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1  | INTRODUC TION

One of the major goals of evolutionary genetics is to discover the 
driving forces behind adaptive evolution and their roles in shap-
ing patterns of polymorphism and divergence within and among 
species (Lin et al., 2018; Savolainen, Lascoux, & Merilä, 2013). 
Two bottom-up approaches, population genetics and landscape 
genomics, are commonly used to identify genes underlying local 
adaptation. The field of population genetics aims to identify the 
evolutionary forces, such as natural selection, gene flow, and de-
mographic fluctuations that play dominant roles in driving plant 
adaptation to local environments. Today, the increasing availability 

of genome-wide data is transforming population genetics into 
population genomics and simultaneously revolutionizing our un-
derstanding of local adaptation (Luikart, England, Tallmon, Jordan, 
& Tab erlet, 2003; Weigel & Nordborg, 2015). Using genome-wide 
data analyses, it is possible to elucidate the relative contributions 
of various evolutionary forces to the current extent and pattern 
of genetic variation, as well as their potential roles in local adapta-
tion (Cutter & Payseur, 2013; Olson-Manning, Wagner, & Mitchell-
Olds, 2012; Sella, Petrov, Przeworski, & Andolfatto, 2009). 
However, using a population genetics or genomics approach has 
several inevitable drawbacks. For example, it is difficult to de-
tect rare alleles involved in local adaptation, particularly in a 
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Abstract
Plant adaptation to high altitudes has long been a substantial focus of ecological and 
evolutionary research. However, the genetic mechanisms underlying such adaptation 
remain poorly understood. Here, we address this issue by sampling, genotyping, and 
comparing populations of Tibetan poplar, Populus szechuanica var. tibetica, distributed 
from low (~2,000 m) to high altitudes (~3,000 m) of Sejila Mountain on the Qinghai–
Tibet Plateau. Population structure analyses allow clear classification of two groups 
according to their altitudinal distributions. However, in contrast to the genetic vari-
ation within each population, differences between the two populations only explain 
a small portion of the total genetic variation (3.64%). We identified asymmetrical 
gene flow from high- to low-altitude populations. Integrating population genomic and 
landscape genomic analyses, we detected two hotspot regions, one containing four 
genes associated with altitudinal variation, and the other containing ten genes as-
sociated with response to solar radiation. These genes participate in abiotic stress 
resistance and regulation of reproductive processes. Our results provide insight into 
the genetic mechanisms underlying high-altitude adaptation in Tibetan poplar.
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complicated demographic context such as during robust gene flow 
events (Kawecki & Ebert, 2004).

In recent years, landscape genomics has emerged as a valu-
able alternative approach for identifying adaptive loci that drive 
local adaptation (Holderegger, Buehler, Gugerli, & Manel, 2010; 
Manel & Holderegger, 2013; Manel et al., 2010; Sork et al., 2013). 
The rise of landscape genomics has been expedited by next-gen-
eration sequencing, the increasing availability of public datasets of 
environmental factors, and the rapid development of computational 
power (Balkenhol et al., 2019; Rellstab, Gugerli, Eckert, Hancock, 
& Holderegger, 2015). For example, high-throughput sequencing 
technology allows the quantification of numerous allele variants 
across the whole genomes of many individuals (Andrews, Good, 
Miller, Luikart, & Hohenlohe, 2016; Luikart et al., 2003). Likewise, 
environmental data can be obtained at high resolution using accu-
rate remote sensing devices (Anderson & Gaston, 2013; Pettorelli 
et al., 2005). Increased computational power enables analyses of the 
large datasets, thus, generated in a reasonable amount of time (Kidd 
& Ritchie, 2006; Paul & Song, 2012). Unlike traditional approaches 
to testing outlier loci, landscape genomics has the potential to dis-
cern adaptive patterns by identifying genetic variants coupled with 
particular environmental factors. Recently, numerous studies of 
local adaptation combining both population genetic and landscape 
genomic approaches have been reported in various species, notably 
in forest trees such as Pinus, Picea, and Populus (Eckert et al., 2010; 
Geraldes et al., 2013, 2014; Grivet et al., 2013; Keller, Levsen, 
Ingvarsson, Olson, & Tiffin, 2011).

Various types of forest trees are serving as model species that 
can provide information about demographics and adaptive processes 
in forest ecosystems through population genomics or landscape ge-
nomics (Sork et al., 2013). Populus is a globally distributed tree genus 
that is native to the Northern Hemisphere and contains nearly 30 
species. Poplars are pioneer species and ecologically important trees 
in their habitats. Due to several advantages of poplar species, includ-
ing rapid growth, relatively small genome size (<500 Mbp), suitability 
for efficient genetic transformation, and ease of propagation in tis-
sue culture, they have become important model organisms for stud-
ies of forest tree species with well-developed genetic and genomic 
resources (Street & Tsai, 2010; Wullschleger, Weston, DiFazio, & 
Tuskan, 2013). Several studies of population genomics and land-
scape genomics of local adaptation have been reported in Populus 
trichocarpa (Evans et al., 2014; Geraldes et al., 2014; Holliday, Zhou, 
Bawa, Zhang, & Oubida, 2016; Porth et al., 2015; Zhou, Bawa, & 
Holliday, 2014), Populus balsamifera (Fitzpatrick & Keller, 2015; 
Keller et al., 2011; Keller, Levsen, Olson, & Tiffin, 2012), Populus alba 
(Stölting et al., 2015), Populus tremula and Populus tremuloides (Wang, 
Street, Scofield, & Ingvarsson, 2016a, 2016b), and Populus deltoids 
(Fahrenkrog, Neves, Resende, Dervinis, et al., 2017; Fahrenkrog, 
Neves, Resende, Vazquez, et al., 2017). However, very limited in-
formation is available about high-altitude adaptation in ecologically 
and economically important endemic alpine species such as Tibetan 
poplar Populus szechuanica var. tibetica, which is distributed on the 
Qinghai–Tibetan Plateau (QTP).

The Tibetan poplar is a perennial woody plant belonging to 
Populus sect. Tacamahaca that is endemic to the QTP and mainly dis-
tributed in Sichuan and Tibet along an altitude gradient from 2,000 
to 4,500 m (Shen, 2014). Recent studies have concentrated mostly 
on the genetic diversity, phenotypic, and physiological mechanisms 
accounting for its adaptation to harsh environmental conditions in-
cluding low temperature, strong solar radiation, and poor soil (Shen 
et al., 2014; Tang, Pubu, & Cidan, 2012). However, the genetic mech-
anisms underlying local adaptation to increasing altitudes in Tibetan 
poplar remain unclear. Here, we investigated the genetic diversity 
and genetic adaptations of Tibetan poplar at low (~2,000 m) to high 
altitudes (~3,000 m) to investigate its genetic adaptation to this 
harsh high-altitude environment using genome-wide single-nucleo-
tide polymorphism (SNP) data obtained from genomic resequencing 
technologies.

2  | MATERIAL S AND METHODS

2.1 | Sampling strategy and DNA extraction

A total of 400 samples were collected from Sejila Mountain in south-
eastern Tibet along an altitudinal gradient of 2,000–3,000 m in the 
summers of 2013 and 2014 (Figure 1; Table S1). These samples were 
clustered into two altitude groups: high (LL and DJ) and low (PL and 
TM). However, they were distributed continuously throughout the 
study area. Each individual was collected at least 30 m from oth-
ers to prevent the selection of clones. Cuttings of each sample were 
planted in cultivation medium composed of vermiculite and perlite 
in a greenhouse at Beijing Forestry University. Approximately 0.2 g 
newly emerged leaves was prepared from the cuttings for DNA ex-
traction to prevent insect DNA contaminants. Total genomic DNA 
was extracted using the DNAsecure Plant kit (Tiangen Biotech 
(Beijing) Co., Ltd.) following the protocol. After quality control of ex-
tracted DNA using 1% agarose gel electrophoresis and ultraviolet 
spectrophotometry, at least 1.5 µg DNA from each sample was pre-
pared for genome-wide resequencing.

2.2 | SNP calling and data filtering

Genomic DNA libraries of 500-bp fragment size were constructed 
and then paired-end sequenced on the Illumina sequencing plat-
form (Hiseq 2000) at the Novogene Bioinformatics Institute 
(Beijing, China) in 2015. Raw reads were trimmed to remove (a) 
adapter sequences, (b) raw reads containing more than 15 N bases 
(10% of 150 nt) in a single read, and (c) raw reads containing more 
than 75 nt low-quality bases (Q ≤ 5). Trimmed reads were mapped 
to the P. trichocarpa genome version 3.0 (https://genome.jgi.doe.
gov/) using BWA (mem –t 4 –k 32 -M; Li & Durbin, 2009) and 
SAMtools program “rmdup” to remove duplications (Li et al., 2009). 
Only reads with at least an 85% match to the reference genome 
were retained for subsequent SNP calling using the SAMtools 

https://genome.jgi.doe.gov/
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program “mpileup” with the following parameters: -E –C 50 –DS 
–m 2 –F 0.000911 –d 50,000 (Li et al., 2009). Next, we removed 
SNPs with minor allele frequency (MAF) ≤ 0.1, missing genotype 
rate < 20%, minimum depth 10×, and maximum depth 20× using 
VCFTools (Danecek et al., 2011). Ultimately, 490,363 SNPs were 
maintained for subsequent analyses. Features of these SNPs were 
annotated using SnpEff software (ver 4.0; Cingolani et al., 2012) 
against P. trichocarpa genome v. 3.0.

Pairwise kinship among 400 samples was inferred using the pro-
gram King 2.2.3 with all filtered SNPs (Manichaikul et al., 2010). All 
duplicate individuals were removed, and 348 independent individu-
als were retained for subsequent analyses (Figure S1).

2.3 | Population structure and divergence

One of the major assumptions employed in inferring population 
structure was that there were no spurious correlations among the 
measured variables. Therefore, the physical and linkage disequilib-
rium-correlated SNPs needed to be pruned before population struc-
ture estimation. First, SNPs were thinned by randomly selecting one 
SNP from a 10-Kbp window size, leaving 31,793 SNPs retained for 
the subsequent population structure and divergence estimation.

We used both model-independent and model-dependent meth-
ods to infer population structure from resequencing data. Model-
independent principal component analyses (PCAs) were performed 
using the package GCTA (Yang, Lee, Goddard, & Visscher, 2011). 
A more precise population genetic structure was inferred using 
Admixture software (Alexander, Novembre, & Lange, 2009). The 
predefined genetic cluster value (K) was set from 1 to 5. The number 

of iterations for convergence for each K is given in Figure 2b. We 
then selected the most probable number of subpopulations accord-
ing to the maximum marginal likelihood value based on the minimum 
cross-validation (CV) errors (Figure 2b). Because there was a subtle 
difference in the CV error when K = 3 versus K = 4, we also pruned 
the dataset by randomly selecting one SNP each from 5-, 15-, 20-, 
and 25-Kbp window sizes and repeating the population structure 
analysis. Individuals collected from one sample site but clustering 
with other sites based on the Q-value measured by Admixture with 
K = 4 were treated as admixtures (Figure 1b).

We also performed analyses of molecular variation (AMOVAs) 
using Arlequin version 3.5 (Excoffier & Lischer, 2010) to assess the 
distribution of total genetic variation. For the AMOVA, we combined 
the four sample sites into two altitudinal groups (high: LL & DJ; low: 
PL & TM).

2.4 | Gene flow and migration events

According to the continual distribution of Tibetan poplar on Sejila 
Mountain and lack of a geological barriers separating our four 
sample sites, gene flow might be a driving force for the population 
structure and genetic diversity. Therefore, we inferred the popula-
tion divergence and gene flow by reconstructing the maximum likeli-
hood phylogenetic tree based on allele frequency data using Treemix 
software version 1.12 (Pickrell & Pritchard, 2012). Three individu-
als of P. trichocarpa (downloaded from the Joint Genome Institute 
database http://phyto zome.jgi.doe.gov) were used as the outgroup. 
The migration event parameter was set from 1 to 4. Pruned SNPs 
(n = 31,793) were used to estimate migration events.

F I G U R E  1   Sampling locations of Populus szechuanica var. tibetica on Sejila Mountain. All 400 trees analyzed were collected from four 
sampling sites (a) along an altitudinal gradient (b). The area of each circle represents the sample size. Admixture proportion was assigned 
based on both original sample sites and a Q-matrix generated by Admixture tools with K = 4
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2.5 | Estimation of genetic parameters

After inferring population structure and gene flow events, we esti-
mated several genetic parameters, as detailed below. All of the fil-
tered SNPs (n = 490,363) were used for calculating these genetic 
parameters.

1. Population fixation index (FST). The population fixation index 
(FST) was calculated for all six pairwise comparisons of four 
sample sites using a sliding window method implemented in 
VCFTools with a window size of 80 Kbp and a step size of 
10 Kbp. A multiple regression on matrices (MRM) test was 
performed using the package ecodist implemented in R soft-
ware (https://www.r-proje ct.org/) with 1,000 permutations to 
test whether genetic distance was correlated with geological 
distance for the four sample sites.

2. Nucleotide diversity estimation (π). Sliding window estimates of 
nucleotide diversity (π) were calculated for all four sample sites 
with the same parameters used in the FST calculation. We also 
compared the nucleotide diversity of different genomic regions, 
such as intergenic, exon, intron, UTR, upstream, and downstream 
regions.

3. Linkage disequilibrium (LD). The squared correlation coefficient 
(r2) was calculated for LD of SNPs in a 100-Kb window for all 
four sample sites using Plink software (--ld-window-kb 100). The 
general pattern of LD decay was then estimated using the soft-
ware LD decay with default parameters (Zhang, Dong, Xu, He, & 
Yang, 2019). A plot of the LD decay rate against physical distance 
was generated using R software (https://www.r-proje ct.org/).

2.6 | Signatures of divergent selection

To investigate the mechanisms underlying adaptation to altitudinal 
gradients, whole-genome scanning (490,363 SNPs) was performed 
with a FST outlier approach to ascertain selective signals, executed in 
BayeScan software v2.1 (Foll & Gaggiotti, 2008). In this method, the 
FST coefficients are separated into two components, a locus-specific 
component (α) and a population-specific component (β). Selective 
signatures can be detected when α is extremely different from zero. 
The minimum false discovery rate at which the locus may be under 
significant selection was calculated as a q-value. Prior odds of the 
selection model were set at 10,000 to reduce false-positive results 
under a variety of demographic events (Lotterhos & Whitlock, 2014). 

F I G U R E  2   Population structure of Populus szechuanica var. tibetica. (a) Admixture of 348 unrelated samples illustrated for K = 2, 3, 4. (b) 
CV error (solid lines) and number of iterations (dashed lines) for each K. Average value and standard error were calculated by dataset (from 
5- to 25-Kbp window size). (c) PCA of population structure. Confidence intervals are marked with ellipses, red for the high-altitude group 
(LL & DJ), and green for the low-altitude group (PL & TM). (d) Gene flow events inferred by TREEMIX software. (e) Pattern of LD decay for all 
sample sites using r2 values. The number indicates the physical distance beyond which the r2 value was below .2 for each locality
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Loci identified based on the BayeScan method (q-values < 0.01) were 
considered as putative SNPs under selection (selSNPs). These selS-
NPs were retained for the subsequent environmental association 
analysis.

2.7 | Environmental association analysis

Seven altitudinal climatic variables were examined as possible fac-
tors explaining loci under selection: solar radiation (srad), precipita-
tion (prec), wind speed (wind), water vapor pressure (vapr), average 
temperature (tavg), minimum temperature (tmin), and maximum 
temperature (tmax). All climatic variables were acquired from the 
WorldClim global climate database (http://world clim.org) version 
2.0 (Fick & Hijmans, 2017) implemented in ArcGIS 10.6 (http://deskt 
op.arcgis.com), corresponding to recent historical conditions (1970–
2000) with a spatial resolution of 2.5 arc-min. Since there was a high 
degree of correlation among environmental factors, we chose only 
alt, srad, and tavg as independent factors in environmental associa-
tion analyses. The yearly standard average value of each climate 
variable was used.

Here, we applied a Bayesian linear mixed-based model in 
Bayenv2 (Günther & Coop, 2013). For a given genetic variant, 
Bayenv2 tests whether a model with environmental factors in-
cluded is more suitable than the null model, from which environ-
mental factors are excluded. A variance–covariance matrix was 
constructed by running a Markov chain Monte Carlo algorithm for 
10,000 iterations based on allele frequencies accounting for the 
population structure using the pruned SNPs dataset generated by 
a 10-Kbp random window (n = 31,793). The variance–covariance 
matrix was then used to control for evolutionary history during 
the process of BF calculation using Bayenv2. BF was calculated 
using normal environmental correlation analysis for each SNP. 
Additionally, a nonparametric test, which excluded the covariance 
structure among populations, was performed for calculation of the 
nonparametric Spearman's rank correlation coefficient ρ using the 
parameter -c. Those loci that ranked in the top 1% of BF and the 
absolute value of ρ were identified as putative loci associated with 
a certain environmental factor. Due to the limitation imposed by 
the small number of sample sites in this study (n = 4), we further 
performed a permutation test by reassigning individuals to sample 
sites and repeating the Bayenv2 analysis 1,000 times. The possibil-
ity that the recalculated values of BF and absolute ρ were greater 
than the original values was defined as the p-value. Putative en-
vironment-associated SNPs (eaSNPs) would be identified as such 
under a threshold (p-value < .01).

2.8 | Candidate gene annotation

The gene IDs of potential selected genes located in selective re-
gions were extracted from the latest general feature format (GFF) 
file of the P. trichocarpa genome (RefSeq assembly accession: 

GCF_000002775.4) using a custom Python script. We then con-
verted gene IDs to gene ontology (GO) IDs using the bitr function 
and the toTable function to extract GO terms in the clusterProfiler 
package (Yu, Wang, Han, He, 2012) in R. The annotation database 
used in this study was acquired using the AnnotationHub package 
(Morgan, Carlson, Tenenbaum, & Arora, 2019). The accession num-
ber of the P. trichocarpa database is “AH66282.” The GO annota-
tion diagram was plotted using a custom script implemented in R 
software.

3  | RESULTS

3.1 | Resequencing data SNP calling

A total of 15.6 terabases (Tb) were mapped onto 394 Mb, providing 
approximately 88% (84.53%–91.78%) coverage of the P. trichocarpa 
genome, with an average 15 × (10.08×–19.7×) depth of sequencing. 
A total of 490,363 SNPs were retained for subsequent analyses 
after SNP filtering. Among those SNPs, 39,428 were out of Hardy–
Weinberg equilibrium (HWE) under a threshold p-value (10–4). 
Approximately 48.54% of 490,363 SNPs were located in intergenic 
regions, and 12.88% were detected in exon regions (Table S3).

3.2 | Population structure

We retained 31,793 unrelated SNPs for sequential population 
structure inference. In PCA, all 348 unrelated samples from the 
four sampling locations clustered into two spatially separated 
groups associated with different altitudes (Figure 2c). The first 
component could explain 35.8% of the differences among vari-
ables. A more comprehensive assessment of the stratification 
present in Tibetan poplar was obtained using Admixture software 
(Alexander et al., 2009). First, we inferred the probable population 
structure by setting subpopulation numbers from 1 to 5 and chose 
the most suitable K value by selecting the minimum CV error using 
31,793 SNPs pruned by 10-Kbp random windows (Figure 2a,b). The 
most suitable value for K was 3, which had the minimum CV error. 
However, the difference between the CV error when K = 3 and 
K = 4 was very slight. Then, we compared the differences among 
the CV errors of different pruned SNP datasets generated from 5-, 
15-, 20-, and 25-Kbp windows (Table S4). There was no significant 
divergence between these values when K = 3 and K = 4 (Figure 2b). 
Given the population structure and the number of sample sites, we 
chose K = 4 as the most suitable value for population structure in 
the subsequent analysis.

3.3 | Migration event inference

A common migration event indicating gene flow in the direction 
from high-altitude (DJ) to low-altitude (PL) sites was detected in all 

http://worldclim.org
http://desktop.arcgis.com
http://desktop.arcgis.com
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inferred trees. (Figure 2d & Figure S2). Another gene flow event, 
which was conditional on three or four migration events, was de-
tected from the other high-altitude (LL) to low-altitude (TM) sites 
(Figure S2). Without exception, the direction of these migration 
events was from high to low altitude.

3.4 | Genetic parameters

The average FST value of the four sampling sites was 0.050, ranging 
from 0.006 (PL against TM) to 0.083 (LL against TM), indicating that 
there was little genetic differentiation among the four sampling lo-
cations (Table S5). Almost 96% of genetic variation was attributable 
to variation within sample sites, whereas only 3.64% of the varia-
tion was attributable to differences between the two altitude groups 
(Table 1).

The average nucleotide diversity (π) was 7.26 × 10–5. The maxi-
mum π value was detected at sample site PL (7.57 × 10–5), and the 
minimum was detected at sample site LL (6.95 × 10–5). The four 
sample sites exhibited significant differences in nucleotide diversity 
(ANOVA, p < 2 × 10–16). In addition, the average π of the intergenic 
region was 2.2 × 10–4, which was significantly greater than that of 
the genic region (π = 4.37 × 10–5). The results of ANOVA indicated 
that π values significantly differed among divergent genetic regions 
(Figure S3).

The average distance at which LD values decayed below 0.2 
was almost 26 Kbp. The rate of LD decay for the low-altitude group 
was much quicker (~25.5 Kbp) than that for the high-altitude group 
(~28 Kbp; Figure 2e). The slowest LD decay rate was detected at LL 
(~29 Kbp), and the fastest at TM (~25 Kbp; Figure 2e; Figure S4).

3.5 | Signature of natural selection

A total of 7,064 SNPs under selection (selSNPs) were identified based 
on the FST outlier approach implemented in BayeScan software (q-
value < 0.01). Approximately 62.8% of outliers (n = 4,441) were out 
of HWE (p = 1 × 10–5), and these loci were located in 531 unique 
genetic regions. The average population index (FST) of these selSNPs 
was 0.181 (range: 0.150–0.271). The locus-specific component (α) 
ranged from 1.116 to 2.072, indicating that these outlier loci were 
undergoing continuous directional (divergent) selection. The high-
est FST (0.271) was harbored in gene LOC18098853, which encodes 

a disease resistance protein and is homologous with At4g27220 in 
Arabidopsis. This gene is involved in resistance to Verticillium wilt in 
Arabidopsis (Li et al., 2018).

3.6 | Environmental association analyses

A set of 74 unique selSNPs were associated with altitudinal gradi-
ents (altSNPs) based on the hierarchical distribution of BF and abso-
lute ρ. Most of these (n = 69) were retained after permutation tests. 
Similarly, 82 selSNPs were associated with variation in solar radia-
tion (sradSNPs) under the criteria of permutation (p < .01). However, 
only 6 selSNPs were associated with average temperature (tavg-
SNPs; Figure 3a). A common SNP (Chr16: 1,698,907), located in gene 
LOC112324539, was associated with both altitude and solar radia-
tion. This gene encoded a putative receptor-like protein kinase which 
was orthologous with At3g47110 in Arabidopsis. Unfortunately, we 
did not identify any common SNPs that were associated with all 
three environmental factors (Figure S5a).

One hotspot region, located on chromosome 6 from 26.21 to 
26.88 Mbp, exhibited robust signals associated with solar radiation 
(Figure 3a). This region housed 20 sradSNPs, and 55% of which (11 
of 20) were harbored in 10 genes (Figure 3a). The average LD value 
(r2) for 284 SNPs from this region was 0.501, forming three main LD 
block regions (Figure 3a; Table 2). Another hotspot region, located 
on chromosome 15 from 13.39 to 14.00 Mbp, contained 11 SNPs 
associated with altitudinal gradients; four of these were located in 
four unique genes (Figure 3a).

3.7 | Annotation of environment-associated genes

In total, 58 unique genes contained eaSNPs associated with at least 
one environmental factor (Table S6). One gene (LOC18098834) en-
coded branched-chain-amino-acid aminotransferase-like protein 1, 
associated with both altitude and average temperature. Another 
gene (LOC112324539) was associated with altitude and solar ra-
diation (Table S6 and Figure S5b). Gene ontology (GO) analysis in-
dicated that these unique genes belonged to 48 GO terms (Figure 
S5c). The maximum number of GO terms was 3 (ATP binding), in the 
molecular function (MF) category.

A total of 68 genes were located in a hotspot on chromosome 
15, which was associated with responses to altitudinal variation. 

Source of variation df Sum of squares
Variance 
component

Percentage of 
variation

Among groups 1 75,067.180 191.75251 3.64

Among sample sites 
within groups

2 16,206.346 18.46357 0.35

Within sample sites 692 3,495,412.873 5,051.17467 96.00

Total 695 3,586,686.399 5,261.39075 100

TA B L E  1   Analysis of molecular 
variance (AMOVA) among Populus 
szechuanica var. tibetica along an 
altitudinal gradient
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The GO term analysis indicated that these genes were mainly in-
volved in processes such as manufacture of cell wall components 
(GO:0005618; GO:0042545), catabolic processes (GO:0006511; 
GO:0030245; GO:0045490), and signal transduction (GO:0007165; 
Figure 3b). Most of the altSNPs (7 of 11) were located in intergenic 
regions, but four altSNPs were harbored in four unique genes 
(Table 2).

Similarly, 80 genes located in a hotspot region on chromosome 
6 were associated with responses to variations in solar radiation. 
The GO term analysis indicated that these genes were involved in 
several processes, including manufacture of cell membrane com-
ponents (GO:0005886; GO:0016020; GO:0016021) and modifi-
cation of proteins (GO:0006486; GO:0006468; Figure 3c). One 
gene (LOC7468695) encoded phospholipid hydroperoxide gluta-
thione peroxidase 1 protein, which is involved in the response to 
oxidative stress (GO: 0006979). This gene contained two SNPs 
under selection, identified by the BayeScan method. Although 
Bayenv2 detected no direct signal that these two selSNPs were 
associated with solar radiation, the robust LD (0.906, range: 
0.875–0.94) between this gene and nearby sradSNPs indicated 
that this gene may play a role in responding to variations in solar 
radiation.

4  | DISCUSSION

4.1 | Asymmetric gene flow in the downhill 
direction

Several gene flow events from high to low altitude were detected 
in this Tibetan poplar population. Given the relatively long dura-
tion of flowering and long-distance pollen and seed dispersal of 
Populus species (Ingvarsson, 2010; Vanden Broeck et al., 2004), 
high gene flow and introgression events have been documented 
among populations of a single species and multiple related spe-
cies (Chhatre, Evans, DiFazio, & Keller, 2018; Fahrenkrog, Neves, 
Resende, Dervinis, et al., 2017; Ma et al., 2018). The Tibetan poplar 
populations on Sejila Mountain have an overlapping flowering period 
that runs from late April to mid-May in the low-altitude group and 
throughout May in the high-altitude group. Furthermore, the sam-
ple sites of Tibetan poplar in this study were connected by a river. 
The combination of overlapping flowering period and shared habi-
tat characteristics enables pollen-driven gene flow within the entire 
Sejila population, leading to the potential combination of gene pools 
and reduction of genetic variation among populations. Wind power 
might be the driving force for gene flow in the downhill direction 

F I G U R E  3   Putative genomic regions under natural selection. (a) Natural selection signals estimated using the BayeScan method (above) 
and the LD block pattern for SNPs located in the hotspot selective region (below). Gray spots represent the putative selective SNPs 
identified by BayeScan. Colored spots represent eaSNPs associated with different environmental factors. (b) GO plot for genes located in 
the hotspot region associated with altitudinal gradient. (c) GO plot for solar radiation-associated genes located in the hotspot region on 
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observed in this study (Figure S6). The nearer sample sites are to 
each other, the greater is the potential for gene flow between them 
(Sharma & Khanduri, 2007). The apparent absence of gene flow be-
tween TM and PL (~20 km) might result from a slight divergence of 
wind power. All analyses detected common gene flow events from 
DJ to PL, whereas the longest distance (~70 km) gene flow occurred 
was from LL to TM (Figure S4). Such long-distance gene flow me-
diated by either pollen or seeds has been documented for a great 
diversity of tree species, as reviewed by Kremer et al. (2012).

4.2 | Genetic adaptation to an altitude gradient

Two hotspot regions were detected, one involved with responses 
to increasing altitude and the other with solar radiation. Four genes 
were associated with altitudinal gradients, and 10 were associated 
with solar radiation. One gene was orthologous to At3g47110, a 

leucine-rich repeat receptor-like kinase gene found in Arabidopsis 
thaliana. This LRR protein interacted with a FERRIC REDUCTASE 
DEFECTIVE3 (FRD3), which is involved in citrate efflux transpor-
tation and sustained microspore development during pollen tube 
growth in A. thaliana (Muschietti & Wengier, 2018). Another gene 
encoded MADS-box transcription factor 47, which is associated with 
solar radiation. The MADS-box transcription factors participate in 
floral organ initiation and identity, partially through negative regula-
tion of brassinosteroid (BR) signal transduction (Duan et al., 2006). 
Brassinosteroids participate in the regulation of multiple biological 
processes, including abiotic stress resistance (Bartwal, Mall, Lohani, 
Guru, & Arora, 2013; Takahashi & Shinozaki, 2019) and develop-
mental processes including flowering time, male fertility, pollen 
development, and woody formation (Clouse, 2011; Du et al., 2020; 
Gruszka, 2013; Ye et al., 2010).

Other genes located in these hotspot selective regions may 
also play roles in abiotic stress resistance and flowering time. For 

TA B L E  2   Candidate environmental factor-associated genes detected in hotspot selective regions

GeneID CHR STR END Description GOID GO Term
Environment 
factor

18100694 6 26214002 26218369 Protein PHOX1 Srad

7468658 6 26222031 26224755 MADS-box transcription 
factor 47

Srad

7468660 6 26248280 26252031 Hydroxyproline 
O-arabinosyltransferase 
1

Srad

7468669 6 26349371 26353166 Probable receptor-
like protein kinase 
At1g80640

GO:0005886
GO:0005524
GO:0004675
GO:0007166
GO:0006468

Plasma membrane
ATP binding
Serine/threonine 

kinase activity
Cell surface receptor 

signaling pathway
Protein 

phosphorylation

Srad

7489148 6 26603544 26606487 Stromal cell-derived factor 
2-like protein

GO:0016020
GO:0000030
GO:0006486

Membrane
Mannosyltransferase 

activity
Protein glycosylation

Srad

7468690 6 26748943 26753022 Transmembrane 9 
superfamily member 8

GO:0016021 Integral component of 
membrane

Srad

112327926 6 26758471 26762881 Uncharacterized 
LOC112327926

Srad

7468692 6 26768302 26775056 Probable protein 
phosphatase 2C 60

Srad

7489161 6 26807445 26814907 Protein RRC1 Srad

7471349 6 26885203 26890145 Uncharacterized 
LOC7471349

Srad

18105959 15 13543391 13546165 Squalene monooxygenase Alt

112324382 15 13566621 13571204 Uncharacterized 
LOC112324382

Alt

7481796 15 13574767 13581291 Uncharacterized 
LOC7481796

Alt

7481806 15 13858532 13863900 Coatomer subunit delta Alt
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instance, the phospholipid hydroperoxide glutathione peroxidase 
1 proteins (GPXs) are a group of proteins that protect cells from 
oxidative damage generated by a reactive oxygen species (ROS; 
Rodriguez Milla, Maurer, Huete, & Gustafson, 2003). Five GPX 
genes have been identified in the desert poplar Populus euphratica 
(Meng & Wu, 2017). Strong signals of balancing selection/local ad-
aptation were detected in the peGPX1 gene: an excess of mid-fre-
quency alleles, high intraspecific nucleotide diversity (distributed 
in the upper tail of the simulated neutral model), and extensive 
LD. However, no selective signatures for other peGPX genes have 
been identified in the desert poplar. GPX also reportedly plays 
complex roles in diverse developmental processes. In Arabidopsis, 
extremely high expression levels of AtGPX1 were detected in 
leaf cell cultures, in mesophyll protoplast cultures, and in shoot 
apical meristems, indicating its physiological importance during 
shoot development (Bela et al., 2015). Based on this evidence, we 
hypothesize that Tibetan poplar adapted to higher altitudes par-
tially through sustaining functions related to reproduction under 
abiotic stress, though more details about how these genes reg-
ulate high-altitude adaptations in Tibetan poplar remains to be 
elucidated.

The QTP has been undergoing warming since the 1950s (Kuang 
& Jiao, 2016). Moreover, the annual precipitation in its eastern and 
southeastern parts, near our sample sites, is decreasing (Kuang & 
Jiao, 2016). Thus, the Tibetan poplar of Sejila Mountain will face 
challenges related to climate change in the near future. Compared 
to individuals habituated to low-altitude sites, those at high altitudes 
will be better able to adapt to climate change. However, individuals 
at low altitudes could gain beneficial alleles through downhill gene 
flow in the high-altitude trees. The interaction between gene flow 
and natural selection will drive adaptation to cope with environmen-
tal changes in the entire Tibetan poplar population in the southeast-
ern QTP.

The effect of using small sample sites on landscape genomic 
analysis cannot be ignored. Briefly, at larger sample sites, a greater 
number of individuals are sampled per site, and a greater number 
of genome-wide SNPs increase the power of genomic analysis for 
detecting loci under selection in natural populations, especially for 
perennial woody plants (Sork et al., 2013). However, in practice, due 
to the limitation of resources, a balance must be struck between the 
total number of samples from each site and the total number of lo-
calities that can be sampled. If more individuals are sampled from 
each locality, a more accurate estimation of allele frequency can be 
generated, improving the power of analysis based on estimates of 
genetic differentiation among populations. However, increasing the 
number of sampling sites enables more robust detection of natural 
selection, as more sampling locations can better represent a range 
of environmental variable values across the study area (De Mita 
et al., 2013). In this study, the genome-wide SNPs and the large num-
ber of samples provide insight into how natural selection has shaped 
Tibetan poplar over an altitudinal gradient. However, the use of only 
four sample sites, all within a relatively narrow altitudinal gradient, 
limits our ability to draw conclusions about the genetic response to 

environmental variables. This shortcoming should be addressed in 
further studies.

5  | CONCLUSION

This is the first attempt to elucidate the intricate genetic structures 
associated with high-altitude climate adaptation in the QTP en-
demic woody plant Tibetan poplar, Populus szechuanica var. tibetica. 
Integrating population genomic (BayeScan) and landscape genomic 
(Bayenv2) methods, we detected two hotspot regions with robust sig-
nals of natural selection associated with altitude and solar radiation. 
These regions comprised 14 genes that are mainly involved in abiotic 
stress resistance and sustaining successful reproduction. Therefore, 
we hypothesize that Tibetan poplar adapted to high altitude partially 
through sustaining successful reproduction under conditions of en-
vironmental stress. The interaction between gene flow and natural 
selection drives local adaptation in this population of Tibetan poplar. 
This paper will be useful for understanding how various evolutionary 
forces, including natural selection and environmental factors, drive 
local adaptation to altitudinal differences in Tibetan poplar.
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