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Spin-lattice decoupling in a triangular-lattice
quantum spin liquid
Takayuki Isono1,3, Shiori Sugiura 1, Taichi Terashima 1, Kazuya Miyagawa2, Kazushi Kanoda 2 & Shinya Uji1

A quantum spin liquid (QSL) is an exotic state of matter in condensed-matter systems, where

the electron spins are strongly correlated, but conventional magnetic orders are suppressed

down to zero temperature because of strong quantum fluctuations. One of the most pro-

minent features of a QSL is the presence of fractionalized spin excitations, called spinons.

Despite extensive studies, the nature of the spinons is still highly controversial. Here we

report magnetocaloric-effect measurements on an organic spin-1/2 triangular-lattice anti-

ferromagnet, showing that electron spins are decoupled from a lattice in a QSL state. The

decoupling phenomena support the gapless nature of spin excitations. We further find that as

a magnetic field is applied away from a quantum critical point, the number of spin states that

interact with lattice vibrations is strongly reduced, leading to weak spin–lattice coupling. The

results are compared with a model of a strongly correlated QSL near a quantum critical point.
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A quantum spin liquid (QSL) is an intriguing exception for
the Landau theory of phase transitions; at sufficiently low
temperatures, condensed-matter systems form an ordered

state characterized by broken symmetries and corresponding
order parameters. However, the order can be suppressed when
there exist strong quantum-mechanical fluctuations enhanced by
low dimensionality and/or geometrical frustration. The resulting
exotic quantum liquids such as the QSL are not described by any
broken symmetry or order parameter1. The QSL is also of great
interest in connection with a mechanism of high-temperature
superconductivity2 and application to quantum computation3.

A spin-1/2 triangular-lattice antiferromagnet with nearest-
neighbor (NN) antiferromagnetic (AF) exchange interactions J is
one of the most typical example of two-dimensional frustrated
spin systems, in which Anderson first proposed a QSL ground
state more than 40 years ago4. Although the ground state of the
triangular-lattice Heisenberg AF system is now known to be 120°
AF order5, its ordered state can be suppressed by ring-exchange
interactions6, next NN interactions7, or a spatial distribution of
an exchange coupling constant8, consequently leading to QSL
ground states. One of the most fundamental properties of a QSL
is the presence of charge neutral excitations carrying spin-1/2
quantum number, spinons. These fractional excitations are clearly
distinct from spin-1 magnon excitations in magnetically ordered
states. Depending on the theoretical model, the spinon excitations
may be gapped or gapless, and may obey Bose or Fermi
statistics1,6,9–11.

In 2003, the first evidence of a QSL was reported in an organic
triangular-lattice antiferromagnet, κ-(BEDT-TTF)2Cu2(CN)3
(ref. 12), where BEDT-TTF stands for bis(ethylenedithio)tetra-
thiafulvalene. In this material, a spin-1/2 is located on a (BEDT-
TTF)þ2 dimer, which is arranged on a triangular lattice. Despite
the large NN AF interactions, J/kB ~ 250 K, no magnetic long-
range order happens down to T ∼ 30 mK12–14, which is four
orders of magnitude lower than J/kB. This suggests that the QSL
state is realized in κ-(BEDT-TTF)2Cu2(CN)3. The nature of the
magnetic excitations of the QSL state, spinons, has been inten-
sively studied and discussed. A finite value of the specific heat
divided by temperature C/T for T → 0, and Pauli-like magnetic
susceptibility are hallmarks of gapless spin excitations15,16.

Conversely, Arrhenius behavior of the thermal conductivity
suggests the presence of a small gap, Δ/kB ~ 0.5 K17. There have
been many debates about the spinon excitations not only in κ-
(BEDT-TTF)2Cu2(CN)3, but also in the other QSL candidates
such as a triangular-lattice system, YbMgGaO4

18,19, and a
kagome-lattice system, ZnCu3(OH)6Cl2 (refs. 20,21).

Here we report magnetocaloric-effect (MCE) measurements on
κ-(BEDT-TTF)2Cu2(CN)3, which unveils a characteristic thermal
relaxation of the QSL state. At very low temperatures in a mag-
netic field, the thermal relaxation time between the electron spins
and lattice is dramatically increased, indicating that the spins are
decoupled from the lattice bath. The spin–lattice decoupling can
explain the seeming discrepancy in the nature of the spin-
excitation spectrum; the spin excitations are gapless. Moreover,
we show by combining the present MCE results with our recent
magnetic-susceptibility study that as a zero-field quantum critical
point (QCP) is approached, the number of spin states is strongly
enhanced. This is compatible with a model of a strongly corre-
lated QSL near a QCP.

Results
Magnetocaloric effect. In the present study, we have measured
the MCE to resolve the discrepancy between the gapped and
gapless features of the spin excitations in κ-(BEDT-
TTF)2Cu2(CN)3. The MCE, ΔT, is a thermal response of a sample
to magnetic-field changes, dH/dt, given by

ΔT ¼ �τ
dðΔTÞ
dt

� T
KB

dH
dt

∂S
∂H

� �
T

; ð1Þ

where KB represents the thermal conductance between the sample
and heat bath. The second term in Eq. (1) describes heating or
cooling of the sample by the magnetic entropy change, dS/dH.
When S decreases (increases) with increasing field, the sample is
heated up (cooled down). Resulting ΔT is relaxed with the
relaxation time, τ= C/KB, as described in the first term. Here, C
represents the heat capacity of the sample. Figure 1a, b show
heating and relaxation processes of the sample at the bath tem-
perature, TB, of 0.26 K (see also Supplementary Fig. 1). As the
field increases up to 0.8 T (t < 10 s) (Fig. 1a), the sample
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Fig. 1 Thermal relaxation curve at the temperature of 0.26 K. Thermal relaxation curve for the spin (magnetocaloric) heating, when the magnetic field is
swept up from a 0.6 to 0.8 T, and b 2 to 3 T. The thermal relaxation curve for the lattice (Joule) heating at c μ0H= 0.8 T and d 3 T. In each figure, the solid
line represents a single exponential decay, ΔT= A exp(−t/τ), with the relaxation time, τ, and a constant, A
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temperature increases, ΔT > 0 K. We observe positive ΔT in the
whole field and temperature range up to 17 T between 0.1 and 1.6
K, indicating that the magnetic entropy is monotonously sup-
pressed by applying a magnetic field. This is a clear contrast to a
quantum disordered state with a singlet–triplet gap being closed
in high fields, where the increase of the entropy results in negative
ΔT22,23. Hereafter, we call the heating by the MCE the spin
heating. At μ0H= 0.8 T (t= 10 s), the field is stopped [dH/dt= 0
in Eq. (1)] and then we observe the relaxation of ΔT, which is well
represented as a single exponential decay, ΔT ~ exp(−t/τ), with
relaxation time τ= 2.2 s (solid line). By applying the magnetic
field of 3 T, τ dramatically increases to 47 s (Fig. 1b). By contrast,
when the sample is heated by an electric heater (called the lattice
heating below), τ remains very short in the whole field region, as
shown in Fig. 1c, d: τ= 0.5 and 0.2 s at μ0H= 0.8 and 3 T,
respectively. Here, we note that τ ~ 2 s for the spin heating is
attributed to the time constant of a superconducting magnet used
in the present measurements, as shown in Supplementary Fig. 2;
actual τ is shorter than 2 s.

The magnetic-field dependence of the relaxation time for the
spin heating is summarized in Fig. 2a. At TB= 0.26 K, τ is shorter
than 2 s up to μ0H ~ 0.9 T. Above this field, τ exceeds 2 s and
rapidly increases more than one order of magnitude, followed by
a slow increase without showing saturation behavior above ~2 T.
Here, we determine the onset field of the τ increase, H*, based on
the linear-scale plot of τ(H) (inset of Fig. 2a). With temperature
elevation, H* monotonically shifts to a higher value. Figure 2b
depicts the relaxation time as a function of temperature. At μ0H
= 0.1 T, τ is shorter than 2 s down to TB ~ 0.12 K, below which a
rapid increase of τ is observed. The onset temperature of the τ
increase is raised by applying a magnetic field. At 1.5 T, τ is
rapidly increased below 0.5 K, and after that
τ shows a rather slow increase. At 10 T, we observe power-law

behavior, τ ~ T−1.3, in the wide temperature range. Figure 2c
shows the temperature dependence of (τT1.3)−1. As the
temperature goes to zero, (τT1.3)−1 approaches a constant value
(dashed lines). This value is monotonically decreased as a
magnetic field is increased.

Simulation results. An important question here is why the slow
relaxation takes place only for the spin heating. To address this
question, we simulate the thermal relaxation curve for the spin
and lattice heatings, based on a simple spin–lattice coupling
model, as shown in Fig. 3a (details of the simulations are shown
in Methods). Our MCE measurements probe the temperature of
the lattice system, TL. In a conventional case, the thermal cou-
pling between the spins and lattice, KSL, is sufficiently stronger
than lattice–bath coupling, KB: KSL�KB. In this case, the tem-
perature of the spin system, TS, is identical to TL for both the spin
and lattice heatings (PS and PL, respectively), as shown in Fig. 3b,
Supplementary Fig. 3(a), and its inset. The relaxation time is
given by τ= (CS+ CL)/KB= 0.4 s, which is confirmed by the
exponential decay fit to the relaxation curve. Here, CS and CL

represent the heat capacities of the spins and lattice, respectively.
When the spins are decoupled from the lattice (KSL� KB), TL is
rapidly raised by the lattice heating, whereas TS slowly increases
because of small KSL (Supplementary Fig. 3(b)). After stopping
the heating, TL is quickly relaxed, given by τ � CL=KB = 0.1 s, as
shown in Fig. 3c. In case of the spin heating, by contrast, supplied
heat can hardly be relaxed to the lattice, and consequently, TS
becomes much higher than TL, as shown in Supplementary Fig. 3
(c) and its inset. After stopping the heating, TS and TL are slowly
relaxed to the bath temperature, TB. The relaxation time is given
by τ � CS=KSL = 40 s, which is much longer than that for the
lattice heating (Fig. 3d and its inset). The above spin–lattice
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decoupling model reasonably explains the significant difference of
τ between the spin and lattice heatings shown in Fig. 1b, d.

Discussion
The spin–lattice decoupling requires reconsideration of the data
analysis in the heat-capacity measurement on κ-(BEDT-
TTF)2Cu2(CN)3. The heat capacity has been measured in a lim-
ited temperature and field region, T > 0.8 K and μ0H < 8 T15. In
this region, C is obtained by measuring the thermal relaxation in

a long time scale, 10–100 s. This time scale is much longer than
our lattice-heating result, 0.1–1 s, and even comparable to the
spin-heating one, <20 s (Fig. 2b). Therefore, CS as well as CL is
measured in ref. 15, and consequently the finite C/T value for T →

0 is observed. An important implication of our MCE study is that
the electronic spin entropy is monotonously decreased as a
magnetic field is increased (ΔT ~−dS/dH > 0). From the Max-
well’s relation (dS/dH)T= (dM/dT)H, we obtain (dM/dT)H < 0,
where M represents the magnetization. This is consistent with the
temperature dependence of the magnetic susceptibility below
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about 4 K and 3 T16. By contrast, no remarkable field dependence
of the specific heat has been observed down to T ~ 0.8 K, sug-
gesting dS/dH ~ 015. The heat-capacity measurement in a mag-
netic field at lower temperatures, where the field dependence
should become more pronounced, is highly required in the future.

Not only the heat capacity, but also the heat-transport mea-
surement is affected by the spin–lattice decoupling. It has been
reported that in cuprate superconductors, a poor contact between
electrons and a lattice prevents a heat transfer between them,
which leads to the strong suppression of the electronic thermal
conductivity24. Likewise, once the spins are decoupled from the
lattice, the spin contribution to the thermal conductivity will be
significantly reduced. This decoupling is likely the origin of the
rapid decrease of κ/T at very low temperatures for κ-(BEDT-
TTF)2Cu2(CN)317. On the other hand, κ is gradually increased by
applying a magnetic field. A possible scenario is a model of a
strongly correlated QSL (SCQSL) located near a fermion-
condensation quantum-phase-transition point, where the QSL
plays the role of heavy-fermion liquids placed into insulators25; as
a magnetic field is increased away from the QCP, the effective
mass of spinons, m*, is reduced, leading to the increase of the spin
thermal conductivity. In fact, we have recently determined the
H–T phase diagram based on a scaling analysis of χ, where a QCP
is present near the zero field (Fig. 4a)16. In the quantum critical
(QC) region (yellow area), χ diverges for T → 0, while χ shows
almost T-independent (Pauli-paramagnetic-like) behavior in the
QSL region (dark-red area). The Pauli-like susceptibility is
commonly observed in organic triangular-lattice QSL
materials26,27, and its values, χP, are explained by a model of a
QSL with a spinon Fermi surface6,27. In this model, fermionic
spinons play the role of metallic electrons placed into insulators;
χP comes from the spinon density of states at the Fermi level, N
(EF), being proportional to m*. In this context, we examine the
magnetic-field dependence of χP for κ-(BEDT-TTF)2Cu2(CN)3 in
Fig. 4b, where the χP values are determined based on the sus-
ceptibility data reported by us16. By the application of a magnetic
field, χP is decreased following a power law, χP � H�a, with the
exponent a= 0.7–0.8, suggesting that as the system is away from
the QCP, N(EF)∝m* is strongly suppressed. This is compatible
with the SCQSL model.

In order to compare the MCE results with the susceptibility
data, we plot H* on the H–T phase diagram, determined by us in
ref.16 (Fig. 4a). A striking finding is that the data points of H* fall
on the contour line, χT0.83= 2.3 mJ K0.83 T−2 mol−1 (dashed
line), in the crossover region (light-red area). This coincidence
implies that low-energy spin excitations giving χP are also
responsible for the thermal relaxation phenomena through cou-
pling to lattice vibrations. In Fig. 4b, we further examine this
relationship by comparing the field dependence of χP with the
zero-temperature extrapolations of (τT1.3)−1(see Fig. 2c), raised
to different powers, ðτT1:3Þ�p

0 . As the zero-field QCP is approa-
ched, ðτT1:3Þ�p

0 with the exponent p= 0.5 is strongly increased in
a manner similar to χP. This suggests that ðτT1:3Þ�0:5

0 depends on
N(EF) as well; the electron spin–lattice relaxation rate could be
given by τ�1 � ½NðEFÞ�2T1:3 in the QSL state. The enhancement
of N(EF) for H → 0 is intuitively consistent with the thermal-
decoupling phenomena observed here; the application of a
magnetic field reduces the number of spin states that interact with
lattice vibrations, leading to the weak spin–lattice coupling.

In relation to the spin–lattice decoupling phenomena, several
theoretical works have studied the interaction of spinons with
phonons28,29. In a QSL with a spinon Fermi surface, spinons
undergo pairing instability30,31, similar to the Cooper pairing in
metals. The resulting gapped state reduces N(EF), leading to the
weak spinon–phonon interactions28. However, this is not
applicable to our case because no sign of a phase transition near

H* has been found in thermodynamic quantities such as the
specific heat and the magnetic torque15,16.

The main findings of the present MCE study are summarized
in the following two points. First, we find the spin–lattice
decoupling phenomena in the QSL state, which can explain the
seeming discrepancy between the gapped17 and gapless15,16 fea-
tures of spin excitations in κ-(BEDT-TTF)2Cu2(CN)3; spin exci-
tations are gapless. Recently, the inorganic triangular-lattice
antiferromagnet, YbMgGaO4, has been discussed as a candidate
material for the QSL with the spinon Fermi surface. In this
material, the gapless nature of spinons has been reported by the
neutron-scattering and specific-heat experiments18,19, whereas
the spin thermal conductivity appears to be absent19. The MCE
study on YbMgGaO4 may resolve the discrepancy. Second, as the
system is away from the QCP, the number of spin states is rapidly
decreased, and consequently the spin–lattice interaction is wea-
kened. This is compatible with the SCQSL model25, where the
QSL has much similarity with heavy-fermion liquids.

Methods
Sample preparation and MCE measurements. Single-crystalline samples were
prepared by electrochemical oxidation of BEDT-TTF molecules. In magnetoca-
lorimetry, several single-crystalline samples of 227 μg were attached to a small
thermometer (Cernox, Lake Shore) by a grease (Apiezon N Grease), and then the
composition was enclosed in a home-made miniature vacuum cell, together with a
reference thermometer. A temperature difference between the two thermometers,
ΔT, was measured with a magnetic field swept up to 17 T at a sweep rate of 0.5 T
min−1. All the measurements were made using a 20 T superconducting magnet
with a dilution refrigerator at Tsukuba Magnet Laboratory, NIMS. A magnetic field
is applied approximately perpendicular to a two-dimensional triangular-lattice
plane.

Thermal relaxation measurements and simulations. We have applied two
heating methods for the thermal relaxation measurements, spin (magnetocaloric)
and lattice (Joule) heatings. A simplified diagram of the experimental configuration
is shown in Fig. 3a. Here, we assume that the lattice is strongly coupled to a
thermometer; the ‘lattice’ in the figure includes addenda (a thermometer and
grease). This condition is well satisfied when a thermometer is tightly attached to
samples by a grease, as in the present case. Our relaxation measurements probe the
lattice temperature, TL.

In the spin heating, spins are directly heated up by sweeping a magnetic field
when dS/dH in Eq. (1) has a negative value. The heat supplied to the spins first
flows to the lattice through the thermal conductance, KSL, and then to a heat bath
through KB. After stopping the heating (field sweep), the spin temperature, TS, and
TL are relaxed to the bath temperature, TB. In the case of the lattice heating, the
lattice is directly heated up by an electrical heater, while TS is raised by a heat
transfer from the lattice. The thermometer is also used as a heater in our
experimental set-up. After stopping the heating, TS and TL are relaxed to TB.

In order to simulate the thermal relaxation curves for the two heating methods,
we begin with heat balance equations for the above model (Fig. 3a),

PS ¼ CS
dTS

dt
þ KSLðTS � TLÞ; ð2Þ

PL ¼ CL
dTL

dt
þ KSLðTL � TSÞ þ KBðTL � TBÞ: ð3Þ

Here, PS (PL) and CS (CL) represent the heating power of the spin (lattice) heating,
and the heat capacity of the spins (lattice), respectively. By substituting dT/dt= [T
(t+ Δt)− T(t)]/Δt into Eqs. (2) and (3), we obtain

TSðt þ ΔtÞ ¼ TSðtÞ � Δt
CS

fKSL½TSðtÞ � TLðtÞ� � PSg; ð4Þ

TLðt þ ΔtÞ ¼ TLðtÞ � Δt
CL

KSL TLðtÞ � TSðtÞ½ �f
þKB½TLðtÞ � TBðtÞ� � PLg:

ð5Þ

Based on Eqs. (4) and (5), we simulate the thermal relaxation curve at TB=
0.26 K and μ0H= 3 T. The spin and lattice contribution to the heat capacity of κ-
(BEDT-TTF)2Cu2(CN)3 have been reported to be 730 and 90 pJ K−1 at T= 0.26 K,
respectively15. The heat capacity of addenda (thermometer and grease) is about 60
pJ K−1, and then CS= 730 pJ K−1 and CL= 150 pJ K−1. When the sample is heated
up by PL= 14 pW, TL is raised about 7 mK, as shown in Fig. 1d. These values
together with a relation ΔTL= PL/KB give KB= 2 nWK−1. Here, we consider two
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limiting conditions, conventional and decoupling cases. In the former case, the
thermal coupling between the spins and lattice is sufficiently stronger than the
lattice–bath coupling, KSL� KB. In this case, TS is identical to TL during the
heating and relaxation processes, regardless of the heating methods
(Supplementary Fig. 3(a), its inset, and Fig. 3(b)). The simulations are made using
KSL= 100 KB, PL= 14 pW for the lattice heating, and PS= 14 pW for the spin
heating. The relaxation time is given by τ= (CS+ CL)/KB= 0.4 s. In the latter case,
the spins are decoupled from the lattice, KSL� KB. In case of the lattice heating, TL
is first raised, and after that TS slowly increases owing to a small heat transfer from
the lattice (Supplementary Fig. 3(b)). After stopping the heating, TL is quickly
relaxed, given by τ � CL=KB = 0.1 s, as shown in Fig. 3c. The magnetic specific
heat no longer contributes to the relaxation. In case of the spin heating, by contrast,
the supplied heat is accumulated in the spins, because the heat can hardly flow to
the lattice. Consequently, TS becomes much higher than TL, as shown in
Supplementary Fig. 3(c) and its inset. After stopping the heating, TS and TL are
slowly relaxed, following τ � CS=KSL = 40 s (Fig. 3d and its inset), which is much
longer than that for the lattice heating. The simulations are made using
KSL= KB/100, PL= 14 pW for the lattice heating, and PS= 1.4 pW for the spin
heating. The spin–lattice decoupling model (Fig. 3c, d) reasonably explains why the
slow thermal relaxation is observed only for the spin heating (Fig. 1b, d).

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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