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A B S T R A C T   

Keloids, a pathological scar that is induced by the consequence of aberrant wound healing, is still 
a major global health concern for its unsatisfactory treatment outcomes. HIF-1α, a main regulator 
of hypoxia, mainly acts through some proteins or signaling pathways and plays important roles in 
a variety of biological processes. Accumulating evidence has shown that HIF-1α played a crucial 
role in the process of keloid formation. In this review, we attempted to summarize the current 
knowledge on the association between HIF-1α expression and the development and progression of 
keloids. Through a comprehensive analysis, the molecular mechanisms underlying HIF-1α in 
keloids were shown to be correlated to the proliferation of fibroblasts, angiogenesis, and collagen 
deposits. The affected proteins and the signaling pathways were multiple. For instance, HIF-1α 
was reported to promote keloids formation by enhancing angiogenesis, fibroblast proliferation, 
and collagen deposition through the activation of periostin PI3K/Akt, TGF-β/Smad and TLR4/ 
MyD88/NF-κB pathway. However, the specific effects of HIF-1α on keloids keloid illnesses in 
clinical practice is are entirely unclear, and further studies in clinical trials are still warranted. 
Therefore, an in-depth understanding of the biological mechanisms of HIF-1α in keloid formation 
is significant to develop promising therapeutic targets for the treatment of keloids in clinical 
practice.   

1. Introduction 

Keloids are caused by abnormal healing processes in the skin, and they are characterized by excessive growth of scar tissue [1]. The 
prevalence of keloids ranges from 0.09% to 16% according to different countries or regions [2]. The estimated number of sufferers with 
keloids are predicted with 11 million [3]. Keloids are reported by statistics to be 7–10 times more likely to cause Blacks to seek medical 
attention than Whites [4]. This illness may cause the physical symptoms of pain, itch, and immobility. Besides, keloids are also 
associated with psychological symptoms, i.e., appearance anxiety and depression. As a result, it has a negative impact on one’s quality 
of life and everyday activities [5]. At present, there are several treatments available, including corticosteroid injections, surgery, and 
pressure therapy. But these managements are complex, expensive, and time-consuming [6]. What’s worse, these treatments may only 
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be partially successful. Therefore, a better understanding of the pathological process of keloids may help to explore effective target 
treatments. It was reported that fibroblasts, blood vessels, and collagen deposits played an important role in the process of keloid 
formation [7,8]. Fibroblasts are responsible for producing collagen, which forms the structure of the scar tissue [9]. Excessive growth 
of fibroblasts can lead to overproduction of collagen, which results in the raised appearance of keloids [10]. Additionally, an increase 
in blood vessels in the area of the keloids may also contribute to the growth of keloids [11]. Treatments for keloids typically aim to 
reduce the appearance of the scar tissue and may include surgical removal, steroid injections, or laser therapy [12,13]. However, the 
treatment effect is often suboptimal. Further research is needed to fully understand the mechanisms of keloid formation and to develop 
more effective treatment options. 

A study in blood vessels of keloids showed that the vessels of the central region are compressed, providing only sparse, inadequate 
perfusion [14]. In addition, keloids showed an increase in adenosine triphosphate (ATP) levels after about ten years as a result of 
anaerobic glycolysis caused by the decrease in oxygen perfusion from crushed blood vessels [15,16]. Also, animal models confirmed 
that oxygen content in local tissue was significantly decreased during keloids formation extracellular matrix remodeling and equine 
dermal fibroblast proliferation [17]. It was reported that hypoxia inducible hypoxia-induced factor-1 alpha (HIF-1α) expression was 
highly linked with the concentration of oxygen [18]. Some previous studies have unveiled that HIF-1α, a main regulator of hypoxia, 
influenced not only lipid metabolism but also angiogenesis and wound healing [19–21]. Currently, HIF-1α has also been demonstrated 
to have an essential important role in the process of keloids [22–24]. However, the specific mechanisms of keloid formation are not yet 
fully understood. In this present study, we summarize the recent advances of HIF-1α in keloids. 

2. Overview of HIF-1α 

In 1991, Semenza et al. [25] discovered the presence of HIF protein for the first time during their research on the erythropoietin 
(EPO) gene. This protein constitutes a large family of transcriptional regulators and has the ability to activate the transcription of 
several genes related to hypoxia [25]. The HIF family has three members, namely HIF-1, HIF-2, and HIF-3 and comprises α and β 
subunits (HIF-1α, HIF-2α, and HIF-3α and HIF-1β) [26,27]. Among them, HIF-1α and HIF-2α are the most extensively characterized 
and dimerize with HIF-1β respectively, an aryl-hydrocarbon-nuclear receptor translocator (ARNT) [28]. HIF-1 is a transcriptionally 
active heterodimer composed of the HIF-1α and HIF-1β subunits [29]. HIF-1α is localized to cytoplasm and functions as a key tran-
scription factor that regulates the cellular adaptive responses to hypoxia [30]. On the other hand, HIF-1β is located in the nucleus and is 
constitutively expressed [31]. Activation of HIF leads to the upregulation of the expression of multiple target genes to promote cellular 
adaptation and resistance to hypoxic environments. For example, HIF-1α is the master transcriptional factor in regulating the 
expression of more than 40 target genes in response to hypoxia. 

The degradation or synthesis of HIF-1α is tightly regulated by different oxygen levels. In normoxic conditions, prolyl hydroxylase 
(PHD) enzymes can bind to HIF-1α and hydroxylate specific proline residues, contributing to the degradation by von Hippel Lindau 
protein (pVHL) and the proteasome [32]. Factor-inhibiting HIF-1 (FIH-1), a negative regulator of hypoxia inducible factor (HIF), has 
been reported to hydroxylate asparagine residue and disrupt the binding of the co-activators p300/CREB-binding protein to FIH-1, 
which inhibits its transcriptional activation potential [33,34]. In addition, FIH-1 can suppress transactivation by recruiting histone 
deacetylases through interacting with pVHL [35]. For example, Zhu et al. [36] found that the depletion of miR-31 inhibited the 
transactivation function of HIF-1α by suppressing the dissociation of HIF-1α from FIH-1 and reduced the amount of FIH-1 to 
co-activator p300. Additionally, Kang et al. [37] demonstrated that FIH-1 promoted pVHL binding to HIF-1α via acetylation by hy-
droxylating hARD 1/NAA10, a component of N-terminal acetyltransferase, under normoxia. However, under low oxygen conditions, 
the hydroxylation of HIF-1α and the activity of PHD enzymes are inhibited, which caused the HIF-1α subunit to become stable and 
rapidly accumulate in the cytoplasm [38]. Then, the accumulated HIF-1α translocates to the nucleus, dimerizes with HIF-1β, and 
recognizes hypoxia response elements (HREs) of the promoters of target genes [39]. The accumulation of HIF-1α leads to the activation 
of genes involved in angiogenesis, glycolysis, and wound healing. Chen et al. [40] reported that HIF-1α induced by bone morphologic 
protein 9 (BMP9) significantly promoted the angiogenesis of hepatocellular carcinoma by activating vascular endothelial growth 
factor A (VEGFA) expression. Gao et al. [41] found that HIF-1α accelerated the process of diabetic wound healing via keratinocyte 
migration. Overall, the regulation of HIF-1α degradation and synthesis in response to oxygen levels is crucial for cellular homeostasis 
and adaptation to changing environmental conditions. 

Previous studies have demonstrated that constant hypoxia existed inside of keloid tissue [42,43]. Meanwhile, HIF-1α over-
expression was observed in keloid tissue [44–46]. Increasing studies showed have shown the roles of HIF-1α in keloid formation 
[47–50]. This review mainly illustrated the major function of HIF-1α in keloid formation and provided a new perspective on keloid 
prevention and treatment. 

3. Data sources and searches 

Four electronic databases, i.e., MEDLINE (PubMed), the EMBASE, Cochrane Library databases, and Google Scholar, were sys-
tematically searched to find the eligible studies. The timeframe spanned from the inception of the four databases to March 15, 2023. 
Only those studies published by utilizing the English language were included. The following search terms used in different combi-
nations in the MEDLINE database were: (HIF1α), (hypoxia), AND (keloid). In addition, the reference lists were manually searched for 
screening the further eligible studies. The features of the included studies were listed in Table 1, showing the characteristics of and the 
main findings of the included studies. 
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Table 1 
The features of the included studies.  

Study/ 
Reference 

Research 
subject 

Associated genes/ 
pathways 

Measurement Main findings 

Deschene et al. 
[17] 2012 

Horse NA Western blotting Hypoxia promoted the expression of ECM-associated 
proteins (COL1A1 and MMP2) via inducing HIF-1α in 
equine dermal fibroblast, leading to scar formation. 

Wang et al. 
[22] 2020 

KFs NA Western blotting Hypoxia-inducible HIF-1α promoted proliferation, 
migration and collagen synthesis and suppressed 
apoptosis by regulating glucose metabolism in KFs. 

Kang et al. [23] 
2020 

KFs NA Western blotting and 
immunohistochemistry 

HIF-1α promoted collagen secretion in KFs. 

Jusman et al. 
[24] 2019 

KFs NA qRT-PCR and ELISA HIF-1α induced fibroblast proliferation by promoting 
Cygb expression in keloids. 

Zhang et al. 
[44] 2023 

Keloid tissue 
samples 

NA Western blotting and 
immunohistochemistry 

Expression levels of HIF-1α showed higher expression in 
keloid tissue. 

Li et al. [45] 
2022 

Patients NA Western blotting and 
immunohistochemistry 

The relative expression of HIF-1α was significantly 
increased in the recurred keloid skin after radiotherapy. 

Si et al. [46] 
2020 

KFs NA Western blotting and qRT-PCR Resveratrol treated keloids by suppressing proliferation 
and promoting apoptosis in KFs through the inhibition of 
HIF-1α. 

Liu et al. [47] 
2019 

Keloid tissue 
samples and 
KFs 

NA Western blotting Ascorbic acid inhibited scar formation by decreasing 
HIF-1α expression. 

Zhang et al. 
[48] 2018 

Keloid tissue 
samples 

NA Western blotting. qRT-PCR and 
fluorescence staining 

HBOT ameliorated the EMT phenomenon and decreased 
the invasive ability of keloid keratinocytes by 
suppressing HIF-1α expression. 

Wulandari 
et al. [49] 
2016 

Keloid tissue 
samples 

NA qRT-PCR and ELISA HIF-1α induced keloid formation by regulating 
procollagen I and III secretion in KFs. 

Zhang et al. 
[50] 2003 

Keloid tissue 
samples and 
KFs 

NA Western blotting The inhibition of HIF-1α deterred scar fibrosis by 
downregulating PAI-1 gene expression in KFs. 

Xu et al. [51] 
2018 

Keloid tissue 
samples and 
KFs 

HIF-1α/TGF-β1/Smad Western blotting, qRT-PCR and 
immunohistochemistry 

Hypoxia promoted collagen deposition by activating 
TGF-β1/Smad signaling via HIF-1α, leading to the 
formation of keloids. 

Lin et al. [52] 
2020 

Keloid tissue 
samples and 
KFs 

HIF-1α and TGF- 
β/Smad 

Western blotting and 
immunofluorescence 

Sumoylation enhanced the activity of the HIF-1α and 
TGF-β/Smad signaling pathways in keloids. 

Lei et al. [53] 
2019 

Keloid tissue 
samples and 
KFs 

Parkin/HIF-1α/TGF- 
β/Smad 

Western blotting, qRT-PCR and 
immunofluorescence 

Silencing Parkin significantly enhanced KFs 
proliferation and inhibited apoptosis by targeting TGF- 
β/Smad signaling pathway through inducing HIF-1α 
expression. 

Zhao et al. [54] 
2017 

Keloid tissue 
samples and 
KFs 

HIF-1α/TGF-β1/Smad3 Western blotting and qRT-PCR HIF-1α drove the transition of human dermal fibroblasts 
into myofibroblasts by activating the TGF-β1/Smad3 
pathway. 

Lei et al. [55] 
2019 

KFs and male 
nude mice 

HIF-1α/TGF-β/Smad 
and TLR4/MyD88/NF- 
κB pathways 

Western blotting and 
immunohistochemistry 

The inhibition of HIF-1α significantly inhibited the 
growth of keloids by suppressing the TGF-β/Smad and 
TLR4/MyD88/NF-κB pathways. 

Lee et al. [56] 
2022 

KFs IL-17-STAT3- HIF-1α Western blotting and 
immunohistochemistry 

The IL-17-STAT3-HIF-1a axis increased necroptosis and 
fibrosis by causing defective autophagy in KFs. 

Kim et al. [57] 
2019 

Keloid tissue 
samples and 
KFs 

HIF-1α/ERK/MAPK Western blotting and qRT-PCR HIF-1α resulted in abnormal cutaneous scarring by 
inducing abnormal fibroblast activity through activation 
of the ERK signaling pathway. 

Wang et al. 
[58] 2022 

Keloid tissue 
samples and 
KFs 

HIF-1α/HOXC6/ERK Western blotting HIF-1α promoted proliferation, migration and ECM 
production in KFs through the HOXC6/ERK signaling 
pathway, contributed to the progression of keloids. 

Zhang et al. 
[59] 2006 

Keloid tissue 
samples and 
KFs 

ERK1/2/HIF-1α and 
PI3K/AKT/HIF-1α 

Western blotting and 
immunohistochemistry 

The activated ERK1/2 and PI3K/AKT contributed to the 
accumulation of HIF-1α and the expression of VEGF in 
KFs. (VEGF) 

Syed et al. [60] 
2013 

Keloid tissue 
samples and 
KFs 

PI3K/AKT/mTOR/HIF- 
1α 

High-throughput In-Cell Western 
Blotting 

Inhibition of PI3K/AKT/mTOR signaling suppressed 
keloid cell spreading, proliferation and migration by 
decreasing the expression of HIF-1α. 

Zhang et al. 
[61] 2014 

Keloid tissue 
samples and 
KFs 

HIF-1α/αvβ3 integrin- 
PI3K/AKT 

Western blotting HIF-1α stimulated proliferation, collagen synthesis, 
migration and invasion of KFs by activating αvβ3 
integrin-PI3K/AKT signaling pathway through 
increasing periostin expression. 

Zhang et al. 
[62] 2004 

Keloid tissue 
samples and 
KFs 

ERK1/2/HIF-1α, PI3K/ 
AKT/HIF-1α, and 
PTKs/HIF-1α 

Northern and western blotting 
analysis 

ERK1/2, PI3K/AKT, and PTKs might promote keloid 
formation by inducing PAI-1 expression through the 
activation of HIF-1α. 

(continued on next page) 
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4. The roles of HIF-1α in keloids formation 

4.1. HIF-1α induced keloid formation by increasing collagen deposition and fibroblast proliferation through by activating the TGF-β/Smad 
signaling pathway 

As we all known, Fibroblast proliferation and ECM synthesis played play important roles in keloid formation [68]. HIF-1 has been 
reported to promote fibroblast proliferation and ECM synthesis by up-regulating connective tissue growth factor (CTGF), leading to the 
formation of keloids [69]. Also, Transforming growth factor-β (TGF-β) has been demonstrated to induce sustained fibrosis by coop-
erating with CTGF [70]. TGF-β, a multifunctional cytokine, comprises three different subtypes (TGF-β1, TGF-β2, TGF-β3) in mammals, 
activating a heteromeric complex mediated by two types of transmembrane serine/threonine kinase receptors [71]. After the binding 
of TGF-β, the type II (TβRII) receptor phosphorylates and activates the type I (TβRI) receptor, activating the TGF-β/Smad signaling 
pathway [72]. The TGF-β/Smad pathway plays a crucial role in cell proliferation, differentiation, and apoptosis [73]. Li et al. [74] 
found that the expression level of TGF-β was up-regulated in cancer cells during hypoxia. 

In addition, TGF-β has been found to be involved in the process of keloid formation by stimulating collagen formation and ECM 
synthesis [75]. Wang et al. [76] reported that activating transcription factor 3 (ATF3), an adaptive responsive gene, significantly 
promoted growth and invasion, and inhibited apoptosis by activating the TGF-β/Smad pathway in keloid fibroblasts. Huang et al. [77] 
demonstrated that HIF-1α drived drove glucose metabolic reprogramming by switching the functionality of the TGF-β/Smad pathway 
in non-small cell lung cancer. Recently, Xu et al. [51] reported that hypoxia not only promoted TGF-β1/Smad signaling but also 
elevated HIF-1α expression in keloid fibroblasts (KFs). Furthermore, total collagen deposition increased significantly with prolonged 
hypoxia for KFs [51]. Importantly, HIF-1α silencing dramatically inhibited the TGF-β/Smad pathway and reversed the collagen 
deposition induced by hypoxia [51]. Moreover, silencing of Smad4 significantly inhibited the gene and protein expression levels of 
HIF-1α in KFs [51]. 

The aforementioned results indicate that HIF-1α increased collagen deposition by activating the TGF-β/Smad signaling pathway in 
dermal fibroblasts. Li et al. [52] found that the inhibition of desumoylation enhanced collagen deposition and fibroblast migration by 
activating HIF-1α and TGF-β/Smad signaling pathways. Consistent with these results, other investigators have since demonstrated that 
HIF-1α overexpression significantly enhanced KFs proliferation and inhibited apoptosis by targeting the TGF-β/Smad signaling 
pathway [53,54]. These results demonstrated that HIF-1α promoted keloid formation by enhancing collagen deposition and fibroblast 
proliferation through the activation of the TGF-β/Smad pathway. 

4.2. HIF-1α promoted the keloid development by activating TLR4/myd88/NF-κb signaling pathways 

Angiogenesis is closely associated with keloid formation because of due to the persistence of inflammation [78]. The inhibition of 
the TLR4/NF-κB signaling pathway enhanced angiogenesis [79]. Toll-like receptor 4 (TLR4), a transmembrane protein, is widely 
expresses expressed in inflammatory cells, fibroblasts, and keratinocytes [80]. It binds to endogenous ligands, such as fibronectin and 
heat shock proteins, and to exogenous one ones, such as lipopolysaccharide [81]. Also, TLR4 has been showed to modulate intra-
cellular signaling transduction via the adaptor protein myeloid differentiation factor 88 (MyD88) [82]. Physiologically, TLR4 plays an 
important role as a biosensor of tissue injury to initiate tissue repair after injury [82]. It was reported that TLR4 expression was 
elevated in pathologic fibroses, including keloids [83]. Additionally, TLR4 increased TGF-β signaling and fibroblast activation and 

Table 1 (continued ) 

Study/ 
Reference 

Research 
subject 

Associated genes/ 
pathways 

Measurement Main findings 

Wang et al. 
[63] 2023 

Keloid tissue 
samples and 
KFs 

PI3K/AKT/HIF-1α Western blotting PI3K/AKT pathway promoted KFs proliferation via 
enhancing glycolysis through interacting with HIF-1α 
under hypoxia. 

Ma et al. [64] 
2015 

Keloid tissue 
samples and 
KFs 

NA Immunohistochemistry, 
fluorescence staining and western 
blotting 

HIF-1α promoted the transition of keloid-derived 
keratinocytes into KFs by inducing EMT. 

Lei et al. [65] 
2019 

Keloid tissue 
samples and 
KFs 

HIF-1α/PKM2 Western blotting and qRT-PCR Metformin inhibited EMT of KFs via the HIF-1α/PKM2 
signaling pathway. 

Song et al. [66] 
2018 

Keloid tissue 
samples 

NA Immunohistochemistry HBOT reduced the recurrence rate of keloids by 
inhibiting HIF-1α and reducing the inflammatory 
reaction. 

Long et al. [67] 
2016 

Keloid tissue 
samples and 
KFs 

NA Western blotting and qRT-PCR 2ME2 significantly increased radiation-induced 
apoptosis of KFs by inhibiting the protein expression of 
HIF-1α. 

Note: HIF-α = Hypoxia-inducible factor-1α; KFs = Keloid fibroblasts; TGF-β = Transforming growth factor-beta; TLR4 = Toll-like receptor 4; MyD88 
= The adaptor protein myeloid differentiation factor 88; NF-κB=Nuclear factor-kappa B; IL-17 = interleukin-17; STAT3 = Signal transducer and 
activator of transcription 3; AKT = Protein kinase B; Cygb = Cytoglobin; HOXC6=Homeobox C6; ERK = Extracellular regulated protein kinase; 
PI3K=Phosphoinositide 3-kinase; AKT = Protein kinase B; EMT = Epithelial-to-mesenchymal transition; PKM2 = Pyruvate kinase M2; 2ME2 = 2- 
methoxyestradiol; HBOT=Hyperbaric oxygen therapy; PAI-1 = plasminogen activator inhibitor-1; PTKs = Protein tyrosine kinases; EMT = Epithelial- 
to-mesenchymal transition; mTOR = Mammalian target of rapamycin. 
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proliferation [84]. Ge et al. [85] found that TLR4 significantly increased atrial fibrosis in spontaneously hypertensive rats by upre-
gulating TGF-β expression. In contrary, the silencing of TLR4 significantly downregulated TGF-β to reduce atrial fibrosis in sponta-
neously hypertensive rats [85]. Chen et al. [86] demonstrated that higher expression of TLR4 promoted scar formation by increasing 
the expression of TGF-β and collagen through the Smad4 pathway. Furthermore, Shi et al. [87] reported that astragaloside IV, an active 
compound, prevented acute myocardial infarction by reducing the expression of TLR4, MyD88, and NF-κB p65. However, whether 
TLR4/MyD88/NF-κB signaling pathway is involved in keloid formation remains largely unclear. Lei et al. [55] found that the 
expression levels of HIF-1α, TLR4, MyD88, and NF-κB in KFs were significantly upregulated after hypoxic stimulation. 

In addition, KFs was were found to secrete the inflammatory factor IL-6 after hypoxic stimulation [55]. The NF-κB blocker pyr-
rolidine dithiocarbamate (PDTC) significantly inhibited the secretion of IL-6 in KFs, indicating that the production of IL-6 was pri-
marily modulated by the TLR4/MyD88/NF-κB pathway [55]. Interestingly, the expression changes of TLR4, MyD88, and NF-κB 
induced by hypoxia were reversed by silencing HIF-1α [55]. Moreover, the silence of HIF-1α suppressed the proliferation of KFs and 
ex-vivo experiments also demonstrated that the HIF-1α inhibitor inhibited the growth of keloid tissues [55]. These studies suggested 
that HIF-1α promoted the keloid formation through the activation of the TLR4/MyD88/NF-κB signaling pathway. 

4.3. The inhibition of the IL-17-STAT3-HIF-1α axis inhibited keloid formation by suppressing defective autophagy in KF 

The fibrotic response is a major mechanism of keloid formation. However, the fibrotic response is the consequence of chronic 
inflammation in keloids and blocks scar maturation [88]. Various pro-inflammatory cytokines, including IL-4, IL-13, IL-6, and IL-17, 
play important roles in keloid formation by inducing excessive ECM deposition in association with paracrine signals or autocrine 
signals arising from fibroblasts [89,90]. Periostin, an ECM protein that plays an important role in skin development, is also involved in 
a wide range of skin disorders such as abnormal scar formation, wound closure, and systemic scleroderma [91–93]. Maeda et al. [94] 
reported that IL-4 and IL-13 stimulated TGF-β1expression by inducing periostin secretion, which promoted abnormal scar formation. 
Lee et al. [95] found that IL-17 promoted keloid formation by stimulating the serection secretion of stromal cell-derived factor-1 
through the activation of the STAT3 pathway in keloid-derived skin fibroblasts. There is a close link between inflammatory diseases 
and autophagy. Cong et al. [96] reported that IL-17 exacerbated fine particulate matter-mediated lung inflammation and fibrosis by 
suppressing PI3K/Akt/mTOR-mediated autophagy. In addition, IL-17 has been reported to augment the expression of HIF-1α and 
osteoclast-mediated bone erosion under hypoxia-mimetic conditions [97]. HIF-1α can drives hypoxia-induced autophagy by pro-
moting ATG2A and ATG14 translation [98]. A study from by Liu et al. [99] showed that photodynamic therapy (PDT) promoted 
keloid-derived fibroblast death by inducing autophagy through SIRT3/SOD2 pathway. 

Recently, Lee et al. [56]demonstrated that the expression of IL-17, STAT3, HIF-1α, and p62 were significantly increased in keloid 
tissue. Furthermore, the number of autophagolysosomes was decreased in KFs compared with that in normal fibroblasts, suggesting 
that KFs have defective autophagy [56]. Importantly, STAT3 inhibitor (STA21) significantly decreased the expression of HIF-1α, 
indicating that STAT3 was crucial for the expression of HIF-1α in KFs [56]. Notably, IL-17 increased the expression of p62, STAT3, and 
HIF-1α and promoted fibrosis in KFs [56]. Meanwhile, the HIF-1α inhibitor decreased the level of p62 and suppressed the fibrosis 
induced by IL-17, indicating that the inhibition of HIF-1α alleviates defective autophagy in KFs and inhibited keloid formation [56]. 
These studies showed that the IL-17-STAT3-HIF-1α axis promoted keloid formation by inducing defective autophagy in KFs, suggesting 
that targeting the axis might have therapeutic potential for keloids. 

4.4. HIF-1α-induced HOXC6 promoted keloid formation by activating ERK/MAPK signaling pathway 

We have mentioned that TGF-β1 is closely associated with tissue fibrosis and related diseases, including keloids. The extracellular 
signal-regulated kinase (ERK), a part of the mitogen-activated protein kinase (MAPK) signaling pathway, has been reported to be 
aberrantly activated in tissue fibrosis and modulate fibroblast differentiation [100,101]. For instance, Cucurbitacin E, a triterpenoid 
compound, induces apoptosis of activated hepatic stellate cells and ameliorates thioacetamide-induced hepatic fibrosis by activating 
ERK/MAPK signaling pathway [102]. Interestingly, the activation of the ERK/MAPK signaling pathway was enhanced in keloid fi-
broblasts, indicating that ERK/MAPK signaling pathway was involved in the procession of keloids [103]. 

A recent study showed that levels of phosphorylation of ERK and p38 peaked at 8 h after hypoxia exposure [57]. Moreover, the 
expression levels of HIF-1α and I collagen were increased after 48 h of hypoxia in KFs compared with normal human dermal fibroblasts 
[57]. Further study found that ERK inhibition suppressed the levels of MMP-2,9 and TIMP-1 induced by hypoxia and reduced the 
transcriptional level of I collagen type I by 38.3% in hypoxic normal human dermal fibroblasts [57]. 

In addition, Homeobox C6 (HOXC6), a potential biomarker for the diagnosis and prognosis of tumors, has been demonstrated to 
promote the proliferation and migration of glioblastoma cells through the activation of the ERK/MAPK signaling pathway [104]. 
However, whether HIF-1α regulates keloids formation via HOXC6/ERK/MAPK pathway is not yet unclear whether HOXC6/ERK/-
MAPK pathway being involved in the action of HIF-1α in keloids formation is not clear. Wang et al. [58] found that HOXC6 gene 
expression was most altered in microarray datasets from GEO and downregulation of HOXC6 significantly suppressed proliferation, 
migration, and ECM accumulation and promoted apoptosis in KFs. Furthermore, three binding sites for HIF-1α were found within the 
promoter region of HOXC6 through the JASPAR database [58]. Also, the dual-luciferase reporter assay showed that HIF-1α enhanced 
the expression level of HOXC6 and increased the promoter activity (luciferase activity) of HOXC6, indicating that HIF-1α acted the 
upstream of HOXC6 in KFs [58]. Additionally, the ERK/MAPK pathway is predicted to act the downstream of HOXC6 in KFs by a 
transcriptome sequencing experiment and a series of bioinformatics analyses [58]. Moreover, silencing of HIF-1α remarkably 
decreased the expression levels of the HIF-1α, HOXC6, and p-ERK compared with the normal group [58]. The researchers have also 
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found that HOXC6 knockdown inhibited the expression levels of the p-ERK and HOXC6 proteins and ERK1/2 inhibitor reduced level of 
the collagen I in KFs [58]. These studies demonstrated that HIF-1α promoted the development of keloids by increasing the expression 
of HOXC6 through ERK/MAPK signaling pathway. 

4.5. PI3K/AKT pathway promoted keloid formation by modulating angiogenesis, ECM formation, and glycolysis through activating HIF-1α 

It is generally assumed that keloid pathogenesis entails collagen synthesis and dysregulated angiogenesis [105]. The PI3K/AKT 
pathway has been demonstrated to be closely related to collagen synthesis and angiogenesis [106]. The PI3K/AKT pathway, a primary 
growth regulatory pathway in mammalian cells, plays a major role in multiple cellular processes, including proliferation invasion and 
apoptosis [107]. Zhu et al. [108] reported that celastrol, a Chinese herbal medicine, significantly suppressed the growth, migration, 
and invasion of glioblastoma cells by inhibiting angiogenesis through by blocking the activity of the PI3K/AKT/mTOR pathway. Hu 
et al. [109] found that the PI3K/AKT/mTOR pathway induced pulmonary fibrosis by enhancing the aerobic glycolysis, and promoting 
collagen synthesis. However, these phenomena could be reversed by mTOR inhibitor or PI3K/AKT inhibitor [109]. Zhang et al. [59] 
demonstrated that hypoxia induced the expression of VEGF, AKT, and HIF-1α, and pretreatment with PI3K/AKT inhibitor suppressed 
VEGF expression and blocked the HIF-1α protein accumulation in a dose-dependent manner. In addition, PI3K/AKT/mTOR inhibitor 
also reduced the expression of HIF1-α [60]. Meanwhile, PI3K/AKT/mTOR inhibitor downregulated ECM, reduced angiogenesis, and 
decreased fibroblast proliferation in a concentration-dependent manner [60]. 

Further study found that periostin could stimulated stimulate proliferation, collagen synthesis, migration, and invasion of KFs by 
activating the αvβ3 integrin-PI3K/AKT signaling pathway [61]. The expression of periostin has been showed to be regulated by HIF-1α 
[110]. The tissue-type and the urokinase-type plasminogen activators is are involved in ECM formation and their activities are 
regulated by plasminogen activator inhibitors (PAIs) [111]. The PI3K/AKT signaling pathway has been reported to induce PAI-1 
expression by activating HIF-1α, and then promoted promoting keloid formation [62]. Recently, the enhanced glycolysis has also 
been showed shown to promote keloid formation [112]. Wang et al. [63] showed decreased levels of HIF-1α and glycolysis when KFs 
were treated with PI3K/AKT inhibitor. Additionally, the phosphorylation of the PI3K/AKT signaling pathway was dramatically 
suppressed when HIF-1α was inhibited in KFs, indicating that PI3K/AKT pathway might promoted promote keloids formation by 
enhancing glycolysis through the interaction with HIF-1α [63]. Taken together, PI3K/AKT signaling pathway is involved in keloid 
formation by regulating angiogenesis, ECM formation, and glycolysis through targeting HIF-1α. 

4.6. Metformin might inhibit keloid growth by suppressing hypoxia-induced EMT through the inhibition of HIF-1α/P70S6K1/PKM2 
pathway 

The keloid formation is closely associated with ECM accumulation. Extensive research has demonstrated that epithelial-to- 
mesenchymal transition (EMT) promotes fibrogenesis by inducing ECM accumulation in a wide range of tumors [113]. The EMT is 
a process associated with the loss of epithelial cell polarity and their development into mesenchymal cells with migratory and invasive 
behavior [114]. During EMT, the expression of E-cadherin and zonula occludens-1 (ZO-1), the epithelial markers, are is decreased 
[115]. Moreover, the expression of vimentin and fibronectin, the mesenchymal markers, are increased, thus leading to nonpolar 
mobilizable cells [116]. The EMT has been reported to be ubiquitous in organ fibrosis and wound healing [117,118]. Wang et al. [119] 
found that black phosphorus nanosheets (BPNSs), a new EMT-inducing system integrates, promoted burn wound healing by inducing 
EMT of epithelial cells through the Snail1-mediated signaling pathway. Recently, the change in the EMT was observed in the keloid 
tissues [120]. Li et al. [121] demonstrated that hypoxia-induced HIF-1α expression significantly promoted neurogenic bladder fibrosis 
through inducing EMT. 

Although the prominence of hypoxia-induced HIF-1α in the EMT process of neurogenic bladder fibrosis and tumor are is known, 
their functions in modulating keloid pathological processes remain unclear. Ma et al. [64] reported that the basement membrane area 
of keloid specimens exhibited high expression of HIF-1α, vimentin, and fibronectin. In addition, E-cadherin showed a slightly 
decreased expression at the same location [64]. Accompanied by the increase in HIF-1α expression, the expression of vimentin and 
fibronectin were was increased while the expression of ZO-1 was suppressed in keratinocytes in a hypoxic environment [64]. Similarly, 
the changes in HIF-1α, E-cadherin, ZO-1, vimentin, and fibronectin expression were also observed in keloid-derived keratinocytes 
under hypoxic culture conditions [64]. Meanwhile, the hypoxia-stimulated keratinocytes showed a spindle-shaped similar 
morphology, resembling fibroblasts [64]. 

The dermis accumulates excessive amounts of extracellular matrix, resulting in keloids. The pathobiology of keloid formation has 
been gradually revealed recently. MicroRNAs and lncRNAs can construct pairs of competing endogenous RNA networks, contributing 
to keloid formation by regulating gene expression, transcriptional modifications, and histone modifications [122]. A recent study 
demonstrated that Schwann cells contributed to keloid formation by cross-talking with macrophages [123]. In contrast to normal 
scars, in keloids, the number of Schwann cells was elevated. Besides, the gene expression profile of Schwann cells is distinctly different 
between keloids and normal skin [123,124]. More recently, single-cell RNA sequencing technology has brought data-driven inno-
vation to elucidate the pathogenesis of keloids [125]. Consequently, the pathological mechanisms of keloid formation may be grad-
ually discovered. At present, various treatments are available for keloids, including conservative approaches (i.e., silicone-based 
products), physical therapy, mini-invasive treatment (i.e., laser), and highly invasive approaches (i.e., surgical excision with adjuvant 
brachytherapy) [126]. The selection of keloid treatment mainly depends on the morphology, extensions, and location of the keloid. 
Moreover, previous therapeutic methods, patient’s complaints, and other patient-related characteristics [127]. Typically, keloids 
consist of proliferating fibroblasts and excessive amounts of extracellular matrix components (mainly collagen), which may induce a 
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locally hypoxic microenvironment [128]. Under hypoxia, HIF-1α may accumulate in keloids, leading to the overactivation of the 
fibrotic signaling pathway and causing aggravated fibrosis [128]. As a result, a better understanding of the role of HIF-1α in the 
pathogenicity of keloids may facilitate to explore new therapeutic approaches. 

Further study found that the silencing of HIF-1α significantly decreased the expression of vimentin and fibronectin and increased 
the expression of E-cadherin and ZO-1 in keloid keratinocytes under hypoxic conditions, which suggested the importance of HIF-1α in 
keloid keratinocytes [64]. The cellular morphology of the keratinocytes was reversed back to an epithelial-like shape via silencing 
HIF-1α [64]. The above studies indicate that HIF-1α might promote keloid growth by inducing EMT of KFs. However, the specific 
mechanism of HIF-1α regulating EMT was unrevealed. 

The pyruvate kinase M2 (PKM2) has been reported to be a key downstream effector of the HIF-1α and plays an important role in 
tumor growth. Cheng et al. [129] found that metformin, a typical antidiabetic drug, abolished EMT of cervical carcinoma cells by 
suppressing PKM2 expression through d inhibiting mTOR/phosphorylation of the p70 ribosomal S6 kinase 1 (P70S6K1) signaling. It 
was reported that stimulation by hypoxia upregulated the expression of PKM2 and increased the phosphorylation of p70s6k in KFs 
[65]. Additionally, PKM2 knockdown significantly reduced the HIF-1α-induced gain of vimentin and loss of E-cadherin in KFs under 
hypoxic conditions [65]. More importantly, metformin decreased the expression of HIF-1α, decreased reduced the expression of 
E-cadherin, and rescued the accumulation of vimentin in KFs under hypoxic conditions [65]. Based on these results, metformin might 
inhibit keloid formation by suppressing hypoxia-induced EMT through HIF-1α/P70S6K1/PKM2 pathway. 

Table 1 showed the features of the included studies. The potential molecular mechanisms underlying the roles of the HIF-α pathway 
in keloids development were illustrated in Fig. 1. 

5. Directions for future research 

The treatment of keloids is a challenging problem for clinicians and researchers. Based on the evidence obtained from above 
mentioned aforementioned studies, HIF-1α is one of the critical factors on in keloid formation, which may be associated with the 
acceleration of proliferation of KFs, enhancement of angiogenesis, and increased deposition of collagen. Therefore, targeting HIF-1α 
might be potentially served as a therapeutic strategy. For instance, in vitro and in vivo studies showed that 2-methoxyestradiol (2ME2), 
Metformin and Hyperbaric oxygen therapy (HBOT) could inhibit keloid formation by suppressing the expression of HIF-1α [65–67]. 
However, there are few studies on the exact effects of HIF-1α on keloid illnesses in clinical practice presently. In future studies, 
numerous clinical trials are needed to validate the effect of HIF-1α on keloids, which may pave the way for its clinical applications. 
Since keloids are closely associated with various physical and psychological symptoms, further translational research is warranted to 
bridge the gap between preclinical findings and clinical applications in the field of keloid treatment. 

Fig. 1. Molecular mechanisms underlying the roles of HIF-α pathway in keloids development.  
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6. Conclusion 

HIF-1α, a transcription factor under hypoxia, plays crucial roles in various biological processes, including angiogenesis, apoptosis, 
autophagy, and glucose metabolism. Some previous studies showed that HIF-1α played an important role in keloids. Therefore, the 
regulation of HIF-1α activity is a breakthrough point in keloid treatment. Up-regulation of HIF-1α can promote the proliferation of KFs, 
increase the deposition of collagen, and enhance angiogenesis in hypoxic tissues. By contrast, the inhibition of HIF-1α can decrease the 
proliferation of KFs, reduce deposition of collagen, and prevent angiogenesis. At present, most hypoxia-inducible factor inhibitors are 
widely studied in solid tumors. We believe that with the in-depth study on the transcriptional mechanism of HIF-1α, some new HIF-1α 
inhibitors are developed in the future for clinical research, opening a new direction for keloid treatment. 
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