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Abstract

Background: It appears that substitution rate estimates co-vary very strongly with their timescale of measurement;
the shorter the timescale, the higher the estimated value. Foamy viruses have a long history of co-speciation with
their hosts, and one of the lowest estimated rates of evolution among viruses. However, when their rate of evolution is
estimated over short timescales, it is more reminiscent of the rapid rates seen in other RNA viruses. This discrepancy
between their short-term and long-term rates could be explained by the time-dependency of substitution rate estimates.
Several empirical models have been proposed and used to correct for the time-dependent rate phenomenon (TDRP),
such as a vertically-translated exponential rate decay model and a power-law rate decay model. Nevertheless, at present,
it is still unclear which model best describes the rate dynamics. Here, we use foamy viruses as a case study to empirically
describe the phenomenon and to determine how to correct rate estimates for its effects. Four empirical models
were investigated: (i) a vertically-translated exponential rate decay model, (ii) a simple exponential rate decay
model, (iii) a vertically-translated power-law rate decay model, and (iv) a simple power-law rate decay model.

Results: Our results suggest that the TDRP is likely responsible for the large discrepancy observed in foamy virus
short-term and long-term rate estimates, and the simple power-law rate decay model is the best model for infer-
ring evolutionary timescales. Furthermore, we demonstrated that, within the Bayesian phylogenetic framework, cur-
rently available molecular clocks can severely bias evolutionary date estimates, indicating that they are
inadequate for correcting for the TDRP. Our analyses also suggest that different viral lineages may have different
TDRP dynamics, and this may bias date estimates if it is unaccounted for.

Conclusions: As evolutionary rate estimates are dependent on their measurement timescales, their values must
be used and interpreted under the context of the timescale of rate estimation. Extrapolating rate estimates across
large timescales for evolutionary inferences can severely bias the outcomes. Given that the TDRP is widespread in
nature but has been noted only recently the estimated timescales of many viruses may need to be reconsidered
and re-estimated. Our models could be used as a guideline to further improve current phylogenetic
inference tools.
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Background
It has been noted that evolutionary rates calculated over
short timescales, such as those calculated from popula-
tion genetic data, are much greater than those calculated
across geological time frames, such as species evolution-
ary rates. This discrepancy between short-term and
long-term rates is very widespread in nature, noticed in
both viral genes [1–6] and cellular genes, including bac-
terial genes [7, 8], mitochondrial genes of worms [9],
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insects [10, 11], fish [12, 13], birds [14–16], and primates
[17–23], as well as nuclear genes of various multicellular
organisms [24–27] (see [28] for a review, and references
therein). Further investigation has revealed that, in fact,
the value of the rate estimate does not vary discretely,
but continuously decreases as the measurement timescale
increases [28]. This ‘time dependent rate phenomenon’
(TDRP) was first demonstrated in cellular genes [20].
Subsequently, by pooling substitution rate estimates of
diverse viruses together, Duchêne et al. [29] showed
that the rate estimates of RNA and DNA viruses also
exhibit this pattern.
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To date, the processes that lead to the TDRP are still
very much unclear. Many hypotheses have been proposed
to explain it, such as temporal changes in organismal
biology and natural selection pressure [28]. Numerous
methodological artefacts also have the potential to sys-
tematically bias the rate estimates in such a way that
short-term rates will appear to be much greater than
the long-term ones [28]. Since the rate of evolution is a
central component of evolutionary study, an accurate
evolutionary inference requires that the TDRP is inte-
grated into the analysis. An ideal approach to this problem
is to understand how the TDRP is generated, and improve
evolutionary inference tools so that they can account for
the factors underlying the TDRP. However, given a large
number of potential underlying factors and our current in-
complete understanding of their interactions, untangling
and explicitly accounting for each of them individually
would be impractical at present [20, 30].
One pragmatic approach to this problem is to infer

evolutionary timescales by using an empirical model de-
scribing the relationship between rate estimates and
their measurement timescales. This approach has been
employed in several studies (e.g. [12, 20]). A number of
empirical models, such as the vertically-translated expo-
nential rate decay model and the power-law rate decay
model, have been proposed, and used, for TDRP correc-
tion in evolutionary inferences [12, 20, 31]. Nevertheless,
at present, it is still unclear which model best describes
the phenomenon, and to answer this question we re-
quire substitution rate estimates that are computed over
various timeframes. These can be obtained from a data-
set of molecular sequences for which several divergence
dates are known; the more divergence dates available,
the more suitable the dataset for this purpose. Further-
more, it is also preferable that the dates are distributed
relatively evenly across the entire evolutionary timescale
that is being examined [32]. In this work, we seek to em-
pirically describe the TDRP in detail and explore the
various patterns of rate decay over time by using foamy
viruses (FVs) as a case study.
FVs are a group of complex retroviruses that have a

very stable and long co-speciation history with their
hosts, stretching back more than a hundred million
years [33–35], and because of this, almost all of their
divergence dates can be directly inferred from those of
their hosts [36–38]. Based on this co-speciation and
the known divergence dates of their primate hosts, the
long-term rate of evolution of FVs has been estimated
to be ~7.79 × 10-9 to 1.7 × 10-8 nucleotide substitutions
per site per year (s/n/y) [33, 39]. This is much slower
than rates of substitution of other RNA viruses, typically
reported to be in range of 10-3 to 10-4 s/n/y [6, 40, 41].
The high similarity observed between extant FVs and their
ancient endogenous counterparts [34, 35, 42, 43] has also
lent further support to this notion of slow-evolving FVs.
Altogether, FVs are thereby widely regarded as one of the
most slow-evolving RNA viruses currently known [44].
These slow long-term rates of FV evolution stand in

sharp contrast to their high mutation rate. In vitro ana-
lyses have shown that the FV replication error rate
(5.8 × 10-5 s/n/replication) is comparable to that of human
immunodeficiency virus (HIV) (6.5 × 10−5 s/n/replication)
[45], which is one of the fastest-evolving viruses ever
documented. This fast FV mutation rate has also been
confirmed in human embryonic cell lines, where the
in vivo rate was calculated to be at least 1.1 × 10-5 s/n/
replication [46]. Moreover, by following a population of
African Green Monkey FVs for 9 years, it was estimated
that the FV evolutionary rate is as high as ~3.75 × 10-4 s/
n/y [47]. This short-term rate is ~4-5 orders of magnitude
higher than the long-term rate counterparts, estimated
under the FV-host co-speciation assumption.
The fact that almost all of the divergence dates of

FVs can be directly inferred from those of their hosts
makes FVs an ideal system to study the TDRP. Here,
we use 14 extant FVs (Additional file 1: Table S1) as a
case study to present direct evidence of a smooth decay
of nucleotide substitution rate estimates as the measure-
ment timescale increases. We also empirically describe the
rate decay pattern, examine whether or not the TDRP can
explain the discrepancy between FV short-term and
long-term rates, and discuss the applications and limi-
tations of our empirical rate decay models, as well as
how the TDRP may bias evolutionary inference and
rate estimate interpretation.

Results
FV nucleotide substitution rate estimate decreases with
measurement timescale
To compute FV nucleotide substitution rates for various
timescales, we first estimated FV phylogenies using Pol
protein (1,116 aa) and pol nucleotide (3,351 nt) align-
ments under the Bayesian and maximum-likelihood
frameworks. The aligned sequences were checked for re-
combination, but no significant evidence was found,
both at the nucleotide (p = 0.266) and protein (p = 0.357)
levels. (See Methods for details.) Our results show that
all phylogenies are perfectly in agreement with one an-
other topologically (Additional file 2: Figure S1), and
also consistent with the results from previous studies
[33–35]. We thus considered the estimated tree topology
as our best working hypothesis, and used it to estimate
FV nucleotide substitution rates.
We first estimated node-to-tip total per-lineage nu-

cleotide substitutions (s estimates) from the pol nucleo-
tide alignment under the fixed FV phylogeny, and the
Bayesian phylogenetic framework. We employed a strict
molecular clock with a fixed rate of 1 to obtain branch
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lengths in units of substitutions per site. A strict clock
was applied (i.e. the tips were forced to align) under the
assumption of consistency among rate estimates calculated
using different nodes and tips. Thus, our study can also be
viewed as an attempt to correct for the TDRP given the
strict clock assumption. In total, 13 posterior distributions
of s estimates were obtained, one for each internal node,
and we could assign timescales (t estimates) to 11 of them
based on the FV-host co-speciation history. This, in turn,
allowed us to compute 11 distributions of node-to-tip aver-
age substitution rates (�r estimates). (See Methods for de-
tails.) A summary of the results can be found in Fig. 1, and
Additional file 1: Table S2. Preliminary linear regression
analyses suggest that log-transformed �r is significantly
negatively correlated with log-transformed t (linear regres-
sion: correlation coefficient [95 % highest probability dens-
ity (HPD)] = -0.577 [-0.614, -0.542]; randomisation test:
number of randomization tests = 15,000, number of data
points for null distribution construction in each test = 100,
p < 0.01 in all 15,000 tests; See Methods for details).

Empirical description of FV nucleotide substitution rate
decay
It has been proposed that a vertically-translated exponen-
tial decay function (Eq. 1) is a good empirical description
for the apparent decay of the instantaneous substitution
rate (r) [20]. This model has been employed in several
Fig. 1 Foamy virus (FV) and corresponding host phylogenies, and the relat
timescale of measurement. (a, left) FV phylogeny (taxon definitions and Ge
Black numbers are estimated total per-lineage nucleotide substitutions in the
of the estimated nucleotide substitution divergences. The scale bar is in units
divergence dates in units of millions of years, for which the estimation uncert
years. The topology of the host tree and the divergence dates were estimated
between the two trees indicate FV-host associations, and blue Arabic number
events). Nodes within the FV tree that could not be mapped conclusively ont
of the node bars on the FV tree correspond to the colours of the bars on the
evolutionary rate estimates on a log-log scale. The node numbers (1-11) refer
bars’ colours. The summary of the raw data can be found in Additional file 1:
studies for TDRP correction (e.g. [31]). However, an exam-
ination of mitochondrial DNA control regions of cichlids
showed that a simple power law function (Eq. 4) can also
empirically describe the phenomenon reasonably well
[12]. To systematically explore these hypotheses, we
examine another two empirical functions by varying
whether the exponential and power law functions are
vertically translated: a simple exponential rate decay
function (Eq. 2) and a vertically-translated power-law
function (Eq. 3). The four models can be expressed
mathematically as follows:

rVEX ¼ αVEXe
−tβVEX þ kVEX ð1Þ

rEX ¼ αEXe
−tβEX ð2Þ

rVPL ¼ αVPLt
−βVPL þ kVPL ð3Þ

rPL ¼ αPLt
−βPL ð4Þ

where t (unit time, ut) is the measurement/evolutionary
timescale in the present-to-past direction, where t = 0 is
the present; k (s/n/ut) is the stable long-term rate of
evolution parameter; and α and β are arbitrary model
parameters. “VEX”, ‘EX’, ‘VPL’, and ‘PL’ subscripts indicate
the model to which the parameters and variables belong:
vertically-translated exponential rate decay (VEX), simple
exponential rate decay (EX), vertically-translated power-
ionship between node-to-tip average evolutionary rate estimate and
nBank sequence accession numbers are in Additional file 1: Table S1).
units of substitutions per site. The node bars represent the uncertainties
of substitutions per site. (a, right) Host tree. Black numbers are estimated
ainties are shown by node bars. The scale bar is in units of millions of
elsewhere (see the references in Additional file 1: Table S2). Solid lines
s (1-11) indicate matching FV-host nodes (i.e. FV-host co-speciation
o the host tree are labelled by blue Roman numbers (I and II). The colours
host tree. b Timescales of rate measurement and node-to-tip average
to those in the FV and host trees (a). The colours correspond to the node
Table S2
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law rate decay (VPL) and simple power-law rate decay
(PL) models, respectively. Note that, since a strict clock
was applied and the tips were all aligned, the timescales of
the rate measurement can be interpreted as node heights/
divergence dates and vice versa.
To investigate how well each model describes the FV �r

dynamics, we first derived four equations depicting the
relationship between s and t for the VEX (Eq. 5), EX
(Eq. 6), VPL (Eq. 7), and PL (Eq. 8) models based on
Eq. 1–4, respectively, as follows;

sVEX ¼
Z t¼t

t¼0
rVEXdt ¼ αVEX

βVEX
1−e−tβVEX
� �þ tkVEX ð5Þ

sEX ¼
Z t¼t

t¼0
rEXdt ¼ αEX

βEX
1−e−tβEX
� � ð6Þ

sVPL ¼
Z t¼t

t¼0
rVPLdt ¼ αVPLt1−βVPL

1−βVPL
þ tkVPL ð7Þ

sPL ¼
Z t¼t

t¼0
rPLdt ¼ αPLt1−βPL

1−βPL
ð8Þ

The curves were forced to go through the origin to
conform the expectation that there are no substitutions
at time equal to zero. We next simply divided both sides
of the equations by t to derive equations describing the
Fig. 2 Empirical description of the relationship between rate measurement
Eq. 10 (top-right), Eq. 11 (bottom-left), and Eq. 12 (bottom-right) were fitted to
the criterion of the least sum of squared errors of �r (grey lines). The colours co
those on the trees in Fig. 1a. The summary of the results can be found in Add
relationship between �r and t for the four respective
models (Eq. 9–12, respectively):

sVEX

t
¼ �rVEX ¼ αVEX

tβVEX
1−e−tβVEX
� �þ kVEX ð9Þ

sEX
t

¼ �rEX ¼ αEX
tβEX

1−e−tβEX
� � ð10Þ

sVPL

t
¼ �rVPL ¼ αVPLt−βVPL

1−βVPL
þ kVPL ð11Þ

sPL
t

¼ �rPL ¼ αPLt−βPL

1−βPL
ð12Þ

We then fitted all four models to the �r and t estimates,
and assessed how well the models describe the data by

using adjusted R2 (�R2 ) scores. Although it is clear from
visual inspection that the EX model tends to underesti-
mate long-term rates (Fig. 2), overall, all four models
seem to describe the data well, indicated by their high
�R2 scores (�R2 score [95 % HPD]: Eq. 9: 0.99 [0.95, 1.00];
Eq. 10: 0.97 [0.94, 0.99]; Eq. 11: 0.98 [0.92, 1.00]; Eq. 12:
0.98 [0.93, 1.00]). The results are shown in Fig. 2, and
Additional file 1: Table S3.
In addition, we also recovered FV short-term and long-

term rate estimates (calculated over a timescale of 10 years
and 30 million years (Myr), respectively) by using these
timescale (t) and average evolutionary rate estimate (�r ). Eq. 9 (top-left),
1,500 randomly-sampled sets of corresponding �r and t estimates under
rrespond to those of the node bars in Fig. 1a. The node numbers refer to
itional file 1: Table S3
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four models. The VEX and EX models estimated the
short-term rate of FVs to be ~10-7 to 10-8 s/n/y (median
rate estimates [95 % HPD]: VEX: 1.06 × 10-7 [7.43 × 10-8,
1.51 × 10-7]; EX: 9.68 × 10-8 [6.92 × 10-8, 1.35 × 10-7]). This
is much lower than the previously reported FV short-term
rate estimate (~3.75 × 10-4 s/n/y [47]). On the other hand,
the VPL and PL models estimated the rate to be in the
order of 10-4 to 10-5 s/n/y (median rate estimates [95 %
HPD]: VPL: 8.17 × 10-5 [3.24 × 10-5, 2.20 × 10-4]; PL:
7.53 × 10-5 [3.24 × 10-5, 1.45 × 10-4]), comparable to the
previously reported FV short-term rate estimate. In con-
trast, all four models calculated the long-term rate to be
~10-8 to 10-9 s/n/y (median rate estimates [95 % HPD]:
VEX: 8.75 × 10-9 [8.16 × 10-9, 9.39 × 10-9]; EX: 5.99 × 10-9

[4.58 × 10-9, 7.00 × 10-9]; VPL: 9.97 × 10-9 [9.02 × 10-9,
1.10 × 10-8]; PL: 9.93 × 10-9 [8.58 × 10-9, 1.09 × 10-8]), all
comparable to the established long-term rates of FVs
(~7.79 × 10-9 [39] to 1.7 × 10-8 [33] s/n/y).
Leave-one-out cross validation analyses

Although the high �R2 scores suggest that all four models
can describe the relationship between �r and t estimates

well (Additional file 1: Table S3), it has been noted that �R2
Fig. 3 Leave-one-out cross validation (LOOCV) tests. The models were validat
tests (see Methods for details). In (a), the recovered t values are shown agains
colours of the data points correspond to the colours of the node bars in Fig. 1
show where the recovered t values are exactly equal to the references. The ou
results can be found in Additional file 1: Table S4. VEX: vertically-translate
model; VPL: vertically-translated power-law rate decay model; and PL: sim
scores are inappropriate for comparing the performance
of nonlinear models, and can severely bias model selection
in favour of models with more parameters [48]. Corrected
Akaike information criterion (AICc) and Bayesian infor-
mation criterion (BIC) have been suggested to be more
suitable for this purpose [48]. However, the calculation of
AICc and BIC scores requires likelihood functions of the
models. Since our models are empirical, derived based on
a top-down approach, we lack such information. Given
these limitations and constrains, we thus used the leave-
one-out cross validation (LOOCV) technique to compare
our models, in the context of their ability to recover t
values given the s values. Eq. 5–8 were used in these ana-
lyses as they depict how t relates to s. The t values inferred
under the FV-host co-speciation assumption were used as
references, and by comparing the recovered t values
against them, we computed out-of-sample mean squared
error (MSEOOS) scores. These scores were used as a meas-
urement of the overall predictability of the models. (See
Methods for details.) The results are summarised in Fig. 3
and Additional file 1: Table S4.
Overall, we found that the t values recovered by all

four models are largely comparable to the references
(Fig. 3a), indicative of high predictability for all four
ed under the context of divergence date (t) inference, by using LOOCV
t the reference t values, inferred under the co-speciation assumption. The
a. The node numbers refer to those in the trees in Fig. 1a. The grey lines
t-of-sample mean squared errors are shown in (b). A summary of the
d exponential rate decay model; EX: simple exponential rate decay
ple power-law rate decay models
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models. This finding also implies that the co-speciation
hypothesis is itself internally consistent. Two discrepan-
cies were found between the reference and recovered t
values however. For all four models, we found that (i)
the recovered time to most recent common ancestor
(tMRCA) of simian FVs (SFVs) (~68.87-74.50 Myr, node
7, Fig. 1a) are much greater than the corresponding host
tMRCA (~43.47 Myr, [38]), and (ii) that the recovered
tMRCA of bovine FV (BFV) and equine FV (EFV)
(~43.06-48.85 Myr, node 9, Fig. 1a) are much lower than
the respective host tMRCA (~87.3 Myr, [36]). To verify
that these estimates are not correlated (i.e. that one did
not cause the other), we re-calculated the tMRCAs for
these two FV groups using all four models estimated in-
dependently of nodes 7 and 9. Both discrepancies could
still be observed (data not shown), indicating that they
are not artefacts.
Interestingly, unlike other models, the EX model in

particular seems to have a tendency to overestimate
shallow divergence dates (Fig. 3a; top right). This is at
odds with the observation that the EX model has a ten-
dency to incorrectly describe the long-term rates (Fig. 2;
top right). Systematic differences in the distribution of
the data points describing the �r -t and t-s relationships
may explain this discrepancy. While the variance of �r
estimates is greatest when t is low, the variance of t es-
timates is greatest when s is high. Thus, the influence
of the data points in parameter estimation differed
when the EX model was fitted to the two datasets; that
is, while Eq. 10 parameter estimation (depicting the �r -t
relationship) was primarily influenced by the data
points near the y axis, Eq. 6 parameter estimation
(depicting the t-s relationship) was primarily influenced
by the data points further away from the y axis. This
problem is not as apparent in the other three models
however, suggesting that they suffered to a much lesser
extent from this effect.
By comparing the MSEOOS scores, we found that the

PL model (Eq. 8) has the least MSEOOS overall
(MSEOOS [95 % HPD] = 236.25 [146.21, 325.40] Myr,
mean rank = 1.62; Fig. 3b), indicating that it is the best
model for inferring t, and thus most preferable as
a TDRP-correcting tool. Interestingly, the VPL model
(Eq. 7) was found to be the second best model
(MSEOOS [95 % HPD] = 239.04 [148.06, 357.06] Myr,
mean rank = 1.87; Fig. 3b), suggesting that the extra
parameter kVPL in the VPL model does not signifi-
cantly improve, but instead over-parameterises the
model. Likewise, the VEX model (Eq. 5) was found to
be the worst model (MSEOOS [95 % HPD] = 287.52
[169.43, 400.58] Myr, mean rank = 3.32; Fig. 3b), and
the EX model (Eq. 6) was found to be the second
worst model (MSEOOS [95 % HPD] = 282.79 [204.40,
369.84] Myr, mean rank = 3.18; Fig. 3b).
Examining the performance of currently available
molecular clocks in TDRP correction
Several relaxed-clock models have been developed to
address the problem of rate variation among lineages
[49–51]. These models allow rates to vary among
branches, and thus over time; therefore, they have the
potential to be used as a tool for correcting for the
TDRP in evolutionary inferences. In this section, we ex-
plored how well currently available relaxed-clock
models can accommodate the TDRP under the context
of FV timescale inference. We chose to explore scenar-
ios where only three nodes are available as calibrating
nodes as they represent realistic circumstances where cali-
brating information is limited. Nodes 7 and 9 were ex-
cluded from this analysis. This is because the LOOCV
analyses show that the reference and the recovered t
values differ greatly, and it is not possible to determine
which is closer to the true values.
Two schemes of date calibration were examined:

(i) aggregated-node calibration scheme, where all
three calibrating nodes are of similar timescales, and
(ii) dispersed-node calibration scheme where calibrat-
ing nodes are of different timescales. In the former
calibration scheme, we explored three different sce-
narios: (i) shallow- (t range: ~0.96-8.30 Myr; nodes
1, 2, and 3), (ii) intermediate- (t range: ~11.50-31.56
Myr; nodes 4, 5, and 6), and (iii) deep-timescale cali-
bration scheme (t range: ~87.18-98.90 Myr; nodes 8,
10, and 11). Similarly, we explored three (arbitrary) cir-
cumstances for the latter calibration scheme: (i)
dispersed-I calibration scheme (t range: ~2.17-87.18
Myr; nodes 2, 5, and 8), (ii) dispersed-II calibration
scheme (t range: ~0.96-88.7 Myr; nodes 1, 4 and 10),
and (iii) dispersed-III calibration scheme (t range:
~8.30-98.9 Myr; nodes 3, 6, and 11). Three currently
available molecular clocks were investigated, including
(i) a strict molecular clock, (ii) a log-normal relaxed
clock [51], and (iii) a random-local relaxed clock [50].
The strict clock was included to examine how the
TDRP would affect t inferences if it is ignored. We
focused on Bayesian timescale estimates, and used the
pol nucleotide alignment that was used in the phylo-
genetic reconstruction to estimate the timescales (see
Methods). Again, the t estimates inferred under the
FV-host co-speciation assumption were used as reference
t estimates.
We also compared these currently available clocks to

our PL model (Eq. 8). Unlike the above however, the cal-
culation was not done under a full Bayesian phylogenetic
framework. Rather, we used t and s estimates of the cali-
brating nodes to estimate the model, and then inferred
the t values of other nodes based on their s estimates.
The results are shown in Fig. 4, and Additional file 1:
Table S5.



Fig. 4 Performance of various molecular clocks in accommodating the time-dependent rate phenomenon (TDRP). We explored the performance of
various clock models in accommodating the TDRP in the context of foamy virus (FV) evolutionary timescale inference under various hypothetical
scenarios, where only three nodes are available as calibrating nodes. Two calibration schemes were examined: (i) aggregated-node calibration
scheme (top), in which all three calibrating nodes are of similar timescales, and (ii) dispersed-node calibration scheme (bottom), in which
calibrating nodes are of different timescales. The aggregated-node calibration scheme was sub-divided into three sub-schemes: (i) shallow-timescale
calibration scheme (top left), (ii) intermediate-timescale calibration scheme (top middle), and (iii) deep-timescale calibration scheme (top right).
The dispersed-node calibration scheme was also sub-divided into three arbitrary sub-schemes: (i) dispersed-I calibration scheme (bottom left),
(ii) dispersed-II calibration scheme (bottom middle), and (iii) dispersed-III calibration scheme (bottom right). Four sets of dates were plotted
from different clock implementations and one of our TDRP models: (i) simple power rate decay model (green), (ii) strict clock model (yellow),
(iii) log-normal relaxed clock model (orange), and (iv) random-local relaxed clock model (red). FV evolutionary timescales inferred from the
host timescales (reference timescales) are in white. Horizontal dotted grey lines are median reference timescales. The results are plotted on a
log scale, and arranged in such a way that the evolutionary timescales of shallow nodes are on the left, and those of deep nodes are on the
right. The node numbers refer to those in Fig. 1a. Calibrating nodes are indicated by asterisks ‘*’. The summary of the results can be found in
Additional file 1: Table S5 & S6
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Aggregated-node calibration scheme
Under the aggregated-node calibration scheme (Fig. 4;
top), our results show that the t values estimated under
the strict clock, log-normal relaxed clock, and random-
local relaxed clock are comparable to one another. This is
likely because the calibrating nodes do not provide enough
signal for the rate variation among lineages to be esti-
mated. Indeed, we found that the coefficients of rate vari-
ation estimated under the two relaxed clock models do
not deviate very far from zero (Additional file 1: Table S6).
Overall, we found that the t values of the nodes adjacent

to the calibrating nodes are estimated relatively accurately,
comparable to the reference values. However, as we move
further away from the calibrating nodes, the t estimates
become increasingly more inaccurate. Under the shallow-
timescale calibration scheme, the t values of deep nodes
are severely underestimated (Fig. 4; top left). In contrast,
the t estimates of shallow nodes are severely overestimated
under the deep-timescale calibration scheme (Fig. 4; top
right). In the intermediate-timescale calibration scheme,
the t values of deep nodes are underestimated while those
of shallow nodes are overestimated (Fig. 4; top middle).
Our results are consistent with the findings in a previous
study that solely focused on SFVs [52].
In contrast, our results showed that the PL model

could accommodate the TDRP reasonably well under
these examined scenarios, better than the currently
available molecular clocks. Although we found that the
uncertainties of t estimates are extremely large (thus
providing relatively little information about the actual
dates themselves), the reference t values are almost al-
ways contained within the t distributions estimated
under the PL model, whereas those estimated under the
current clock models do not even overlap with the refer-
ence t distribution (Fig. 4; top). The median t estimates
from the PL model are also closer to the reference
values, which is most apparent in the intermediate- and
deep-timescale calibration schemes (Fig. 4; top middle
and right, respectively), but less so in the shallow-
timescale calibration scheme (Fig. 4; top left). These
large uncertainties are unlikely an intrinsic property of
the PL model however, but a shortcoming of our ex-
trapolation approach in which the t and s values are not
estimated in conjunction with one another. Coupled
with the fact that these are extrapolations over large
timescales and that the uncertainty of the s estimate in-
creases down the tree (Fig. 1a), it is unsurprising to find
that this problem is most apparent in the shallow-
timescale calibration scheme (Fig. 4; top left), but less so
in the intermediate-timescale calibration scheme (Fig. 4;
top middle), and least in the deep-timescale calibration
scheme (Fig. 4; top right). These findings thus indicate
that deep nodes are preferable as calibrating nodes, con-
sistent with the results from a previous simulation study
that investigated the impact of calibrating node position
on timescale estimates [52].

Dispersed-node calibration scheme
Under the dispersed-node calibration scheme (Fig. 4; bot-
tom), we found that the performances of the log-normal
and random-local relaxed clocks differ from that of the
strict clock. This is likely because the calibrating nodes
are spread out in time and hence provide adequate in-
formation for the rate variation among branches, and
thus over time, to be modelled more accurately. Indeed,
the coefficients of rate variation estimated under the two
relaxed clocks deviate far from zero (Additional file 1:
Table S6).
Overall, we found that the strict clock model performs

worst, and the t values obtained under the clock vary
substantially between sub-schemes. For example, in the
dispersed-I calibration scheme (Fig. 4; bottom left), the t
values of intermediate nodes were estimated relatively
accurately, but those of shallow nodes were overestimated,
and those of deep nodes were underestimated. On the
other hand, in the dispersed-II and -III calibration
schemes (Fig. 4; bottom middle and left, respectively),
the t values of deep nodes were estimated relatively ac-
curately whereas those of shallow nodes were severely
overestimated. In contrast, the two relaxed clock
models seem to perform reasonably well, returning t
values that are comparable to the references, and also
to those inferred under the PL model. This, in turn, in-
dicates that the performance of these three models is
comparable under these scenarios. Moreover, we also
observed that the t distributions inferred under the PL
model are tighter compared to those inferred under the
aggregated-node calibration scheme. This is likely be-
cause the dispersed-node schemes involve interpolation
rather than extrapolation.

Inferring missing FV divergence dates by using the PL model
Consistent with the results from previous studies [35, 53],
amidst the stable FV-host co-speciation history, we found
a few mismatches in the history of New World monkey
(NWM) FVs and their hosts (Fig. 1a). These involve (i) the
split between marmoset and spider monkey FVs (SFVmar
and SFVspm, respectively) (Fig. 1a; node I), and (ii) the di-
vergence leading to squirrel monkey FV (SFVsqu) lineage
(Fig. 1a; node II).
As a case study, we used the PL model to infer the t

values for these two nodes. To do so, Eq. 8 was fitted to
the dataset of t and s estimates, with those of nodes 7 and
9 excluded (as we could not conclusively determine the
true t values for these two nodes; see above). The models
were then used to infer the t values of node I and II from
their s estimates. Our analyses inferred the tMRCA of
SFVmar and SFVspm to be ~23.40 [19.25-27.52] Myr, and
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the earlier branching of SFVsqu lineage to occur ~40.81
[35.58-46.08] Myr ago.

Discussion
What are the causes of the TDRP?
Our analyses show that the estimated values of the FV
substitution rates decrease continuously with measure-
ment timescales (Fig. 1), and the PL model is the best
model for correcting for the TDRP. It is possible that
the TDRP observed here is the result of changes in FV
biology, such as polymerase fidelity, replication speed,
and/or transmission modes. These ideas have been put
forward as plausible explanations for the rate variations
observed in several viruses, including hepadnaviruses
[3], and human T-cell lymphotopic viruses [4, 5] as well
as RNA viruses in general [6]. These hypotheses would
be reasonable and sensible if the values of the rate esti-
mates changed discretely. However, as the rate estimate
continuously decreases with the measurement timescale,
this would posit that the biology of FVs has been con-
tinuously changing with time in such a way that that the
viral rate of evolution gradually increases through time.
Moreover, since the TDRP is not unique to FVs, but very
common among viruses, these hypotheses would also
imply that the biology of many viruses has changed in a
similar manner. Although possible, this is extremely un-
likely [54]. We therefore believe that changes in viral bio-
logy likely do not play a major role in governing the
overall decay trend of viral evolutionary rate estimates.
Changes in natural selection pressure have also been

put forward as a potential underlying cause of the TDRP
[27, 29, 55]. Nevertheless, like viral biology, it is ex-
tremely difficult to imagine that environmental factors
would have changed systematically with time so that vi-
ruses experience less and less purifying selection pres-
sure as they evolve. It is important to note that we are
by no means suggesting that changes in environment do
not cause viral evolutionary rates to alter. Indeed, they
can, and this has been observed. An analysis of bat
rabies viruses has shown that their evolutionary rates are
strongly correlated with the host local environments,
suggesting that environmental changes can alter the rate
of viral evolution [56]. However, we argue that, for the
alteration of environment and/or natural selection to
play a major role in generating the TDRP, not only must
they change the rate, but the effect must also be time-
correlated, which we consider unlikely. We thus believe
that, rather than reflecting a genuine change in natural
selection pressure, the observed TDRP is likely an arte-
fact caused by other factors.
So, if viral biology, environmental factors, and selec-

tion pressure remain relatively constant through time,
what could possibly cause the TDRP? It has been proposed
that short-term rate estimates tend to be overestimated
due to the inclusion of transient deleterious variations
[28, 41, 57], recent adaptive changes [58–60], and sequen-
cing errors [20, 61–63]. Errors in coalescent calibration
information have also been suggested as a sufficient ex-
planation for elevated short-term rate estimates [64]. In
contrast, misspecification of substitution model [65, 66],
saturation of nucleotide changes [14, 28, 65, 67], and
improper accounting for rate heterogeneity among se-
quence positions [30] can lead to underestimation of
long-term rate estimates. All of these factors could con-
tribute to the TDRP, and at present, the importance
and relevance of each factor is still poorly understood
and continues to be debated (see [28] for a review).

The TDRP as a possible explanation of the short-term and
long-term rate discrepancy
A large discrepancy of ~4-5 orders of magnitude has
been observed between FV short-term and long-term
rate estimates. Indeed, such discrepancies have been
found not only in FVs, but many and diverse RNA and
DNA viruses [3–5, 54, 60]. Rather than viewing them as
conflicting rate estimates, it is has been proposed that
this discrepancy may result from estimating the rates
over different extremes of the TDRP [54].
In order to investigate whether the TDRP can explain

this discrepancy or not, we used our four rate models to
recover the short-term and long-term rate estimates of
FVs. Our analyses showed that all of the four models
could recover the long-term rate relatively well. How-
ever, given that the models were parameterised on FV
long-term rate estimates, this is expected and unsurpris-
ing. In contrast, we found that only the VPL and PL
models could recover the FV short-term rate accurately,
but the VEX and EX models severely underestimated the
rate by ~3-4 orders of magnitude. These results further
support the use of the PL model as a tool for TDRP cor-
rection, and simultaneously indicate that, indeed, the
short-term and long-term rate discrepancy in FVs can be
explained by the TDRP.

Implications of the TDRP
There are a number of implications of the TDRP. One of
them is that it is important to take the timescale of rate
measurement into consideration when using or inter-
preting evolutionary rate estimates; otherwise, the out-
comes could be severely biased. For example, it is
inappropriate to use long-term rate estimates to infer or
evaluate viral short-term epidemiological dynamics, as
they could give an erroneous impression that the viruses
being considered are of low adaptive and cross-species
transmission potential. Similarly, in the specific case of
FVs, which are candidate gene-carrying vectors for gene-
therapy [68, 69], using their long-term rates to evaluate
the risks of FV-derived gene vectors could be misleading,
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as they are in fact capable of evolving at a (short-term)
rate as high as ~3.75 × 10-4 s/n/y [47], comparable to those
of highly pathogenic and fast-adapting viruses like HIVs
[41, 70–72] and influenzas [41, 73–75].
Another important, and perhaps more obvious, impli-

cation is that it will no longer be valid to naïvely ex-
trapolate rate estimates across different time frames
when inferring evolutionary timescales. The assumption
of a single molecular clock can bias the timescale infer-
ence with the severity increasing with the timescale of
rate extrapolation. As the value of the rate estimate con-
tinuously decreases with the measurement timescale, the
TDRP should appear in, and is relevant to, every phylo-
genetic analysis. That is, if two or more evolutionary rate
estimates are calculated over different timescales from a
particular phylogeny (e.g. use different internal nodes to
calibrate the rate), the TDRP should show up. Neverthe-
less, in practice, if the timescale of evolutionary investi-
gation is short, e.g. hundreds of years (which are typical
for infectious disease analyses), the uncertainty of the
rate estimate may overwhelm the effect of the TDRP,
and the phenomenon might not be observed. Indeed,
the strict molecular clock has sometimes been identified
as appropriate for studies over short timescales such as
epidemiological studies [41, 76, 77], but not for longer
timescale analyses such as evolutionary investigations
that compare viruses in different host species [4, 78, 79].
Moreover, the TDRP can also bias demographic param-
eter estimations such as effective population sizes and mi-
gration rates if it is unaccounted for. This is simply
because the calculation involves estimating or knowing
substitution rates [28, 80].
Similar to the results from previous studies [52, 81],

our results show that evolutionary timescales calibrated
under currently available molecular clocks are highly
sensitive to the choice of calibrating nodes. The effect is
most pronounced when the calibrating nodes are of the
same timescale (Fig. 4; top). As short-term rate estimates
are greater than the long-term ones, calibrating deep
divergence dates with shallow nodes will underestimate
them. Conversely, using deep nodes to calibrate shallow
divergence dates will tend to overestimate them. Strikingly,
we found that the current relaxed clocks do not perform
any better than the strict clock under these circumstances,
indicating that they are not an effective solution to the
TDRP problem. Compared to the currently available
relaxed-clock models, the PL model performs better and is
more consistent across the calibration schemes, even when
calibrating nodes are of similar timescales (Fig. 4; top).
Our results suggest that the currently available

relaxed-clock models suffer much less from the TDRP
problem, and perhaps are equally good to the PL model,
if calibrating nodes are dispersed in time (Fig. 4; bot-
tom), consistent with the results from a previous study
[32]. Nevertheless, in most realistic applications, the
number and dispersal of calibrating nodes is serendipit-
ous, dictated by their limited availability which often in-
volves only one or a few nodes. Given this limited
availability of time-calibrating information and the sensi-
tivity of the current clocks to the choice of calibrating
nodes, our results overall suggest that the current relaxed-
clock models might not be an effective and practical solu-
tion to the TDRP problem yet. We, thus, believe that our
PL model will be useful as a guideline to further improve
our current evolutionary inference tools.

Possible evolutionary rate dynamics heterogeneity
among viral lineages
Our analyses showed that the tMRCA estimates of SFVs
recovered by the four models are considerably higher
than the host tMRCA (Fig. 3a and Additional file 1:
Table S4; node 7). Our analyses also estimated the
tMRCA of SFVmar and SFVspm (~23.40 Myr) and that
of NWM FVs (~40.81 Myr) to be greater than those of
their hosts (~22.76 Myr, [38]). One possibility is that the
tMRCAs inferred by our models are not artefacts, but
resemble the real dates. This would however imply du-
plications of viral lineages in the absence of host diversi-
fication, which we consider to be unlikely. An alternative
explanation is that the evolutionary rates of NWM FVs
and the stem lineage are higher than average, and our
analysis framework did not take this into account. Since
we employed a strict clock to estimate s values, we
thereby assumed that all taxa evolve under the same
time-dependent rate dynamics. Thus, the incongruences
between the predicted and inferred NWM FV diver-
gence dates may be indicative of the heterogeneity of
evolutionary rate dynamics among viral lineages, and
this may bias evolutionary timescale inferences if it is
unaccounted for. A solution to this problem would be to
fit multiple time-dependent rate models to different
parts of the tree.
Conversely, our results show that the recovered BFV/

EFV tMRCAs are considerably lower than the host
tMRCA (Fig. 3a and Additional file 1: Table S4; node 9),
implying a cross-species FV transmission between
equine and bovine hosts ~53-59 Ma. Unlike the scenar-
ios discussed above, this is relatively reasonable and
should not be ruled out. Alternatively, it could be that
the substitution rate on the BFV-EFV stem branch is
greater than that of other FVs. Further resolution of
these questions would require the identification and ana-
lysis of FV genomes of other bovines and equines.

Conclusions
Our knowledge of viral natural history has been greatly
advanced by molecular analyses. One of the key steps in
viral evolutionary study involves estimating the rate of
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substitution. By using FVs as a case study, we show that
their evolutionary rate estimates are negatively corre-
lated with the timescale of rate measurement, and this is
likely responsible for the short-term/long-term rate dis-
crepancy observed in FVs, and perhaps other viruses as
well [54]. We also demonstrate that currently available
relaxed-clock models are inadequate for accommodating
the TDRP; using them to infer evolutionary timescales
can severely bias the date estimates especially when rate-
calibrating nodes are of similar timescales. We believe
that the PL model developed here will be useful as a
guideline for the further improvement of existing ana-
lytical tools. Our results also suggest that heterogeneity
in rate dynamics among viral lineages may exist, and
can affect evolutionary inference.
Combined, our work highlights the importance of the

TDRP and heterogeneity in evolutionary rate dynamics
among viral lineages. Given the potential impacts of the
TDRP on evolutionary inference and rate estimate inter-
pretation, the fact that it is so widespread in nature but
has been noticed only recently could mean that the
credibility of evolutionary timescale estimates of many
viruses may need to be reconsidered.

Methods
Phylogenetic reconstruction
Four phylogenies of 14 extant foamy viruses (FVs)
(Additional file 1: Table S1) were estimated from
manually-curated Pol protein (1,116 aa; Additional file 3)
and pol nucleotide (3,351 nt; Additional file 4) alignments.
Potential recombination among aligned sequences was
assessed with a quartet-based recombination detection
program VisRD3 [82], both at nucleotide and protein
levels. In both cases, the null distribution was built based
on 1,000 datasets of randomly-shuffled sequences, and the
extended statistical geometry (Hamming) weighting op-
tion was applied. In the nucleotide analysis, the window
and step size were 200 and 40 nt, respectively, and in the
protein analysis, the window and step size were 100 and
20 aa, respectively. The results showed no significant
evidence for recombination. The best-fit amino-acid
and nucleotide substitution models used in the phylogen-
etic reconstructions were determined to be rtREV+
I + Γ(4) + F and GTR+ I + Γ(4) by ProtTest 2.4 [83] and
Jmodeltest 2.1.1 [84], respectively, under the AICc criterion.
The phylogenies were constructed under both the

Bayesian and maximum-likelihood phylogenetic frame-
works, by using MrBayes 3.2.1 [85] and MEGA 5.2 [86],
respectively. In the Bayesian analyses, 2 independent
MCMCs were run for 50,000,000 steps each, with the ini-
tial 12,500,000 steps discarded as burn-in. Parameters
were thereafter logged every 2,500 steps. Metropolis coup-
ling was applied, using the setting of 3 hot and 1 cold
chains. Parameter estimate convergences were diagnosed
using potential scale reduction factors (PSRFs). PSRFs of
all parameters are ~1.000, indicating that they were all
well sampled from their posterior distributions and had
converged. In the maximum-likelihood analyses, bootstrap
support values were calculated using 1,000 pseudorepli-
cates. A molecular clock was not imposed in either of the
analyses. In total, four phylogenies were estimated: (i) a
maximum-likelihood Pol protein tree, (ii) a Bayesian Pol
protein maximum clade credibility (MCC) tree, (iii) a
maximum-likelihood pol nucleotide tree, and (iv) a Bayes-
ian pol nucleotide MCC tree (Additional file 2: Figure S1),
all of which show the same topology.
Note that we did not include endogenous mammalian

FVs – SloEFV [34], PSFVaye [35, 42], and ChrEFV [35, 43] –
in the analysis. The reason is that their evolutionary rate is
a mixed rate, comprising the rate of viral evolution and
the neutral rate of host evolution, which could bias the
analysis. Even if we can decompose the rate into the two
rate components, it is still unclear how the ‘truncated’
rates of viral evolution would fit into the dynamics of the
evolutionary rate of extant viruses. As a result, we focus
our study on the rate dynamics of extant FVs only.

Inferring FV node-to-tip total per-lineage substitutions
(s estimates), evolutionary timescales (t estimates), and
node-to-tip average evolutionary rates (�r estimates) over
various time frames, and assessing the correlation between
�r and t estimates
We estimated s values from the manually-curated pol nu-
cleotide alignment under the Bayesian framework, by using
BEAST 1.7.4 [87]. The strict molecular clock assumption
with a fixed rate of 1, and Yule speciation process were ap-
plied. The topology of the phylogeny was fixed according to
the phylogeny obtained in the phylogenetic reconstruction.
The MCMC was run for 50,000,000 steps, with the initial
12,500,000 steps discarded as burn-in. Parameters were
logged every 2,500 steps. In total, 15,000 sets of parameter
estimates were sampled. Parameter value convergence and
sampling independency were manually inspected using
Tracer v1.5 [88]. We found all parameters had an effective
sample size (ESS) of >350, indicating that all of them were
well sampled and had converged.
In total, as there were 13 internal nodes, 13 posterior

distributions of s estimates were obtained, 11 of which
could be assigned to independently estimated evolution-
ary timescales of their hosts on the basis of the FV-host
co-speciation assumption (Fig. 1a, and Additional file 1:
Table S2). We then divided s estimates by their evolu-
tionary timescale (t estimates) to derive �r estimates for
various time frames. Note that, since a strict clock was
applied and the tips were all aligned, the timescale of the
rate estimation is equivalent to the node heights in units
of time. To accommodate the uncertainty of t and �r esti-
mates, we simulated 15,000 sets of t values under the
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assumption that they are normally distributed, and ran-
domly paired them to each of the sub-datasets of s esti-
mates to compute 15,000 sets of �r estimates. The
means of the t distributions were assumed to be equal
to the median t estimates reported in the literature, and
their standard deviations were calculated from the re-
ported upper- and lower-bounds of the corresponding
95 % highest posterior density intervals: max
Median−Lower 95% HPD limit

1:96 ; Upper 95% HPD limit−Median
1:96

� �
.

The t simulation was constrained by the estimated phyl-
ogeny in such a way that the t values of child nodes were
always lower than those of the corresponding parental
nodes. This approach to model parameter estimation takes
into account the uncertainty of s, t, and �r estimates to the
full extent, considering the whole space of their estimated
Bayesian posterior distributions.
To preliminarily evaluate the correlation between �r and

t, we fitted a linear model to each of the 15,000 sub-
datasets of the log-transformed �r and t estimates, using the
LinearModel.fit function implemented in MATLAB
R2012a [89]. However, it has been noted that a correlation
analysis between a quotient and its denominator has a ten-
dency to yield a seemingly significant but in fact spurious
negative correlation [90]. Randomisation tests have been
recommended as a way to address this issue [90]. Here, we
randomly matched s and t estimates to compute �r values
under the null hypothesis that there is no correlation be-
tween s and t, and in turn computed a ‘null’ �r -t correlation
coefficient. In each of the 15,000 sub correlation analyses,
this process was repeated 100 times to construct a distribu-
tion of the null �r -t correlation coefficient, which was then
used to compute the p-value.
We also note that our data is not phylogenetically inde-

pendent; for example, each of the terminal branches are
included in several s, t, and �r estimates. The results thus
should be interpreted with an understanding that the data
does not fully conform to the ordinary model-fitting as-
sumption. It is also important to note that this problem is
not unique to just the above analysis, but also applies to
all subsequent model estimations in our study. In our
model framework, this is inevitable, unfortunately, due to
the fact that a phylogenetic independent dataset, i.e. a
dataset of instantaneous rate estimates and their corre-
sponding timescale, is extremely difficult, if not impossible,
to obtain for FVs. However, validating the models under
the context of t inference still shows that they work well
despite this issue (see LOOCV analyses), indicating that
our analyses suffer from this problem only to a low degree.
Describing the temporal dynamics of �r
Four equations depicting the t-�r relationship were de-
rived based on four empirical rate decay hypotheses: (i)
vertically-translated exponential rate decay hypothesis
(Eq. 9), (ii) simple exponential rate decay hypothesis
(Eq. 10), (iii) vertically-translated power-law rate decay
hypothesis (Eq. 11), and (iv) simple power-law rate
decay hypothesis (Eq. 12). These equations were in turn
fitted to 1,500 datasets of corresponding t and �r estimates
randomly sampled from their posterior distribution under
the criterion of the least sum of squared errors (LSE) of �r ,
using the lsqcurvefit function implemented in MATLAB
R2012a [89]. All parameters were constrained to be greater

than zero. �R2 scores were used to preliminarily assess how
well the models describe the data.
The estimated models were also used to recover previ-

ously reported short-term rate [47] and long-term rate
[33, 39] estimates of FVs. In this study, the short-term and
long-term rate estimates were defined and calculated over
a timescale of 10 years, and 30 Myr, respectively.
Validating the performance of the models under the
context of t inference by using the leave-one-out cross
validation (LOOCV) technique
We first derived four equations describing the relationship
of t and s from the four empirical rate reduction hypoth-
eses (Eq. 5–8, see Results), and fitted them to 1,500 sets of
corresponding t and s estimates, sampled from their pos-
terior distributions consisting of 15,000 datasets. For
consistency, we constructed the t-s dataset in such a way
that it corresponded to the dataset of t and �r estimates
used in the �r dynamics analyses. In total, the models were
validated for 1,500 rounds. In each round, the dataset was
partitioned into a testing set containing an estimate of s
and t of one particular node, and a training set containing
the rest of the data. The models were fitted to the training
set under the criterion of the LSE of t, by using the lsqcur-
vefit function implemented in MATLAB R2012a [89]. All
parameters in the models were constrained to be greater
than zero. The resultant models were then used to infer
the t of the testing node from its s estimate. This process
was repeated such that the t and s of every node is used
exactly once as the testing data to complete one round of
LOOCV testing. The overall performance of the models
was assessed based on the out-of-sample mean squared
error (MSEOOS), and the t values inferred under the
FV-host co-speciation assumption were used as refer-
ences. To compare the models, we applied Friedman’s
test to the MSEOOS, and performed a post-hoc analysis
(complete-pairwise MSEOOS comparisons based on
Wilcoxon signed-rank tests) with the Bonferroni
multiple-testing correction. The significance was eval-
uated at α = 0.05.
Examining the effect of the TDRP on t inference
We examined the effect of the TDRP on t inference
under six hypothetical scenarios, in all of which only
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three nodes were used as calibrating nodes (see Results).
Nodes 7 and 9 (Fig. 1a) were excluded from the analysis.
The t values inferred under the FV-host co-speciation
assumption were used as references. Three currently
available molecular clocks were examined: (i) a strict
molecular clock, (ii) a log-normal relaxed clock [51], and
(iii) a random-local relaxed clock [50]. The t inference
was performed under the Bayesian phylogenetic frame-
work, implemented in BEAST 1.7.4 [87], by using the
pol nucleotide alignment that was used in the phylo-
genetic reconstruction. The Yule speciation process
and GTR + I + Γ(4) substitution model were applied.
This model was determined to be the best for our align-
ment by Jmodeltest 2.1.1 [84] under the AICc criterion.
The topology of the phylogeny obtained in the phylo-
genetic reconstruction was fixed. The MCMC was run
for 50,000,000 steps, with the initial 12,500,000 steps
discarded as burn-in. Parameters were logged every
2,500 steps. Parameter value convergence and sampling
independency were manually inspected using Tracer
v1.5 [88]. For the runs that returned parameters with
ESSs of <200 (a recommended cut-off [51]), we re-
peated the analyses and combined the results until the
ESSs of all parameters were >200.
Moreover, we also examined the PL model for how

well it addresses the TDRP under these various hypo-
thetical scenarios. The t and s estimates of the calibrat-
ing nodes were used to compute the model parameters.
For consistency, the dataset of t and s estimates used in
this investigation was the same one that was used in the
LOOCV analyses. The model was fitted to each of the
1,500 sub-datasets using the lsqcurvefit function imple-
mented in MATLAB R2012a [89] under the criterion of
the LSE of t, and the parameter estimation was con-
strained so that all parameters were greater than zero. The
estimated model was then used to infer the t values of
other nodes based on their s estimates.

Inferring missing FV divergence dates by using the PL model
The PL model was fitted to the dataset of t and s esti-
mates that was used in the LOOCV analyses under the
criterion of the LSE of t, but without the data associated
with nodes 7 and 9. The fitting was performed using the
lsqcurvefit function implemented in MATLAB R2012a
[89], and was constrained so that all parameter values
were greater than zero. The estimated model was then
used to infer the missing t values for two nodes based
on their s estimates: (i) node I (the split between marmo-
set and spider monkey FVs) and (ii) node II (the basal
diversification of all New World monkey FVs).
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