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IntroductIon

An exosome is an extracellular vesicle with a phospholipid 
bilayer membrane structure and a diameter ranging from 
30 to 100 nm.[1] The surface membrane proteins and 
exosome contents provide a rich source of biomarkers for 
various pathological conditions and antigens presented 
to immune cells through participation in cellular 
signaling.[2‑4] The contents of exosomes are closely 
associated with their parent cells and include diversified 
proteins, lipids, noncoding RNA (which include circular 
RNA and microRNA [miRNA]), and other molecules, which 
may transport the exosome contents to neighboring or more 
distant cells.[5] Thus, exosomes represent a novel form of 
intercellular communication among cells without cell‑to‑cell 

direct contact.[6,7] With the help of exosomes, cells may 
change their levels of proteins, lipids, and nucleic acids.[8]

Exosomes are secreted from diverse sites and are found in 
various body fluids such as blood,[9] urine,[10] saliva,[11] breast 
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milk,[12] amniotic fluid,[13] and cerebrospinal fluid.[14] In the 
central nervous system (CNS), both neurons and neuroglial 
cells can secrete and release exosomes into the extracellular 
environment,[15] suggesting a diversified and important 
functions of exosomes.

Protein aggregation and the formation of inclusion bodies 
in selected areas of the nervous system due to neuronal 
cell death is an important cause of neurodegenerative 
diseases.[5] MiRNAs regulate the level of proteins by 
regulating levels of mRNAs.[16] Alterations in the expression 
profile of miRNAs in Alzheimer’s disease (AD) patients,[17] 
Parkinson’s disease (PD) patients,[18] amyotrophic lateral 
sclerosis (ALS) patients,[19] and Huntington’s disease (HD) 
prodromal patients[20] illustrate the important role of miRNAs 
in neurodegenerative diseases. Dysregulation of miRNAs is 
closely related with AD, PD, HD, and ALS.[21‑23]

Understanding the network regulation of exosomes and 
miRNAs in neurodegenerative diseases will aid in the 
understanding of the pathogenesis of neurodegenerative 
diseases and identification of valuable biomarkers.

exosome BIogenesIs

Exosomes’ formation involves a series of complex processes. 
Understanding the generation of exosomes may help better 
understand their functions [Figure 1]. The generation of 
exosomes is initiated by early endosomes (EEs) formed 
from internal budding of the plasma membrane. EEs interact 
with the Golgi complex to form late endosomes (LEs) 

or multivesicular bodies (MVBs), which further form 
intraluminal vesicles (ILVs, i.e., exosomes) through internal 
budding of the plasma membrane.[1,8] During this process, 
molecules including the endosomal sorting complex required 
for transport, lipids (such as ceramide), and tetraspanins 
participate in ILV formation.[24] The MVBs formed can either 
be degraded by fusing with lysosomes or released into the 
extracellular space as exosomes by fusing with the plasma 
membrane. RAB proteins including RAB11, RAB27, and 
RAB35 participate in the trafficking of MVBs to the plasma 
membrane and in the secretion of exosomes.[8,24,25]

BIogenesIs of mIrnas and sortIng mechanIsm 
of exosomal mIrnas

Genesis of miRNAs
The formation of mature miRNAs involves several 
steps [Figure 2]. First, by interacting with RNA polymerase 
II, the miRNA genes are transcribed to primary miRNA 
transcript (pri‑miRNA), which has long sequences and 
presents some transcription characteristics of RNA 
polymerase II such as 5’ cap structure and 3’ poly (A) tail.[26] 
Pri‑miRNA is cleaved by intranuclear RNase III Drosha 
to produce precursor miRNA (pre‑miRNA), which have a 
length of 70 nt and feature a stem‑loop structure. With no or 
little enzymatic activity, Drosha needs the help of DGCR8 
to catalyze its RNA substrate.[27] The pre‑miRNA produced 
is transported into the cytoplasm by the Ran‑GTP‑dependent 
nucleocytoplasmic transporter Exportin 5, which is located in 

Figure 1: Mechanism of exosome biogenesis and secretion. EEs are generated through internal budding of the plasma membrane, which may be 
inward invaginations mediated or not mediated by clathrin. EEs interact with the Golgi complex and form LEs, which then form ILVs, i.e., exosomes, 
through internal budding of the plasma membrane. ESCRT, lipids, and tetraspanins participate in the formation of ILVs. Some of the MVBs formed 
are transported by associated RAB proteins (RAB11, RAB35, and RAB27) to fuse with the plasma membrane and are then released into the 
extracellular space as exosomes. Some other MVBs fuse with lysosome for degradation. The red points represent clathrin and the green points 
represent lipid raft‑associated GPI‑anchored proteins. EEs: Early endosomes; LEs: Late endosomes; ILVs: Intraluminal vesicles; ESCRT: Endosomal 
sorting complex required for transport; MVBs: Multivesicular bodies; GPI: Glycosylphosphatidylinositol.
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the cell membrane. Exportin 5 can recognize and avidly bind 
pre‑miRNA containing a protruding 3’ arm and protects the 
integrity of this 3’ region during the transport of pre‑miRNA 
from the nucleus to the cytoplasm.[28] In the cytoplasm, 
the pre‑miRNA is further cleaved by RNase III Dicer to 
form mature miRNA with 21‑23 nt.[29] The miRNA is then 
conveyed to the RNA‑induced silencing complex (RISC) 
to form miRNA RISC (miRISC), which recognizes and 
combines with the 3’ untranslated region (3’UTR) of mRNA 
through a miRNA‑specific sequence. miRISC also mediates 
the degradation of mRNA or inhibits its translation. Ago 1 and 
Ago 2 have vital roles in the miRISC‑mediated silencing.[30‑32]

The mechanism of micro RNAs sorting to exosomes
According to current studies, mature miRNAs are sorted 
into exosomes through six potential mechanisms [Figure 2].

The first is the miRNA motif and heterogeneous nuclear 
ribonucleoprotein A2/B1 (hnRNPA2B1)‑dependent 
pathway. The short sequence motifs over‑represented in 

miRNAs (EXOmotifs) guide miRNA sorting into exosomes. 
Mutation of EXOmotifs will affect miRNA content in the 
exosomes. HnRNPA2B1 is a RNA‑binding protein that can 
regulate the transport and subcellular localization of mRNA 
in neurons. HnRNPA2B1 is sumoylated in the cytoplasm 
and specifically combines with the EXOmotifs (GGAG) to 
regulate sorting of miRNAs into exosomes.[33]

T h e  s e c o n d  i s  n e u t r a l  s p h i n g o m y e l i n a s e 
2 (nSMase2)‑dependent pathway. Blocking or overexpressing 
the activity of nSMase2 reduces and increases the quantity 
of miRNAs sorted into exosomes, respectively.[34]

The third is the 3’ end of the miRNA sequence‑dependent 
pathway. Koppers‑Lalic et al.[35] studied the exosomes 
secreted by maternal B cells and found that the 3’ end‑rich 
poly (A) of a miRNA is more abundant in B cells, while the 
3’ end‑rich poly (U) of a miRNA is more abundant in the 
exosomes originating from B cells. This indicates a potential 
exosome sorting pathway for miRNA.

Figure 2: Mechanism of miRNA formation and sorting mechanism for exosomal miRNAs. miRNA genes are transcribed by RNA polymerase 
II as pri‑miRNAs, which are processed using two cleavage events to produce mature miRNA. The primary cleavage of animal pri‑miRNA 
is located in the nucleus and produces miRNA precursors with a length of 70 nt and a stem‑loop structure, which are referred to as 
pre‑miRNA. The secondary cleavage is located in cytoplasm where pre‑miRNA is cleaved to mature miRNAs with 21–23 nt. The cleavages 
in the maturation process of miRNA are catalyzed by two types of RNase III, i.e., Drosha and Dicer, respectively. Then, the mature miRNAs 
incorporate into RISC to form a miRISC complex. Mature miRNAs are sorted into exosomes through six mechanisms: (1) the miRNA motif and 
hnRNPA2B1‑dependent pathway, (2) nSMase2‑dependent pathway, (3) 3’‑end of the miRNA sequence‑dependent pathway, (4) endogenous 
RNA‑mediated pathway, (5) Ago2‑dependent pathway, and (6) (YBX1)‑dependent pathway. pri‑miRNA: Primary miRNA transcript; miRISC: miRNA 
RISC; hnRNPA2B1: Heterogeneous nuclear ribonucleoprotein A2/B1; nSMase2: Neutral sphingomyelinase 2; YBX1: Y‑box binding protein 1; 
miRNAs: microRNAs.
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The fourth is the endogenous RNA‑mediated pathway. 
Squadrito et al.[36] described that the altered expression of 
miRNA target mRNA in macrophages can regulate miRNA 
sorting into exosomes by facilitating the transport of miRNA 
from the cytoplasm to MVBs.

The fifth is the Ago2‑dependent pathway. Ago2 is a 
component of the RISC. McKenize et al.[37] found that the 
overactive KRAS genes of KRAS‑mutant cells inhibit the 
localization of Ago2 in the multivesicular endosomes and 
reduce the secretion of Ago2 into the exosomes, where 
the level of Ago2 regulates the sorting of miRNA into 
exosomes.

The sixth is the Y‑box binding protein 1 (YBX1)‑dependent 
pathway. YBX1 is a RNA‑binding protein. Shurtleff et al.[38] 
reported that YBX1 can bind mi‑233 and help it sort into 

exosomes. However, the authors did not find evidence of 
any role of Ago2 in the sorting of mi‑233 into exosomes.

crItIcal roles of exosomes and mIrnas In 
neurodegeneratIve dIseases

Exosomes: mediators of neurodegeneration, 
neuroprotection, and therapeutics
Neuroglial cells include different subsets, which jointly 
maintain nerve homeostasis, signal transduction, and 
cellular communication, implying a close cooperation 
between neurons and neuroglial cells.[39,40] In the CNS, 
neurons, microglia, astrocytes, and oligodendrocytes can 
secrete microvesicles into the extracellular environment.[41] 
These microvesicles or exosomes play a vital role in the 
occurrence and progression of neurodegenerative diseases, 

Figure 3: Exosomes and miRNA regulatory network in neurodegenerative diseases. (1) Aberrant aggregation of Aβ, α‑syn, and mHTT in neurons 
is the primary cause of AD, PD, and HD. Neurons and neuroglial cells can release exosomes into the extracellular space or transport them to 
the neighboring cells through blood. (2) Exosomes contain miRNA. After the exosomes fuse with the membrane and release miRNAs into the 
intracellular plasm, TLRs are activated. TLR7‑9 activates the myeloid differentiation factors (MyD88) and then activates nuclear factors nuclear 
factor‑kappa B and transcription factors activator protein‑1, leading to neuroinflammation and neuronal death. (3) miRNA formation disorder is 
closely associated with neurodegenerative diseases. Deficiency of Dicer is related to the accumulation of Aβ and reduction of dopamine. In ALS 
patients, the mutated TDP‑43 forms a complex with heterogeneous nuclear ribonucleoproteins family proteins and Drosha, implying that Drosha 
is an essential enzyme for the formation of miRNA. Aβ: Amyloid‑β peptide; α‑syn: α‑synuclein; mHTT: Mutated Huntingtin; AD: Alzheimer’s 
disease; PD: Parkinson’s; HD: Huntington’s disease; TLR: Toll‑like receptor; ALS: Amyotrophic lateral sclerosis; TDP‑43: TAR DNA‑binding 
protein 43; miRNAs: microRNAs.
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in addition to regulating normal brain functions such as 
the development and repair of neurons and maintenance of 
synaptic function [Figure 3].[42]

The main pathological characteristics of AD are excessive 
accumulation of extracellular senile plaques (composed of 
amyloid‑β peptide [Aβ]) and intracellular neurofibrillary 
tangles (NFTs) containing hyperphosphorylated tau protein, 
which can degenerate neurons and activate microglia 
and astrocytes to produce pro‑inflammatory cytokines. 
The inflammatory environment triggers alteration in the 
nervous system and breaches the blood–brain barrier (BBB), 
thus inducing AD.[43] β cleavage of amyloid precursor 
protein (APP) occurs in EEs to produce Aβ, which enters 
MVBs and is secreted into the extracellular space in the form 
of exosomes.[44] Aβ can be transported by the exosomes to 
lysosome where it is degraded. Disorder of this clearance 
pathway will cause accumulation of Aβ, leading to the 
occurrence of AD.[45]

PD is the second most common neurodegenerative 
disorder after AD. PD is characterized by degeneration 
and death of dopaminergic (DA) neurons in the substantia 
nigra pars compacta and formation of intracytoplasmic 
eosinophilic inclusion bodies (termed Lewy bodies) in 
the surviving neurons, where α‑synuclein (α‑syn), as 
the primary component, abnormally accumulates.[46,47] 
Although most cases of PD are sporadic, familial cases 
have also been associated with different genes that include 
SNCA, leucine‑rich receptor kinase 2 (LRRK2), PARKIN, 
PTEN‑induced kinase 1, and DJ-1.[46] As a pathogenic factor, 
α‑syn has a vital association with exosomes. Emmanouilidou 
et al.[48] found that α‑syn monomers and polymers produced 
by neuroblastoma cells are secreted to the extracellular space 
through exosomes using a calcium‑dependent mechanism 
and cause the death of neuron recipient cells. Alvarez 
et al.[49] subsequently reported a similar phenomenon 
where cultured SY5Y neuroblastoma cells released α‑syn 
through exosomes secreted to the extracellular space. 
Exosomes play a critical role in PD. They transport α‑syn 
to lysosomes for degradation. Disorder of this clearance 
pathway results in the escape and degradation of α‑syn 
and the exosome‑mediated transport of the components to 
recipient cells.[49,50] LRRK2 plays a vital role in the secretion 
of exosomes and fusing of MVBs with the membrane. 
LRRK2 R1441C mutation induces the formation of aberrant 
MVBs and disrupts the balance between the formation 
and clearance of MVBs, consequently leading to PD.[51] In 
addition, the autophagic system will also help α‑syn escape 
degradation. Accumulated α‑syn will form MVBs, followed 
by exosome secretion to the extracellular space. Adjoining 
cells take up exosomes by phagocytosis, followed by the 
intracellular release and accumulation of α‑syn, resulting 
in cytotoxicity.[52] Exosomes can serve as a biomarker for 
the diagnosis of PD.

HD is an autosomal dominant‑inherited neurodegenerative 
disease caused by mutation of Huntingtin (HTT). Mutated 
HTT (mHTT) will cause alterations in protein conformation, 

resulting in aberrant aggregation in cells, neuronal death, and 
progressive neurodegeneration.[53] Huntington‑associated 
protein 1 (HAP1) and mHTT have high affinity and 
can interact with hepatocyte growth factor‑regulated 
tyrosine kinase substrate (HRS), which can recognize 
and recruit ubiquitinated substrate and aid its entry into 
the MVBs‑mediated sorting and degradation pathway.[54] 
Overexpressed HAP1 can effectively block the transport 
of epidermal growth factor receptor (EGFR) from EEs to 
LEs, inhibit the degradation of internalized EGFR, enhance 
the activity of the signal pathway of EGFR, and reduce the 
cytotoxicity caused by mHTT.[54,55] Recent studies described 
that exosomes from adipose‑derived stem cells (ASC‑exo) 
can significantly reduce the accumulation of mHTT in R6/2 
mouse‑derived neurons,[56] indicating a potential effect of 
ASC‑exo in the therapy of HD.

Cytoplasmic TAR DNA‑binding protein 43 (TDP‑43) 
aggregation is an important pathological hallmark of ALS 
and frontotemporal lobar degeneration.[57,58] The TDP‑43 
protein is present in blood and cerebrospinal fluid.[59] Nonaka 
et al.[57] introduced insoluble TDP‑43 protein from ALS 
patients into SH‑SY5Y cells and reported aggregation of the 
protein in a self‑template manner. The findings demonstrated 
that the accumulation of pathological TDP‑43 protein has 
prion‑like properties. Related studies demonstrated that 
protein aggregation and autophagy inhibition promote 
the secretion of exosome TDP‑43 from Neuro2a cells and 
primary neurons.[58] Exposure of Neuro2a cells to exosomes 
from patients with ALS causes TDP‑43 to accumulate in 
Neuro2a cells, suggesting that exosomes are involved in the 
propagation of TDP‑43. However, inhibition of exosome 
secretion by inactivation of nSMase2 with GW4869 or 
by silencing with RAB27A also produced accumulation 
of TDP‑43 in Neuro2a cells,[58] suggesting that exosomes 
containing pathological TDP‑43 play an important role not 
only in the transmission of TDP‑43 but also in the transport 
and clearance of pathological TDP‑43.

Neurodegenerative diseases involve a common molecular 
and cellular mechanism of misfolding and accumulation of 
proteins and formation of inclusion bodies in specific brain 
regions.[60] Under normal conditions, exosomes can transport 
the accumulated proteins to lysosomes or extracellular 
plasma for degradation. Under pathological conditions, 
clearance is disrupted. Knowledge of the pathogenesis of this 
clearance pathway is necessary to understand the potential 
therapy of neurodegenerative diseases.

Effect of regulatory dysregulation of micro RNAs on 
neurodegenerative diseases
MiRNAs are a type of small regulatory RNA molecules 
with a length of 21–23 nt; those participate in various 
physiological processes associated with neurodegenerative 
diseases such as AD, PD, and HD.[61‑63] MiRNAs contribute 
to neurodegenerative diseases primarily by three pathways: 
(1) inhibition of the translation of proteins or degrading 
proteins through target regulation‑related gene mRNA; 
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(2) participation in neuroinflammation by directly combining 
with toll‑like receptor (TLR) or regulating TLR mRNA 
expression; and (3) miRNA formation disorder [Figure 3].

Micro RNA‑targeting genes in neurodegenerative diseases
Aβ and hyperphosphorylated tau protein are the key factors 
that cause AD. They are individually regulated by APP, 
presenilin‑1 (PS1), PS2, and tau protein genes. The genes 
can be regulated by miRNA [Table 1].[64]

Increase in Aβ level caused by increased APP will lead to 
synaptic function disorder and degeneration of neurons and 
eventually will cause cognitive decline.[65] Recent studies 
have found that the miR‑200b, miR‑429, and miR‑20a 
family (including miR‑20a, miR‑106b, and miR‑17‑5p), 
miR‑16, and miR‑101 can downregulate the expression of 
APP.[66‑68] The expression of proteins translated from the 
PS1 gene and PS2 gene is the components of γ‑secretase. 
Mutations in these proteins cause increased γ‑secretase 
activity, which is closely related with the generation of Aβ.[64] 
A study of the expression profile of miRNA in PS1‑knockout 
mouse brain tissue found that downregulation of miR‑9 
expression was related with neurodegenerative diseases.[69] 
Other studies further found that miR‑9 also participates 
in regulating the neurogenesis of zebrafish and mice.[70,71] 
The tau protein, which is abundant in neurons, is a kind of 
microtubule‑associated protein (MAP). Tau protein molecule 
with normal biological function contains two to three 
phosphate groups. However, in AD patients, tau protein is 
abnormally hyperphosphorylated and contains five to nine 
phosphate groups, and is dissociated from microtubules and 
aggregates in neuron soma and dendrites to form NFTs.[72] 
In M17D cells, miR‑34a directly combines with the 3’‑UTR 
of MAP‑tau to inhibit the expression of endogenous tau 
protein.[73] In addition, miR‑125b activates kinases, such 
as ERK1/2 and CDK5/P35, by inhibiting the expression of 
DUSP6 and PPP1CA, thus leading to hyperphosphorylation 
of tau protein.[74] Related clinical studies have found that the 
blood of mild cognitive impairment (MCI) and dementia 
of Alzheimer‑type (DAT) patients contains lower levels 

of exosomal miR‑193b compared with that in controls, 
with lower content in DAT patients compared to that in 
patients with MCI. In addition, the exosomal miR‑193b in 
the cerebrospinal fluid of DAT patients is lower than that 
of the controls, indicating that miR‑193b can be used as a 
biomarker for the diagnosis of AD.[75]

The aberrant expression and accumulation of α‑syn are 
crucial in the pathogenesis of PD. Overexpressed α‑syn 
can be toxic to dopamine neurons.[76] Shamsuzzama et al.[77] 
developed and studied the transgenic Caenorhabditis elegans 
(C. elegans) and miRNA let‑7 functionally deleted transgenic 
C. elegans models and found that let‑7 functional deletion 
decreased α‑syn expression but did not influence dopamine 
neurons. In sporadic PD cases, several genome‑wide 
association studies had reported that the α‑syn gene (SNCA) is 
one of the genomic loci posing the highest risk in patients.[78‑80] 
McMillan et al.[81] found that miR‑7 can combine with 
the 3’‑UTR of SNCA mRNA to inhibit its transcription 
and regulate the expression of α‑syn. The authors further 
found that the expression of miR‑7 was decreased in the 
substantia nigra of the brain of PD patients,[81] suggesting a 
potential action of miR‑7 in the therapy of PD. Moreover, 
Chen et al.[82] found significantly upregulated expression 
of hsa‑miR‑4639‑5p in the blood plasma of PD patients 
and reported the downregulation of the DJ‑1 protein level 
by negatively regulating the posttranscription level of 
the PD‑associated gene DJ-1, eventually causing severe 
oxidative stress and neuronal death. The authors considered 
that hsa‑miR‑4639‑5p can serve as a biomarker for early PD 
diagnosis.[82] In addition, Hoss et al.[18] studied the miRNA 
expression profiles in the prefrontal cortex of controls and PD 
patients screened for miR‑10b‑5p. The significant decrease 
of miR‑10b‑5p expression in PD patients suggested that 
miR‑10b‑5p could be used as a molecular marker for the 
clinical diagnosis of PD [Table 1].

HD is an autosomal dominant‑inherited neurodegenerative 
disease that results from the encoded HTT polyglutamine 
sequence lengthened by the CAG trinucleotide repeat 

Table 1: miRNAs in neurodegeneration diseases

miRNA Neurodegeneration diseases Target genes Effect on target genes References
miR‑101 AD APP Downregulation [86]
miR‑193b AD APP Downregulation [75]
miR‑16 AD APP Downregulation [87]
miR‑20a miR‑17‑5p miR‑106b AD APP Downregulation [67]
miR‑200b AD APP Downregulation [66]
miR‑16 AD APP Downregulation [68]
miR‑219 AD MAPT Downregulation [88]
miR‑34 AD MAPT Downregulation [73]
MiR‑7 PD SNCA Downregulation [81]
miR‑4639‑5p PD DJ-1 Downregulation [82]
miR‑125b miR‑146a miR‑150 miR‑214 HD HTT Downregulation [89]
miR‑141/200a ALS FUS Downregulation [90]
miR‑218 ALS Motoneurons 218DKO Downregulation [91]
miRNA: MicroRNAs; ALS: Amyotrophic lateral sclerosis; HD: Huntington’s disease; PD: Parkinson’s disease; AD: Alzheimer’s disease; APP: Amyloid 
precursor protein; HTT: Huntingtin.
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mutations in exon 1 of the IT15 gene.[53] The mHTT 
gene exon 1 (mHTT-Exon-1) can directly bind genomic 
DNA and alter its conformation, leading to altered gene 
expression.[83] When mHTT-Exon-1 is overexpressed in 
NT2 cells, the miR‑34b expression level will significantly 
increase. Inhibiting the miR‑34b expression will reduce 
the distribution of mHTT in cytoplasm and its in vitro 
toxicity.[84] However, miR‑27a can increase the expression 
level of multidrug resistance protein‑1 (MDR‑1) when used 
to transfect R6/2 HD mouse‑derived NSC cells. MDR‑1 can 
transport mHTT and eventually reduce the accumulation of 
mHTT in cells [Table 1].[85]

Activation of toll‑like receptors by micro RNAs in 
neuroinflammation
Many neurodegenerative diseases are related with 
inflammation, which can increase cell injury and cause 
neuronal death.[92] TLR is a type of innate immune receptor 
that when activated can activate the downstream signal 
molecules through the MyD88‑dependent or independent 
pathway, eventually causing the release of inflammatory 
factors.[93] TLRs of microglia and neurons can also cause 
CNS injury even in the absence of an obvious pathogen, 
indicating that the ligand of activated TLRs probably 
originates from the host.[94] In unaffected or undamaged 
cells, miRNA can activate TLRs as a physiological ligand 
and also as damage‑associated molecular patterns to 
trigger an immune response.[95‑97] TLR7 is localized in 
endosomes, where it can recognize RNA viruses and is 
expressed in the neuronal cells.[96,98] Lehmann et al.[96] 
found that miRNA let‑7 can activate TLR7 in neuronal 
cells and consequently causes neurodegenerative diseases, 
while TLR7‑deleted mice can resist the influence of 
neurodegenerative diseases [Figure 3]. Later, data have 
more convincingly demonstrated that neurons can activate 
the TLR7 located in endosomes and further activate MyD88 
and the downstream signal molecules through the uptake 
of the exosomes containing let‑7, eventually causing death 
of neurons.[99] In general, TLRs display a wide range of 
expressions in the CNS. Examples include the expressions 
of TLR3, 4, 7, and 9 in human neuronal cells, expressions 
of TLR2 in human oligodendrocytes, expression of 
TLR3‑4 in human astrocytes, and expression of TLR1‑4 in 
human microglia.[21] We can speculate that miRNAs play a 
critical role in activating TLRs to cause inflammation and 
consequently cause neurodegenerative diseases. Supporting 
data are needed.

MiRNA‑generating disorders in neurodegenerative 
diseases
Drosha and Dicer are the two types of RNase III enzymes. 
They are critical to the formation of miRNAs. They 
individually catalyze the sequence cleaving in the process of 
miRNAs maturation. The deficiency or formation disorder 
of these two enzymes is closely related to neurodegenerative 
diseases.[100] TDP‑43 protein is vital for the maturation of 
miRNAs. In ALS patients, mutated TDP‑43 will combine 
with heterogeneous nuclear ribonucleoproteins family 

proteins and Drosha to form a complex.[101] Similarly, 
the deficiency of Dicer can impair the expression of 
minor miRNAs in adult forebrain and eventually cause 
hyperphosphorylation of tau proteins, consequently leading 
to neuron death.[102] The deficiency of Dicer will also cause 
the accumulation of Aβ and loss of dopamine [Figure 3].[100] 
For example, miR‑133b, which is highly expressed in the 
midbrain under normal conditions, is deficiently expressed 
in PD patients and in an animal model of PD owing to 
deficiency of Dicer.[103]

The collective results that have been presented show that 
miRNAs play a vital regulation role in the CDN under normal 
and pathological conditions. Moreover, the occurrence of 
neurodegenerative diseases caused by miRNA‑activated 
TLRs implies that miRNA may have many other regulatory 
functions, which require further research.

conclusIons

Exosomes act as a conduit for cell‑to‑cell communication. 
Their components can reflect the function status of the cells 
of origin, contain cytopathic molecular information, and aid 
in the diagnosis of diseases. Owing to their cargo function, 
nanometer size, and ability to cross the BBB, advantages in 
therapeutic effect, targeting ability, immune response, and 
safety, exosomes provide a novel approach for treatment 
of neurodegenerative diseases and brain‑targeted drug 
delivery. This review highlights a wide range of regulatory 
functions of miRNAs in the CNS. Exosomes can transport 
let‑7 to activate TLR7. This implies a novel regulation 
mechanism for neuroinflammation. Furthermore, abnormal 
expression of miRNA has been confirmed in a patient with 
neurodegenerative disease.[82,104] miRNAs are a type of small 
RNA molecule those extensively regulate physiological and 
pathological processes. They can be used as biomarkers 
for early diagnosis of neurodegenerative diseases. In 
CNS regulatory processes, exosomes and miRNAs form a 
network to regulate CNS homeostasis, both synergistically 
and individually.

Great progress has been made in the studies on 
neurodegenerative diseases such as AD, PD, HD, and 
ALS. However, there are still many problems to be solved 
and therapies for these diseases are mostly conservative at 
present. These diseases remain incurable. Taking AD as an 
example, there is no drug to delay or prevent the progression 
of AD. Exosomes and miRNAs offer the potential for the 
diagnosis and treatment of neurodegenerative diseases.
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外泌体与microRNAs调控网络失衡对神经退行性疾病的
影响

摘要

目的：围绕外泌体和microRNAs的形成机制，以及外泌体microRNAs的分选机制，综述了外泌体和microRNAs在神经退行性疾
病中的网络调控作用，旨在为神经退行性疾病的治疗、生物标志的寻找提供理论基础。
数据源：基于在线文献数据库的全面检索，包含NCBI PubMed，科学引文索引，Google学术搜索和百度学术搜索等。
文献筛选：文献筛选基于外泌体、microRNAs、中枢神经系统和神经退行性疾病关键词进行检索，检索年限从2000年到2018
年，所有检索内容语言均为英文。相关文章已进行仔细筛选，没有因研究设计和出版类型而排除文献。
结果：外泌体是细胞分泌的纳米级别膜性小泡，包含丰富的内容物，其中较为重要的就是microRNAs。在中枢神经系统中，外
泌体能转运β样淀粉蛋白、α‑突触核蛋白、亨廷顿相关蛋白1以及超氧化物岐化酶I到其它细胞，即能缓解蛋白的异常积聚，也
可能加重神经系统疾病。在神经退行性疾病，包括AD、PD、HD、ALS，microRNAs会发生病理上的改变，且是一个必然的过
程，暗示着microRNAs可能是导致神经退行性疾病的因素。不仅如此，在中枢神经系统中，外泌体和microRNAs既有协同调控
也有单独调控，两者构成网络共同调控着中枢神经系统稳态。
结论：外泌体和microRNAs形成网络共同调控中枢神经系统的稳态，有望成为诊断和治疗神经退行性疾病的有效工具。


