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Stimuli-responsive hydroxyapatite liquid crystal
with macroscopically controllable ordering and
magneto-optical functions
Masanari Nakayama 1, Satoshi Kajiyama 1, Akihito Kumamoto2, Tatsuya Nishimura 1, Yuichi Ikuhara2,

Masafumi Yamato 3 & Takashi Kato 1

Liquid crystals are mostly formed by self-assembly of organic molecules. In contrast, inor-

ganic materials available as liquid crystals are limited. Here we report the development of

liquid-crystalline (LC) hydroxyapatite (HAp), which is an environmentally friendly and bio-

compatible biomineral. Its alignment behavior, magneto-optical properties, and atomic-scale

structures are described. We successfully induce LC properties into aqueous colloidal dis-

persions of rod-shaped HAp by controlling the morphology of the material using acidic

macromolecules. These LC HAp nanorod materials are macroscopically oriented in response

to external magnetic fields and mechanical forces. We achieve magnetic modulation of the

optical transmission by dynamic control of the LC order. Atomic-scale observations using

transmission electron microscopy show the self-organized inorganic/organic hybrid struc-

tures of mesogenic nanorods. HAp liquid crystals have potential as bio-friendly functional

materials because of their facile preparation, the bio-friendliness of HAp, and the stimuli-

responsive properties of these colloidal ordered fluids.
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Liquid crystals form fluid but ordered molecular assemblies1–3,
and these self-assembled structures can be dynamically
controlled by application of external stimuli such as electric

and magnetic fields, and mechanical forces, leading to various
functions4–11. Although typical liquid crystals are based on
organic molecules with rod and/or disk shapes, colloidal particles
with controlled anisotropic morphologies and sizes can also show
liquid-crystalline (LC) phases in their dispersed states12,13 and are
expected to have new functional properties14–20.

The production of functional materials from abundant
resources using environmentally friendly processes is important
for a future sustainable society21–23. Hydroxyapatite (HAp)
[Ca10(PO4)6(OH)2] is a major bio-friendly material. As for
combination of liquid crystals and HAp crystals, a simple mixture
of a LC thermotropic aromatic polyester and non-LC HAp
particles was previously reported24. However, to the best of our
knowledge, there was no report on HAp crystals, which them-
selves exhibit liquid crystallinity. If HAp could be endowed with
LC properties, new bio-friendly and environmentally friendly
functional materials could be developed, which might provide
interesting materials applications including optical switching,
biosensors, and structural materials available for artificial bones,
dental implants, and cell culture scaffolds. HAp is one of the main
components of human bones and teeth; and the size, morphology,
crystallinity, and orientation are biologically well controlled
under mild conditions25. It has been proposed that acidic proteins
transiently stabilize the amorphous phases of these bio-
minerals26,27 as precursors for the formation of sophisticated
self-organized structures28–31.

High external magnetic field has been instrumental in orienting
diamagnetic or paramagnetic materials with small anisotropic
magnetic susceptibility, such as alumina, titania, or HAp32–35. For

LC HAp, the use of magnetic fields could be promising for
orientational control because self-assembly into LC ordered fluids
can promote magnetic alignment36–38.

Here we report the development of stimuli-responsive liquid
crystals based on colloidal nanorod mesogens of HAp (Fig. 1).
Our strategy is to use a bioinspired self-organization approach to
prepare HAp colloidal liquid crystals. Based on biomineralization
processes, we explore the use of acidic macromolecules to
synthesize mesogenic HAp nanorods capable of forming colloidal
liquid crystals (Fig. 1a–c). The structure of the mesogenic
nanorods is clarified by conventional/high-resolution transmis-
sion electron microscopy (TEM/HRTEM). The alignment of the
LC nanorods using external magnetic fields and mechanical
forces (Fig. 1d–f) are also described. Furthermore, our aim is to
functionalize HAp liquid crystals through dynamic control of the
LC order by application of external magnetic fields. A LC system
dynamically responsive to magnetic fields is designed to
demonstrate the magneto-optical functions.

Results
Structural characterization of HAp-based mesogens. A colloidal
dispersion of HAp was obtained by mixing aqueous CaCl2 and
K3PO4 solutions in the presence of poly(acrylic acid) (PAA) as an
additive. Nanorod-shaped HAp crystals were formed, as shown in
Fig. 2. The average length and width of the nanorods were
100± 20 nm and 21± 5 nm, respectively. The aspect ratio of the
nanorods was 5.0. The TEM images (Fig. 2a, c) show that the
nanorods had polycrystalline structures comprising rod-shaped
nanocrystallites. However, the arched pattern observed in the
selected-area electron diffraction (SAED) pattern (Fig. 2b) shows
that the polycrystal have the preferred orientation along with the
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Fig. 1 Schematic representation of synthesis of HAp colloidal liquid crystal and alignment control by external stimuli. a Supersaturated aqueous solution of
calcium phosphate in the presence of PAA. b Colloidally stable HAp nanorods synthesized using bioinspired crystallization process. c LC states of self-
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c axes of HAp directed to the long axis of the nanorod. The
preferred orientation was further analyzed based on the dark-field
TEM image (Fig. 2d) corresponding to the bright-field image in
Fig. 2c, obtained using the (002) reflection shown by the magenta
circle in Fig. 2e. The bright domains of rod-like nanocrystallites
were only observed in nanorods with long axes pointing in the
direction corresponding to the reflection area in Fig. 2e. These
results indicate that the c axes were exclusively aligned along the
long axes of the nanorods. X-ray diffraction (XRD; Supplemen-
tary Fig. 1a) patterns and Fourier-transform infrared (FTIR)
spectra (Supplementary Fig. 2a) show that the precipitates formed
in the early stage were amorphous. The amorphous calcium
phosphate precursors were spherical, with diameters of around
10–30 nm (Supplementary Fig. 3a). The SAED pattern
confirms that the nanoparticles had amorphous-like structure
(Supplementary Fig. 3b). Dynamic light scattering (DLS) mea-
surements showed that the average hydrodynamic diameter of the
amorphous nanoparticle precursors was 50± 20 nm (Supple-
mentary Fig. 4), suggesting that these nanoparticles were hydra-
ted in aqueous solution. The measured zeta potentials of the
amorphous precursors were −18± 1 mV (Supplementary Fig. 5a),
indicative of negative surface charges. Thermogravimetric (TG)
measurements showed that 17.6 wt% PAA was included in the
amorphous precursors (Supplementary Fig. 6a). These results
suggest that PAA molecules played significant roles in stabiliza-
tion of the amorphous and colloidal states of the precursors. The
colloidal precursors of amorphous calcium phosphate were
transformed into HAp nanorods within 3 days, as shown by XRD
and FTIR (Supplementary Figs. 1b and 2b). The formation of
HAp nanorods was also confirmed using inductively coupled
plasma atomic emission spectroscopy (ICP/AES). The Ca/P ratio
in the nanorods was 1.66:1, which is comparable to the stoi-
chiometric value for HAp (1.67:1). Energy-dispersive X-ray
spectroscopy (EDS) analysis shows the presence of Ca, P, C, and
O elements included in a nanorod, which are all ascribed to HAp,
PAA, or water molecules, while no impurities such as K+ and Cl−

were detected (Supplementary Fig. 7). These results suggest high
purity of HAp nanorods.

Atomic-level structural information on the nanorods was
obtained using a negative spherical aberration imaging technique
of HRTEM, properly optimized to be brighter contrast at atom
positions39,40. The HRTEM images show highly crystalline and

anisotropic growth (Fig. 3). The HRTEM image of area A marked in
the low-magnification image (Fig. 3a) clearly shows that the
nanorods consisted of rod-like nanocrystallites of length around 20
nm, with preferential growth of the c axis along the long axis
(Fig. 3b). The nanocrystallite sizes are consistent with those
observed in the dark-field image (Fig. 2d). The HRTEM image
shown in Fig. 3c corresponds to area B of a nanorod marked in
Fig. 3a. Atomic columns can be observed for two different adjacent
nanocrystallites, denoted by I and II in Fig. 3c. The zone axis of
these nanocrystallites is [320], according to the fast Fourier
transform (FFT) patterns (Fig. 3d, e). The experimental image
(Fig. 3f) is in good agreement with the simulated image viewed from
the [320] direction (Fig. 3g). The orientation directions of the
adjacent nanocrystallites are close to each other. One crystallite is
connecting to the other via an amorphous organic layer. These
results suggest that the assembly of primary particles through
oriented attachment is involved in formation of the nanorods. These
crystallization processes are widely observed in biomineralization-
inspired crystallization mechanisms41. The anisotropic mesocrystal-
line structure42 of the HAp nanorod is shown in Fig. 3h.

Surface structures of the nanorods were also examined using
HRTEM. The results show that the nanorod surface was covered
with an amorphous layer of thickness around 1 nm (Fig. 3c,
magenta arrows). It is worth noting that the aqueous colloidal
dispersion of HAp nanorods was free from aggregation, without
surface modification, in spite of the large surface areas. The zeta
potential of an aqueous colloidal dispersion of the HAp nanorods
was measured (Supplementary Fig. 5b). The value was −39± 7
mV, indicating that the surfaces of the nanorods were negatively
charged. TG analysis of the nanorods showed that the HAp
nanorods were hybridized with 13.7 wt% PAA (Supplementary
Fig. 6b). The presence of PAA complexed with the nanorods was
also confirmed by direct elemental analysis for C, H, and N
elements. The HAp/PAA ratio was estimated to be 5.7:1.0 by
weight, which is in good agreement with the value estimated by
the TG measurements. From these results, we conclude that PAA
molecules complexed with the surfaces of the nanorods,
generating electrostatic repulsive forces between the nanorods.

LC behavior of aqueous colloidal dispersions of HAp nanor-
ods. Self-assembly of HAp nanorods into liquid crystals was
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Fig. 2 TEM analysis of synthesized HAp nanorods. a TEM image of one HAp nanorod and b corresponding SAED pattern. c Bright-field TEM image and d
corresponding dark-field TEM image of nanorods. e SAED pattern corresponding to (c). The area of (002) reflection used for the dark-field observation is
marked with a magenta circle in (e). Scale bars, a 50 nm and c, d 100 nm
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observed using polarizing optical microscopy (POM; Fig. 4) of the
condensed aqueous colloidal dispersions after removal of residual
inorganic ions and free PAA molecules that were not complexed
with HAp crystals (Fig. 1c). The colloidal dispersions of HAp
nanorods were held in glass capillaries at various concentrations.
Figure 4a shows the isotropic (Iso)/LC phase separation process
at 8.0 vol% with time. In the colloidal dispersion, LC droplets
emerged from the Iso phase and gradually settled at the bottom
because of their higher density. Iso/LC phase separation was
complete within 14 days. A phase diagram of the colloidal dis-
persions was obtained by measuring the volume ratios of the Iso
and LC phases (Fig. 4b). At concentrations below 7.6 vol%, the
dispersions only showed the Iso state. The Iso/LC coexisting
phase appeared in the volume fraction range 7.6–8.8 vol%. The
proportion of the LC phase increased with increasing con-
centration of HAp nanorods. Colloidal dispersions at con-
centrations above 8.8 vol% consisted entirely of the LC state
(Fig. 4c). The colloidal dispersions condensed to the LC state still
maintained sufficient fluidity (Fig. 4d), suggesting potential
dynamic properties.

Macroscopic alignment using mechanical stimuli. The HAp
liquid crystals were macroscopically oriented using external

mechanical stimuli, as shown in Fig. 5. Unidirectional alignment
(Fig. 5a–d) of the LC colloidal dispersions was achieved by uni-
directional mechanical shearing (Fig. 1d). Radially aligned
assemblies (Fig. 5e–h) were obtained by spin-coating (Fig. 1e).
The image of the assembly of HAp nanorods oriented by
mechanical shearing changed from bright to dark on each rota-
tion of the sample by 45° between crossed polarizers (Fig. 5a, b).
Unidirectional alignment was also observed using scanning
electron microscopy (SEM) (Fig. 5c). The two-dimensional dis-
tribution of the c axes of the HAp nanorods was determined
based on the XRD pattern of the nanorod assembly oriented by
mechanical shearing (Fig. 5d). The results clearly show that the c
axes of HAp were highly aligned along the shearing direction. The
orientation degree of the c axes was estimated to be 0.81. Use of a
wave plate in the POM observations showed that the unidirec-
tional alignment of these nanorods gives rise to positive bire-
fringence (Supplementary Fig. 8).

Spin-coating of colloidal dispersions with concentrations
higher than 7.3 vol% provided a different type of macroscopic
scale aligned structure (Fig. 1e). After spin-coating of the colloidal
dispersions, the assembly appeared as a crossed birefringence
pattern (Fig. 5e). The distribution of the interference color pattern
(Fig. 5f) indicates that the c axes of HAp were radially aligned in
the assembly, based on the positive birefringence of LC materials
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(Supplementary Fig. 8). The radial alignment continued seam-
lessly over an area of 9 cm2 (Fig. 5e). For the positions on the
coating denoted by I and II in Fig. 5f, the alignment directions
were orthogonal to each other (Fig. 5g, h). These results show that
the nanorods were aligned from the center toward the periphery
to give a macroscopic radial orientation.

Magnetic alignment of LC colloidal dispersions. We found that
LC colloidal dispersions of the HAp nanorods can be magneti-
cally aligned (Fig. 1f). A magneto-optical response was

successfully achieved for our LC HAp materials under crossed
polarizers (Fig. 6). Although the HAp nanorods prepared in the
present study are polycrystalline, the nanorods were highly
crystalline and crystallographically oriented through the bioin-
spired self-organization process (Figs. 2 and 3). The nanorods can
align in magnetic fields because of crystalline magnetic aniso-
tropy32,33. These HAp nanorods in the LC state can be aligned
under a 3 T magnetic field (Supplementary Fig. 9). In contrast,
the Iso colloidal dispersion of HAp nanorods shows no magnetic
response at 3 T and even at 10 T (Supplementary Fig. 10). We
investigated the magneto-responsive properties by measuring
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changes in the transmitted light intensity on application of
magnetic fields under crossed polarizers (Fig. 6a). This optical
change reflects the change in the orientational order43. The HAp
nanorods in the LC state required several minutes for the
orientational change in the case of both the magnetic response
(Supplementary Fig. 11a) and relaxation behaviors (Supplemen-
tary Fig. 11b). It is presumed that the response and relaxation
processes were hindered by anchoring of the nanorod mesogens
on the glass walls of the optical cell44,45. This is supported by the
slower response speed on the order of hours when the sample
thickness was decreased from 2mm to 0.1 mm (Supplementary
Fig. 12).

It is worth noting that the Iso/LC biphasic colloidal dispersions
showed an outstanding response to magnetic fields. When the
biphasic colloidal dispersion (Fig. 6b) was placed under a
magnetic field, it quickly responded to external fields over 1 T
and reached the maximum order parameter within a few seconds
(Fig. 6c), which is 100 times faster than the response speed of the
homogeneous LC colloidal dispersions in the same 2-mm-thick
cell (Supplementary Fig. 11a). When the magnetic field of 3 T was
turned off, relaxation started immediately, and it only took a few
seconds to complete (Fig. 6d); this is 20 times faster than the
relaxation speed of the homogeneous LC colloidal dispersions
(Supplementary Fig. 11b). This behavior allows rapid oscillations
of the transmitted light intensity within a few seconds when the
magnetic field of 3 T is alternately turned on and off (Fig. 6e).

The dispersion is highly transparent, with a transmittance of
98% at a wavelength of 670 nm, even in a 2-mm-thick cell
(Supplementary Fig. 13). This is because HAp shows no light
absorption band in the visible region and the nano-sized mesogens
show no light scattering. The optical properties of these LC
materials could be used for efficient control of light transmission.

Magnetic light modulation by biphasic system. We successfully
achieved magnetic modulation of light transmission by dynamic

control of the LC order in the biphasic system (Fig. 7). It should
be noted that for the Iso/LC biphasic colloidal dispersion, there
was no hysteresis of the optical intensities during increasing and
decreasing of the applied magnetic field strength (Fig. 7a). In
contrast, the optical intensity of the colloidal dispersion of
homogeneous LC states did not return to the initial level after the
relaxation process (Supplementary Fig. 11a, b) because of strong
anchoring at the liquid crystal/cell wall interface. Reversible
switching of the brightness of the biphasic system was also shown
by in situ observations under crossed polarizers (Fig. 7b). The
optical intensity of the biphasic system precisely traced the
changes in the strength of the external magnetic field, as shown in
Fig. 7c. In addition, the light transmission was 27 times higher at
10 T than at 3 T (Fig. 7c), showing a large contrast ratio. The
dependence of light transmission intensity on the field strength is
in close agreement with the theoretical calculation based on
orientation change of LC directors induced by magnetic torque
(Supplementary Fig. 16). These results suggest that the light
transmission can be effectively modulated by tuning the strength
of the applied magnetic field. To examine the effects of magnetic
field strength on optical modulation, the applied magnetic fields
were oscillated between 5 T and 7 T, which led to reversible
switching of brightness between two particular values (Fig. 7d).
When the applied field strength was changed, the optical trans-
mission was modulated, depending on the field strength (Fig. 7e).
Modulation of the transmitted light was also achieved with lower
field strengths of around 1–3 T when the intensity of the light
source was increased (Supplementary Fig. 14).

Discussion
In the present work, a family of liquid crystals based on HAp was
developed. We successfully obtained magneto-optical functions
through control of the LC order of HAp nanorods by external
magnetic fields. In general, when a magnetic field is applied to a
particle, the magnetic energy is proportional to the particle
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volume. For nano-sized materials, this energy is generally lower
than the thermal energy, kT, resulting in randomization of the
alignment caused by thermal fluctuations. The formation of LC
states enables the HAp nanorods to align in magnetic fields
because of the larger liquid crystal domains, which interact with
the magnetic field36,37. POM observations with a wave plate
(Supplementary Fig. 15) showed that the HAp nanorods are
aligned perpendicular to the direction of the magnetic field, based
on their positive birefringence (Supplementary Fig. 8). The
alignment direction suggests that the liquid crystals in the present
work have negative magnetic anisotropy46. For the magneto-
responsive functions, the key discovery is the dynamic behaviors
of Iso/LC biphasic colloidal dispersions. The faster optical
switching in the biphasic system can be attributed to the Iso/LC
biphasic nature of the system, with the LC phases dispersed in the
form of droplets in the Iso aqueous phase. In the biphasic system,
the directors of LC droplets are quickly oriented by magnetic
torque upon application of magnetic fields and quickly relaxed by
Brownian motion after removal of the magnetic fields (Fig. 8). We
assume that the soft LC/aqueous interface of the LC droplets
results in dynamic properties of the biphasic system in response
to external magnetic fields, while dynamic magnetic response of
the homogeneous system is disturbed by the anchoring effect at
the LC/solid glass cell interface (Supplementary Fig. 11). The
magnetic anisotropy of the LC droplets in the biphasic colloidal
dispersion was estimated. The value of ΔχV was found to be of
the order of 10−26 m3, based on fitting of the theoretical order

parameters under magnetic fields (Supplementary Fig. 16), where
Δχ is the anisotropy of the magnetic susceptibility and V is the
domain size of the liquid crystal. The biphasic system contains
droplets of various sizes, from nano to micron scales. If the
average size is assumed to be 1 µm3, the anisotropy of the mag-
netic susceptibility (Δχ) is roughly calculated to be −10−8. This
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dispersed in droplet form in the Iso aqueous phase
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evaluation suggests that magneto-responsive functions can be
achieved with small magnetic anisotropy by using the dynamic
behavior of the biphasic system. There has been a focus on the
observation47–49 and simulation50 of the formation of such
biphasic states, but little attention has been paid to functionality.
Here we shed new light on the functional properties of the
biphasic state, which will advance the development of LC mate-
rials with dynamic functions. The liquid crystal can also be
macroscopically oriented by a mechanical force. Control of the
crystallization of HAp has been intensively studied for the
development of structurally controlled nanomaterials inspired by
bones and teeth51–54, but macroscopic orientational control is still
challenging in synthetic systems. LC HAp materials could provide
platforms for structural control of HAp-based materials.

We developed a biomineralization-inspired method using PAA
molecules for the synthesis of colloidal liquid crystals. Self-
organization of HAp crystals with PAA molecules led to the
formation of mesogenic nanorods with colloidal stability.
Atomic-scale observations using aberration-corrected TEM
showed the self-organized inorganic/organic hybrid structure.
These HAp nanorods stabilized by PAA molecules maintain
stable colloidal states over a few years without control of pH and
temperature. The polymer additive is therefore responsible not
only for morphological control, but also for efficient dispersion of
the HAp nanorods, which is essential for LC ordering in colloidal
states. In our synthetic approach, LC HAp nanorods were syn-
thesized in the PAA concentration range 0.18–0.90 wt% (Sup-
plementary Fig. 17). The aspect ratios and sizes of these
mesogenic nanorods are similar. The nanorods synthesized at
PAA concentrations lower than 0.54 wt% showed more viscous
states in their condensed LC colloidal dispersions. The amounts
of PAA molecules self-assembled with nanorods were decreased
with decreasing PAA concentrations in the reaction solutions
(Supplementary Fig. 18), which may decrease electrostatic
repulsive forces between nanorods. These results suggest that
appropriate PAA concentration range 0.54–0.90 wt% is important
for the synthesis of LC HAp nanorods with dynamic properties.
The present study suggest that bioinspired self-organization of
HAp with PAA is an effective approach to the syntheses of these
colloidal liquid crystals. It is expected that application of this
method using self-organization of organic molecules with inor-
ganic materials will expand the range of compounds available as
liquid crystals. Because of features such as facile synthesis and the
bio-friendliness of HAp, stimuli-responsive LC HAp is a pro-
mising bio-friendly functional material that could be used for
optical devices, biosensors, artificial bones, dental implants, and
cell culture scaffolds.

Methods
Preparation of HAp colloidal dispersions. A 100 mM aqueous CaCl2 solution
containing PAA (Mw = 2.0 × 103, 7.2 × 10−1 wt%) was mixed with an equal volume
of 100 mM aqueous K3PO4 solution. The mixed solution was stirred for 3 days at
60 °C and then centrifuged. The supernatant was decanted. Before drying, the
collected precipitates were redispersed in deionized water. The dispersion was
centrifuged, and the supernatant was removed. Finally, deionized water was added
to the sediment to adjust the concentration. The composition of the final materials
after drying was determined to be 82.46 wt% HAp, 14.4 wt% PAA molecules, and
3.14 wt% water molecules based on elemental analysis for C, H, and N elements.
No impurities were detected in the EDS analyses (Supplementary Fig. 7).

Characterization. XRD patterns were recorded using a SmartLab (Rigaku) dif-
fractometer with Cu Kα radiation. FTIR spectra were obtained with a JASCO/
FTIR-660 Plus spectrometer using the KBr method. The Ca/P ratio of the HAp
nanorods was determined using ICP/AES (Thermo Scientific, iCAP DUO-6300).
PAA amounts in the final materials were analyzed using an Exeter Analytical CE-
440 Elemental Analyser. TG measurements (Rigaku, TG-8120) were performed up
to 1000 °C at a heating rate of 10 °C min−1 under air flow (100 mLmin−1). The
optical properties of the samples were investigated using a polarizing optical
microscope (Olympus, BX51). The crystal morphologies were examined using SEM

(Hitachi, S-4700), with conductive treatment using a Hitachi E-1030 ion sputterer.
TEM characterizations were performed using a conventional TEM (JEOL, JEM-
2800) equipped with a window-less silicon drift director (Oxford Instruments, X-
MaxN 100TLE), operated at 100 kV. The EDS analyses were conducted with a
selected-area electron probe, for the supporting grid free HAp nanorod (Supple-
mentary Fig. 7). HRTEM images were obtained using an aberration-corrected TEM
(JEOL, JEM-ARM200F) at 120 kV. Given the 120-kV instrument with an infor-
mation limit of 10 nm−1, we determined the negative spherical aberration imaging
condition40. The HRTEM image simulation was carried out by the xHREM soft-
ware (HREM Research Inc.). DLS and zeta potential measurements were per-
formed using a Zetasizer (Nano-ZS, from Malvern Instruments Ltd.). UV-vis
transmittance spectra were recorded using a Jasco V-670 spectrometer equipped
with an ISN-800T integrating sphere unit.

Application of magnetic fields. A magnetic field was applied at room temperature
using a cryocooler-cooled superconducting magnet (Sumitomo Heavy Industries,
Tokyo, Japan). The transmitted light intensity was recorded under crossed polar-
izers using a laser of wavelength 670 nm as the light source. The polarizer and
analyzer were each set at an angle of 45° with respect to the direction of the applied
magnetic field.

Materials. All chemical reagents used for the synthesis of HAp crystals were obtained
from commercial sources. PAA (Mw = 2.0 × 103) was purchased from Polysciences,
Inc. (Warrington, PA, USA). CaCl2 and K3PO4 were obtained from Wako Pure
Chemicals Industries, Ltd. (Osaka, Japan). All reagents were used as received.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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