying the distribution 560

of feature values over data represented in arbitrary dimensional spaces. PLoS Com- 561

putational Biology 20, e1011768. http://dx.doi.org/10.1371/journal.pcbi.1011768. 562

doi:10.1371/journal.pcbi.1011768. 563
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Lead contact 754

Requests for further information and resources should be directed to and will be fulfilled by the 755

lead contacts, Justin D. Yi (justidy1@uci.edu) and Laura A. Ewell (la.ewell@gmail.com). 756

Data and code availability 757

All code and data needed to reproduce the findings will be made available upon publication of 758

this manuscript. 759

Experimental model and study participant details 760

Subjects 761

All experimental procedures were performed as approved by the Institutional Animal Care and 762

Use Committee at the University of California, Irvine and according to National Institutes of 763

Health and institutional guidelines or following European (2010/63/EU) and federal law (Tier- 764

SchG, TierSchVersV) on animal care and use and approved by the county of North Rhine West- 765

phalia (81-02.04.2018.A006/2 - mittel). All the experiments were performed using male C57BL/6 766

mice (Charles River,). All mice were single housed under a 12 h light/dark cycle, in a tempera- 767

ture (22 ± 2°C) and humidity (55 ± 10%). Food and water were available ad libitum except for 768

during the working memory task period when mice were either food restricted to maintain 85% 769

of their initial weight or given a 2 % citric acid water replacement when a sugar water reward was 770

given. All efforts were made to minimize pain and reduce the number of animals used. 771

Method details 772

Kainate Induction of Chronic Temporal Lobe Epilepsy 773

Kainate injections were performed in 3- month-old C57BL/6 male mice. In one laboratory, mice 774

were anesthetized with an intraperitoneal injection (0.1ml/ 10g body weight) of Ketamine (0.1 ml 775

of 1g/ml; Bela-Pharm GmbH & Co. KG), Dormitor (0.1 ml of 1mg/ml Meditomidinhydrochloride; 776

Orion Pharma) and Sodium chloride (0.8 ml of 0.9%; Fresenius Kabi Deutschland). Analgesia 777

(5 mg/kg of Gabrilen, Ketoprofen) was given subcutaneously 30 mins before the surgery, and 778

Xylocaine (AstraZeneca, Germany) was used for local anesthesia. In the other laboratory, anes- 779

thesia was induced with 3-4% isoflurane and maintained at 1-2% isoflurane. Lidocaine (2 mg/kg 780

Patterson Veterinary Supply, USA) was used for local anesthesia. Baytril (0.5 mg, bacon flavored 781

tablet, Bio-Serv) was used for post-operative antibiotics 5 days post-op. 782

Stereotactic injections were performed using a stereotactic frame (Kopf) and a microprocessor- 783

controlled minipump (World Precision Instruments, Sarasota, Florida). 70nL of 20mM Kainate 784

Acid (Tocris Bioscience) or saline was injected unilaterally into cortex above right hippocam- 785

pus (M/L =1.5mm; A/P =1.9mm; D/V=1.1 mm from skull surface at bregma) using a 10 mL 786

Nanofil syringe (WPI). For animals anesthetized with Ketamine, after suturing, the antagonist An- 787

tisedan (5mg/ml Atipamezolhydrochloride (Orion Pharma) was injected interperitoneally (0.1ml/ 788

10g body weight). The incision was covered with an Antibiotic-Cream, Refobacin (1mg /g Gen- 789

tamicin) or Neosporin First Aid antibiotic cream. Immediately after surgery we gave 1 ml of a 790

5% Glucosteril solution subcutaneously. Four hours after surgery, status epilepticus was ter- 791

minated using diazepam (10mg /2ml, Ratiopharm) injected subcutaneously (0.1 ml/ 20 g body 792

weight), or lorazepam (7.5 mg/kg, MWI Veterinary supply) injected subcutaneously. Ketoprofen 793

or carprofen (5 mg/kg, Rimadyl, MWI Veterinary supply) was also injected subcutaneously on 794
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the three following days to mitigate pain. Animals were left to rest for at least 1 week before 795

starting handling. 796

Kainic Acid (Tocris Bioscience, ItemNo: 0222:) was prepared by combining 50mg of KA 797

powder with a 40mM Sodium hydroxylate solution to get a stock solution of 40mM Kainate. 798

Aliquots were stored at -20°C and mixed 1:1 with 0.9% NaCl solution to obtain 20 mM KA. 799

Tetrode Recording 800

Double bundle microdrives (axona) comprised two bundles of 4 tetrodes separated by 3 mm 801

to target bilateral hippocampus. The tetrodes were made of tungsten wire (Tungsten 99.95%, 802

California Fine Wire Company) and plated with a gold solution to have impedance ∼ 200 kOhms. 803

To implant the microdrives, mice were injected with the analgesic buprenorphine (0.05 mg/kg 804

body weight) and ketoprofen (5mg/kg body weight) to reduce pain. 20 minutes later, mice were 805

anesthetized initially with 3-4% isoflurane using an oxygen/air mixture (25/75%), placed on a 806

regulated heating plate (TCAT-2LV, Physitemp) to retain the body temperature at 37◦C, and head- 807

fixed in a stereotactic frame. Anesthesia was performed via a mask with isoflurane 1-2% at a 808

gas flow of about 0.5 ml/minute. After removing the skin and other tissues from the skull, a 809

layer of Optibond (OptibondTM 3FL, KERR) was applied. Reference and ground screws were 810

placed anterior to the bregma. Two craniotomies were drilled for tetrode implantation bilaterally 811

(−2 mm AP, ±1.5 mm ML) with a dental drill. After removing the dura, tetrodes were placed 812

in 70 % ethanol for two minutes before being implanted in the cortex above the hippocampus 813

(∼0.6 mm DV). After placing the tetrodes, they were covered with heated gelatinous paraffin 814

to protect them from the dental cement. Paraffin was made with 40 g of solid wax and 50 815

mL oil that were mixed at 100◦C. The microdrive was fixed in place using dental cement (Paladur 816

powder and liquid, Kulzer). Mice were injected with glucose monohydrate (Glucosteril, Fresenius 817

Kabi Deutschland; injection volume 0.25 ml, s.c.) and were kept single-housed on a heat-pad. 818

They were carefully monitored twice daily and injected with the analgesic ketoprofen (5mg/kg) 819

to reduce pain on the following four days. One week after implantation, LFP recordings were 820

acquired using a Neuralynx system (Digital Lynx 4SX, Sample Rates 32 kHz, filtering 1-8000 821

Hz) and Cheetah 6.4.1. 822

Over several weeks, tetrodes were turned to the following configuration. On each side, one 823

tetrode was positioned in the cortex for reference, complemented by three tetrodes in left and 824

right hippocampus spanning CA1 to the dentate gyrus. 825

Linear probe recording 826

4 weeks after Kainate injection, a high-density linear silicon probe (Neuronexus, H64LP A1x64- 827

Edge layout, 64 channels, 20 µm spacing) was implanted in the cortex above the right hip- 828

pocampus (AP -1.9 mm, ML +1.6 mm, DV 0.8 mm). Anesthesia and post-operative care was 829

done as for KA injections described above with the exception including dexamethasone (MWI 830

Veterinary Supply, 2-4 mg/kg, i.p.) during implantation and buprenorphine (MWI Veterinary Sup- 831

ply, 0.05 mg/kg, s.c.) and carprofen (5 mg/kg, Rimadyl, MWI Veterinary supply) was used for 832

peri-operative analgesia. After the mouse recovered for 1 week, the probe was lowered man- 833

ually over 5 days using a microdrive (3D Neuro – R2Drive,98) to a depth of approximately 2.4 834

mm. During all recording sessions, the probe was connected to an OpenEphys (OE) Acquisition 835

Board via a 64-channel Intan Omnetics headstage. The signal was recorded using a custom 836

Bonsai workflow, where the OE board output was recorded using an Intan Rhd2000 Evaluation 837

Board Node sampled at 30 kHz99. 838
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Spatial Alternation Task 839

Memory task training started two weeks after KA induction. The maze apparatus is a figure-8 840

shape (dimension 80 x 90 cm). Mice were trained to perform spatial alternation to receive sugar 841

pellet rewards (200 mg, Test Diet). Mice were food restricted to 85 % of their baseline weight. 842

Training consisted of three phases: (1) Habituation (2) Forced Alteration (3) Free Alternation. 843

During habituation the mouse freely explored the maze that was covered with 9 sugar pallets 844

(3 per arm). The Habituation phase was continued daily until the mouse ate all pellets in under 845

5 minutes. During the Forced Alternation phase mice were guided to alternate between right 846

and left side of the maze using barriers placed on the maze by the experimenter. During the 847

Free Alternation phase, the mouse was allowed to freely choose between visiting the two sides 848

of the maze and only visits the opposite arm from the previous trial were rewarded with a sugar 849

pellet and considered ’correct’. Mice reached training criteria when they performed> 80% correct 850

choices on 2/3 consecutive sessions of the free alteration phase. During the 3 phases of training, 851

there was never a delay between trials. After reaching criteria, food restriction was terminated. 852

The mice ate freely and rested for 5-7 days before microdrive implantation was performed. After 853

surgery, mice were retrained to run with cables and again reached criteria before being passed 854

to the memory testing phase. Testing comprised 5 days where mice ran 15-30 trials with delays 855

of 30 seconds between trails. Before and after behavioral sessions, mice were placed in a 856

monitoring chamber (glass bowl) where they were video-LFP monitored for at least three hours 857

per day. 858

One mouse (implanted with a silicon probe) was implanted prior to any training and was run 859

in an automated version of the Figure-8 maze (48 x 48 cm). One day prior to habituation, the 860

mouse was placed on a 2 % citric acid water regiment100. Video tracking was controlled by 861

a Bonsai workflow and maze doors and reward ports (Sanworks, Mouse Port Assembly) were 862

operated by an Arduino micro-controller which interfaced with Bonsai. When the mouse broke 863

an IR beam to drink, approximately 10 µL of 5% sucrose water was dispensed as a reward. The 864

training schedule was similar to that for the mice run on the non-automated maze, but involved 865

habituation to the maze and automatic doors rather than eating food pellets. 866

On all behavior days, the mouse rested in a home cage immediately before and after the 867

maze session for ∼15 minutes, during which the LFP was recorded. After the completion of all 868

behavioral days, the mouse was video monitored in a home cage once for 14 hours overnight 869

(6:30 pm to 7:30 am) to estimate seizure burden. 870

Quantification and statistical analysis 871

Interictal spike detector 872

All signal processing was done in MATLAB (R2024a and R2024b, The Mathworks). Single 873

channel LFP signals were selected based on their location being in the hippocampus (confirmed 874

by histology) and on the amplitude of interictal spikes. The LFP was down-sampled to 1000 Hz. 875

The sign of the signal’s skew was estimated and used to ensure interictal spikes were oriented 876

positively regardless of the original polarity of the signal. Then, the signals were band-pass 877

filtered (see Table 1), and peaks with a minimum prominence above a tuned threshold (Table 1) 878

were counted as the location of interictal spikes. 879

Detector tuning 880

For each animal, random 3-minute segments were selected from representative 3 behavioral 881

and 1 sleep sessions for a total of 12 minutes per animal. Windows around interictal and or ictal 882
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spikes were labeled manually using the MATLAB SignalLabeler GUI and used a “ground truth” 883

for tuning the detector. The detector was run on this ground truth dataset and the threshold, 884

low- and high-pass bands were varied to maximize the F1/2 score for each animal (Table 1). True 885

positives (TP) were counted if the detector labeled exactly one spike within the labeled window. 886

False positives (FPs) were either (1) any additional spikes within a labeled window or (2) any 887

spike outside a window. False negatives (FNs) were windows containing no detected spikes. 888

True negatives were thus not evaluated. These values were used to calculate the Precision, 889

Recall, and F1/2 score using the following equations: 890

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Fβ = (1 + β2)
Precision× Recall

(β2 × Precision) + Recall
(3)

The F1/2 score was chosen to favor Precision roughly twice as much than Recall (β = 1/2; 891

i.e. only selecting events that are very high above the noise floor) to avoid including non- 892

interictal/ictal spike noise contaminating the data. 893

Binning maze zones 894

For a given session, the trajectory of the animal was plotted and segmented into zones. Tra- 895

jectories across sessions were aligned and binned into 4x4 cm bins. Each trajectory was fitted 896

by a rectangle and a dissecting line after calculating the coordinates of the four corners and 897

the center of the maze. Coordinates were used to break the maze into zones with user-defined 898

size including delay (40 cm of central arm), stem and choice (15x15 cm), outer arm, and reward 899

zones (15x25 cm). To perform trial-wise analyses, the session was parsed into individual trials 900

based on the sequence of entering the zones. For the automated maze, spurious ”positions” that 901

were outside the maze due to tracking errors were removed manually by inspection post hoc. 902

Spatial information of interictal activity 903

To get a sense of the “spread” of spikes on the maze, we treated the IS as if they were generated 904

from a single “place cell” and applied spatial information analysis to its activity39. First, the maze 905

was binned into a 15x15 grid, and the occupancy and number of spikes was calculated to get 906

rates, λi, and occupancy probabilities, P (xi). These were used to in the information rate (bits/s) 907

formula provided by39, 908

I =
∑
i

λiP (xi) log2
λi∑

i λiP (xi)
(4)

where the original integral has been replaced by a sum over occupied spatial bins, each indexed 909

by i. Finally, to get information per spike (bits/spike), the quantity, Ispike = I/
∑

i λiP (xi), was 910

computed. This quantity was computed for each session. 911

To study how locomotion impacts Ispike , for each BIRD, i, we computed the distance traveled 912

as 913

di =
∑
j

||x⃗ij − x⃗i(j−1)||2, (5)

which is the sum of distances along the path defined by successive spikes indexed by j (com- 914

pare to simple displacement from the position at the start and end of the BIRD). The operator 915
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|| · ||2 is the Euclidean norm. A generalized linear model with mixed effects (GLME) was then fit, 916

with specification 917

Ikspike ∼ 1 + ⟨dk⟩+ (1|animal), (6)

where the index k is a per-session index, and ⟨d⟩k is the mean BIRD distance traveled within that 918

session. The model was fitted in MATLAB using the fitglme() function and Gamma distribution 919

with reciprocal link. Gamma regression was selected since Ikspike ∈ [0,∞) and diverged from a 920

normal distribution when inspected on a quantile-quantile plot. For each session, the alternation 921

task performance was also fit to compare the spatial information to performance as 922

Performance ∼ 1 + Ikspike. (7)

The MATLAB fitglm() function was used to fit the regression and dispersion was estimated 923

from the data. 924

Zone-specific IS Rate analysis 925

Mouse location was binned into zones of the maze: “Delay,” “Choice,” “Reward,” and “Outer Arm” 926

regions of interest. For each zone, the observed spike counts were calculated by calculating the 927

number of IS in a given zone. These observed counts were compared to Expected counts which 928

were calculated by multiplying the % of time in each zone by the total spike count. Observed and 929

expected spike counts were compared with a χ2 test. 930

To estimate the zone-specific influence on the observed IS number of spikes for a given 931

animal in each zone, Sz,a, we employed a Bayesian approach to infer zone-specific “gains,” ηz, 932

which were applied to an animal-specific “baseline” IS rate, ρa as: 933

Sa,z ∼ Poisson(Tz,aρaηz), (8)

where Tz,a is the number of seconds in the zone z spent by animal a. (Note the correspondence 934

of this parametrization to that of a standard generalized linear model (GLM) with a Poisson dis- 935

tribution and log link function via the identity, e
∑

i βixi = Πie
βixi , where βi and xi are generic 936

regression coefficients and predictors.) The parameters to be estimated had priors of the follow- 937

ing form: 938

ρa ∼ pa = LogNormal(−1, 0.3) (9)
ηz ∼ p(ηz) = LogNormal(0, 1). (10)

Therefore, the posterior distribution was expressed as 939

p(θ|Sz,a) ∝ p(Sz,a|θ)p(θ)
= Poisson(Tz,ap(ρa)p(ηz)). (11)

The model was specified in the probabilistic programming language Turing.jl in Julia (version 940

1.10.2,101), with packages managed with DrWatson.jl102. Four independent chains each run for 941

1000 iterations with 500 warm-up samples were run using the No-U Turns Sampler (NUTS,103) 942

with a target acceptance ratio of 65% to estimate a posterior distribution for the parameters. 943

R̂ values and effective sample sizes (ESS) were checked to ensure convergence, mixing, and 944

sampling efficacy of the Monte Carlo Markov chains. 945

95% credible intervals (1-α) were estimated for each parameter by using the highest posterior 946

density (HPD) method. The credible interval for each ηz was compared to a “null” value of 1, and 947

for those which did not overlap with 1, a “significance level” was estimated by lowering the (HPD) 948

threshold α until the credible interval contained 1. 949
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To assess the model fit, samples from the posterior predictive distribution were taken and 950

used to generate “replicates” of the data, Srep.
i

104. The distribution of means of the replicates 951

were compared to each observed data point for agreement. As a check of model specification 952

sensitivity, mean squared errors were calculated for this model using the replicates and observed 953

data, and then compared against a “clamped” model fit where ηz = 1 for all zones. The two 954

models had Akaike information criterion (AIC) values of approximately 1.30×104 for the full model 955

versus 1.48× 104 for the clamped model. Thus, the full model was retained for its interpretability 956

and improved prediction performance. 957

IS LFP embedding and classification 958

For each IS that occurred on the maze, the single channel LFP signal was extracted ±100 ms 959

from the detection time. Then, the LFP was down-sampled to 2000 Hz and transformed to a 960

z-score. The LFPs for each animal on all delayed alternation behavior sessions were then non- 961

linearly embedded with t-SNE (with default parameters) to get a 2-D feature vector. An bagging 962

ensemble of trees49,50 was fit using MATLAB with 5-fold cross-validation (including stratifica- 963

tion into groups with similar proportions of each discrete class) to classify whether or not the 964

IS occurred in either reward zone based on the feature vector’s position in 2-D space. The 965

area-under-the-curve (AUC) of the receiver operating characteristic (ROC) curve was computed 966

and compared to the animals mean performance over 5 sessions using standard linear regres- 967

sion. Note that the qualitative results did not change when the classifier was trained on the 968

full-dimensional LFP waveforms instead of the t-SNE embedding, suggesting the embedding 969

faithfully reduces the dimensionality by persevering relevant features. 970

To compare the amplitudes of the IS events under different conditions, the root-mean-squared 971

(rms) amplitude was computed for each IS. To compare across animals, the raw rms values were 972

divided by the standard deviation of the rms for all the IS of a given animal. Two-sample t-tests 973

were used to compare the distributions of amplitudes between IS inside v.s. outside reward 974

zones, and IS at reward during correct v.s. incorrect trials. 975

Inferring trial-to-trial behavioral state from task performance 976

The efficacy of decision-making depends in part on the underlying behavioral state of the ani- 977

mal—whether the animal is engaged with the task or has a lapse in performance. This depen- 978

dency of task performance and neural dynamics on a latent behavioral state has been modeled 979

using models that capture auto-regressive dependencies across trials51,105–107. 980

Borrowing ideas from51, we modeled the trial-to-trial performance using a hidden Markov 981

model (HMM) with states inferred from the data as follows. Consider discrete states indexed as 982

s ∈ {1, 2, · · · , N}. The probability of an animal making a “correct” choice on trial i depends on 983

the state as 984

p(ci = Correct|si) ∼ Bernoulli(ps). (12)

In other words, the performance is like flipping a biased coin with probability of “heads” ps. The 985

value of ci is considered as the “emission” of the hidden Markov chain. The state can change 986

from trial to trial, and thus the probabilities of transitioning between different states are expressed 987

as 988

p(si|s′i−1) ∼ ass′ , (13)

where ass′ is an entry in the transition matrix A ∈ RN×N . The initial state on the first trial is drawn 989

from 990

p(s0) ∼ Categorical(α0), (14)
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where α0 ∈ RN is the probability of initializing in each of the N states. These parameters were 991

initialized as: 992

Ainit. =
1 + ϵ

1 +Nϵ
IN×N , (15)

where IN×N is the identity matrix, ϵ = 0.5 is a parameter to control the relative strength of 993

transitions between states versus persisting within the same state, the initial state as: 994

α0 = [1/N, · · · , 1/N ]⊤, (16)

and finally, each ps took one of N uniformly spaced values from 0.1 to 0.9. 995

To train the HMM, all the choice data for each trial from each epileptic animal was concate- 996

nated into a vector and the end of each session was noted. Then, the Baum-Welch expectation- 997

maximization procedure was applied to this concatenated vector (re-initializing when a ses- 998

sion ended) to find the optimal values of the initial state distribution, the transition matrix, and 999

the emission probabilities for each state108. Using the optimized HMM parameters, the most 1000

likely state sequence given the observed choice data was computed using the Viterbi algorithm. 1001

Marginal probabilities of each state were also estimated using the forward-backwards scheme. 1002

HMM algorithms were used from the HiddenMarkovModels.jl software package in Julia109. This 1003

procedure was conducted for N = 2 and N = 3. The two HMMs had similar log-likelihoods 1004

after Baum-Welch estimation (-324.8 and -323.5 respectively), and so only the N = 3 case was 1005

retained for further analysis. Finally, the hierarchical bootstrap method97 was applied to estimate 1006

delay period exit times by stratifying the data into 3 states, then sampling with replacement a 1007

single trial from an animal weighted by the number of trials that animal had within that state until 1008

the a sample of the same size as the original data in each state was generated. The mean of 1009

these samples was computed for 1000 replicas. 1010

Inferring behavioral state-dependent IS activity in the delay zones 1011

The inferred marginal probabilities of each state sequence from the forward-backward algorithm, 1012

p(si), were used as a prior to parameterize a variant of the firing rate model. The model likelihood 1013

was specified as 1014

p(Si|si; ρa) ∼ Poisson(Tdelay,iρaΣ
N
i=1ηsip(si)),

ρa ∼ p(ρa) = i.i.d.max(Normal(0.5, 0.5), 0),

ηsi ∼ p(ηsi) = i.i.d.LogNormal(0, 1). (17)

The variable Si is the number of spikes in the delay period on trial i. The term
∑N

i=1 ηip(si) is 1015

the sum of gain terms ηsi each weighted by the marginal probability of being in state si ∼ p(si). 1016

Tdelay,i was defined the time in seconds the animal spent in the delay zone at the start of the 1017

trial i. This model can be interpreted as applying a state-specific scalar gain ηsi to an underlying 1018

animal-specific firing rate ρa. The prior for ρa. was chosen to be weakly informative of the fact 1019

that the previous Bayesian model returned animal-specific mean rates centered around 0.5 Hz, 1020

truncated at zero to exclude negative rates. Modifying the standard deviation of this prior from 1021

0.5 to [0.1, 0.8] had no effect on the qualitative conclusions of the inferences. The model was 1022

again estimated in Turing.jl using 5000 samples from the NUTS sampler, initialized as before. 1023

To validate the model estimated gains ηsi, the discrete state-sequence from the Viterbi algo- 1024

rithm was used to group spike counts into N distributions. A Kruskal-Wallis test was used to 1025

compare the spike count distributions. As posterior predictive checks, the means of the poste- 1026

rior mean ρa values were compared to the observed mean rate of IS from the data. Also, the 1027

distribution of predicted marginal mean spike counts E(Srep.
i ) and the distribution of marginal 1028
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means counts conditioned on the Viterbi-estimated state, E(Srep.
i |si), were compared to their 1029

point-estimates from the observed data, E(Si) and E(Si|si). Note that Srep.
i denotes samples 1030

from the posterior predictive distribution104. 1031

In silico model of IS and place-coding replay 1032

Spiking model of hippocampal replay To isolate the effects of IS on hippocampal coding 1033

required for behavioral navigation, we modified the spiking neural network model of place cell 1034

replay in CA3 described by59 and then updated by60 to include CA1. Pyramidal cells (pyr., n = 1035

1250 region) and interneurons (int., n = 100 per region) in CA1 and CA3 were modeled using 1036

the adaptive exponential leaky integrate-and-fire (AELIF,110) model, 1037

Cm
dV

dt
= −

(
gL (V (t)− EL)− gL∆Te

V (t)−θ
∆T + Is (t) + w (t)

)
, (18)

τw
dw

dt
= a (V (t)− EL)− w(t),

if spike, w ← w + b,

Is (t) = gAMPA (t) (V − EAMPA) + gGABA(t)(V − EGABA),

where V (t) is the membrane potential, w(t) is an adaptation current, and Is(t) are the sum of 1038

synaptic currents. Furthermore, Cm is the membrane potential, gL and EL are the leak current 1039

conductance and reversal potential, θ is the spike threshold, ∆T is the threshold sharpness, 1040

τw is the time constant for adaptation, a and b are parameters specifying how the adaptation 1041

current evolves between and following neuron spikes, respectively (see Table 9 for values which 1042

approximately correspond to those in59) . The synaptic conductances gAMPA and gGABA were bi- 1043

exponential functions as in59, with EAMPA = 0 mV and EGABA = −90 mV. All neural simulations 1044

were specified and run in NEST v3.7111 with Python 3.12.3. 1045

To simulate the plasticity induced by repeated exploration of a maze environment, we adopted 1046

a modified the place- and theta-modulated spike-timing-dependent plasticity (STDP) paradigm 1047

introduced in59 and60; a similar form model was experimentally validated in61. The original model 1048

only considered a single 3 m long linear track, whereas our task involves alternating across two 1049

separate arms of a maze. Therefore, to understand whether the two arms are re-activated 1050

during replay separately, we modified the “exploration” paradigm to take place on two 150 cm 1051

arms pointed left and right, with the mouse starting at the midpoint and “teleporting” back to the 1052

midpoint once it reached either end. For 10 minutes, leftward and rightward trajectories were 1053

chosen at random according to a 90% chance of alternation. The simulated mouse ran at 35 1054

cm/s with a theta oscillation frequency of fθ = 7 Hz. In both CA1 and CA3, 30% of pyramidal 1055

cells were selected as place cells and given each a place field center xi drawn uniformly from 1056

the total length of the maze. During the “exploration” phase, only pyramidal cells were simulated 1057

as inhomogeneous Poisson processes with firing rates as 1058

λi(t) = λmax

[
1

2
+

1

2
cos(2πfθt+

π

σ
sign(xi)(x(t)− xi)

]
e

−(x(t)−xi)
2

2σ2 (19)

where the maximum firing rate at the center of the place field was λmax = 20 Hz, and the width 1059

of the place field was σ = 7 cm. This equation encapsulates place tuning and theta phase 1060

precession59,60. Non-place cells fired with a mean rate of 0.1 Hz. To simulate ictal spikes which 1061

occur generally in the same location on the maze during exploration (for example, the reward 1062

ports), all CA3 pyramidal cells received a pulse of spikes at λmax = 2000 Hz described according 1063

to 1064

λIS (t) = λmax

∑
xj

IS∈[−100cm,+100cm]

e
−(x(t)−x

j
IS)2

2σ2 (20)

39

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 14, 2024. ; https://doi.org/10.1101/2024.11.13.623481doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.13.623481
http://creativecommons.org/licenses/by-nc-nd/4.0/


where σIS = 4 cm. A single spike train was drawn from λIS (t) and broad-casted to all the 1065

CA3 pyramidal cells, but each neuron only received each spike with independent probability 1066

of 1%. Since during exploration the pyramidal cell spiking was clamped to the rates above 1067

induce sequences encoded in the weight matrix tuned by STDP59–61 both the internal dynamics 1068

of pyramidal cells and interneuron dynamics and synapses were neglected. The normalized 1069

synaptic weights, w ∈ [0, 1], were updated according to standard STDP rules112 as 1070

∆w =

−λαwµ−e
−|∆t|
τ− if ∆t ≤ 0

λ(1− w)µ+e
−|∆t|
τ+ if ∆t > 0

(21)

where µ± = 0 (weight-independent updating rule) and ∆t = tpost − tpre, λ is the step size param- 1071

eter, α is an asymmetric parameter controlling synaptic depression, and τ+ and τ− are the time 1072

scales of facilitation and depression respectively. For CA3-to-CA3 pyramidal neuron synapses 1073

STDP was symmetrically facilitating as in60, thus, λ = 0.08
wmax

nS, α = −1, τ± = 62.5 ms, and 1074

wmax = 40 nS. For CA3-to-CA1 synapses, λ = 0.8
wmax

nS, α = 0.4, τ+ = 20 ms, τ− = 40 ms, and 1075

wmax = 40 nS. Weights were initialized as 0.3LogNormal(0,1) nS for CA3 and 0.7LogNormal(0,1) 1076

nS for CA1. Synapses were formed between CA3 pyramidal neurons recurrently and fed forward 1077

to CA1 neurons with 10% probability for each pair of cells. The training procedure above was 1078

repeated 10 times for control and epileptic conditions to generate different replicas. 1079

To simulate spontaneous replay during “offline” states such as the delay period between trials, 1080

the full network with pyramidal cells and interneurons with AELIF dynamics was constructed. The 1081

final pyramidal-to-pyramidal cells weights learned by STDP after all exploration trials were used 1082

to parameterize static synapses. CA3 pyramidal cells were stimulated by background activity 1083

from the dentate gyrus that was assumed to have a pooled rate of 12 Hz and synaptic weight of 1084

20 nS. The connections between all other cell types are detailed in Table 10. 1085

For comparing how the IS distributions on the maze affected network cueing, we simulated 1086

a case with high spatial information (the default described above) and low spatial information 1087

case by varying the location of IS uniformly over the interval [±0 cm, ±150 cm]. To “cue” replay, 1088

the weight of background activity was reduced to 10 nS, and CA3 place cells associated with 1089

different zones were stimulated with a 20 ms burst of spikes sampled from a Poisson process at 1090

30 Hz with a synaptic weight of 500 nS from the simulated dentate gyrus. Cues were given to 1091

CA3 place cells on 20 cm wide intervals centered on equally spaced (5 cm) locations between 0 1092

and 80 cm away from a reference point. The weight of each cue synapse was set to 80 nS. Only 1093

one network for each case was used, and 10 random seeds were used to initialize simulations at 1094

each cue center. Using the Scipy library, a one-way ANOVA was conducted at each cue center 1095

and p-values were corrected with a Benjamini-Hochberg false discovery rate procedure. 1096

Analysis of simulated LFP The “LFP” proxy of the network was computed as the sum of all 1097

synaptic currents delivered to a random subset of 200 CA1 pyramidal cells, 1098

LFP (t) =
1

4πσr

∑
i

gi(t)(V (t)− Ei) (22)

sampled at 1000 Hz where the extracellular conductivity σ = 0.3 S/m and the distance from each 1099

current source to the electrode was set to be r = 5µm. The choice of these parameters only 1100

affects a scalar gain59. Replay events were detected by detecting peaks with a prominence of 1 1101

mV and minimum distance of 200 samples on the lowpass filtered LFP at 200 Hz with a 7th order 1102

Butterworth filter. Once the peaks were found, 150 ms on either side of the peak were selected 1103

and used for further analysis. The power spectral density (PSD) of the LFP was estimated 1104
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using Welch’s method with 256 samples per segment, 32 sample overlap, and 1024 FFT points. 1105

The PSD was computed on 5 s long segments of spontaneous activity from each of the 10 1106

replica networks. The continuous wavelet transform (CWT) was computed on the averaged 1107

replay LFP using a complex Morlet wavelet with bandwidth of 1.5 and center frequency of 1.0 1108

at 200 logarithmically spaced frequency bands between 101.2 to 102.5 Hz. To compute the CWT, 1109

only one replica network was selected and the replays over 5 s were used for averaging. Signal 1110

processing was done using Scipy113 and the PyWavelets package114, 1111

Analysis of simulated replay events After replays were detected by the LFP, the place cell 1112

activity was extracted and used to reconstruct the maze position using the population vector 1113

method62
1114

x̂[t] = argmax
x

∑
i

δ(x− xi)ni[t] (23)

where δ (x) is the Dirac delta function, xi is the place field center, and ni[t] indicates the number 1115

of spikes neuron i fired within a discrete 25 ms time bin. 1116
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A Supplement 1117

Parameter Estimate SE tStat p-value
Intercept -24.6 14.9 -1.65 0.17
⟨AUC⟩ 117 23.0 5.10 0.007
⟨SI⟩ 7.7 3.11 5.10 0.04

Table A.1: LFP discriminability and SI independently explain animals’ performance. Adjusted
R2 = 0.86, d.f. = 4. Full model v.s. constant model F = 20.1, p = 0.008.

Figure A.1: ROC curves for classifier IS performance.
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Figure A.2: Three-state HMM fit to control animals reflects improved performance both in (A)
the high proportion of time in the engaged state in this representative animal and (B) the higher
Bernoulli probability of successful alternation in the engaged state than that of controls.
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Figure A.3: The behavioral state HMM transition matricies from epileptic and control animals.
(A) The width of the arrows show the relative probability of transitioning between each state. (B)
The mean escape time from the perseveration state was compared and found to be elevated in
the epileptic mice, which is consistent with the magnitudes of self-transition probabilities in (A).
The red line indicates an exponential fit with mean T .
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Figure A.4: Replay events in silico are corrupted by recruiting off-target ensembles. (A) Raster
plots of spontaneous place cell activity in CA3 and CA1 from control (dark blue) and epileptic
(light blue) networks. (B) Zoomed-in single replay events, along with their respective population
vector reconstructions as a black line, are also shown.
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