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Abstract: Existing wearable systems that use G-sensors to identify daily activities have been widely
applied for medical, sports and military applications, while body temperature as an obvious physical
characteristic that has rarely been considered in the system design and relative applications of
HAR. In the context of the normalization of COVID-19, the prevention and control of the epidemic
has become a top priority. Temperature monitoring plays an important role in the preliminary
screening of the population for fever. Therefore, this paper proposes a wearable device embedded
with inertial and temperature sensors that is used to apply human behavior recognition (HAR) to
body surface temperature detection for body temperature monitoring and adjustment by evaluating
recognition algorithms. The sensing system consists of an STM 32-based microcontroller, a 6-axis
(accelerometer and gyroscope) sensor, and a temperature sensor to capture the original data from 10
individual participants under 4 different daily activity scenarios. Then, the collected raw data are
pre-processed by signal standardization, data stacking and resampling. For HAR, several machine
learning (ML) and deep learning (DL) algorithms are implemented to classify the activities. To
compare the performance of different classifiers on the seven-dimensional dataset with temperature
sensing signals, evaluation metrics and the algorithm running time are considered, and random
forest (RF) is found to be the best-performing classifier with 88.78% recognition accuracy, which
is higher than the case of the absence of temperature data (<78%). In addition, the experimental
results show that participants’ body surface temperature in dynamic activities was lower compared
to sitting, which can be associated with the possible missing fever population due to temperature
deviations in COVID-19 prevention. According to different individual activities, epidemic prevention
workers are supposed to infer the corresponding standard normal body temperature of a patient by
referring to the specific values of the mean expectation and variance in the normal distribution curve
provided in this paper.

Keywords: human activity recognition (HAR); wearable sensors; COVID-19; temperature sensor;
machine learning (ML)

1. Introduction

Following the popularization and optimization of intelligent electronic devices and
computer systems, human activity recognition (HAR) via wearable devices has been
attracting research attention for decades. HAR technology has been applied to various
scenarios in the fields of medical care, military security, health service and infotainment,
and new application requirements have even emerged in the context of COVID-19 [1–8].
In comparison with vision-based activity recognition, wearable sensors in human activity
recognition provide more possibilities for human and mobile devices to interact due to
their low cost, small size, strong computing ability and privacy protection, which also serve
as the hardware support for the experimental data collection stage. Tools such as machine
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learning (ML) and deep learning (DL) act as core learning algorithms, allowing raw data on
human activity recognition to be generalized in various domains after training and testing.
Wearable sensing devices typically combine embedded systems with inertial, physiological
or environmental sensors to identify ambulation, exercise and daily activities, thus enabling
HAR technology not only to perform monitoring and activity prediction but also to provide
personalized service and decision support under certain circumstances [4,9–17].

1.1. Related Work

HAR technology using wearable devices and learning algorithms has already achieved
several successful applications. Yen et al. proposed an automatic CNN feature extraction
method combined with a wearable inertial sensor to improve the accuracy of daily activity
recognition [4]. Lawal and BanoI developed a method of establishing a frequency image
for an original signal to improve the overall recognition performance [10]. N.K. et al.
proposed a collaborative optimization technology for a sensor classifier based on HAR,
which can also reduce energy consumption [11]. As the scalar output and pool in CNN
cannot be equivalent, Pham et al. proposed a wearable sensor using the capsule network
to ensure activity recognition [12]. Khokhlov et al. assumed that smart phones with
embedded accelerometers and gyroscope sensors can be used to guarantee accuracy in
activity recognition devices [14]. Hsu et al. presents a wearable inertial sensor network that
can effectively identify 11 kinds of sports activities; however, its results are still affected by
various activity datasets, and the resource consumption in the process of data transmission
and processing is also high [9]. Ayman et al. established a new HAR framework based on
the IMU sensor, which forms an efficient HAR system [15]. Wu et al. proposed a wireless
vital signs monitoring system, which can be applied to daily medical care applications [16].
He et al. proposed a new HAR model based on cyclic attention learning, which is superior
to the traditional CNN and LSTM models, and it also shows how to recognize special
human activities on weak-labeled sensor datasets through end-to-end training and achieves
satisfying results [17].

Since the outbreak of COVID-19 around the world, many new application demands
and values based on wearable sensing technology have also been constantly emerging.
A number of similar related works have been proposed in the past two years. Ueafuea et al.
reviewed the application of mobile and wearable devices in providing psychological
support against the background of the COVID-19, which is primarily aimed at front-line
workers with psychosocial diseases [5]. Lonini et al. proposed the use of flexible wearable
sensing devices and structured activities to quickly screen the physiological changes
of patients with novel coronavirus [6]. Sadighbayan and Ghafar summarized portable
sensing devices for COVID-19 [7]. A contactless, small-scale motion monitoring system
using software-defined radio was designed by Rehman et al. for the early diagnosis of
COVID-19 [17]. However, the quality and efficiency of the follow-up long-term prevention
and control efforts will be of greater concern as the epidemic begins to stabilize and be
brought under control in most countries and regions. Nevertheless, as the infectious
disease is currently under control in some countries and regions, more efforts should be
placed on improving the quality and efficiency of the subsequent long-term epidemic
prevention work.

Strict screening and timely isolation can effectively respond to epidemic prevention
and control. Fever is one of the prominent clinical symptoms of patients with novel
coronavirus, so body temperature monitoring is a key step of daily epidemic prevention,
and infrared thermometers play an important role as a common temperature measure-
ment tool. Generally speaking, when a person’s body temperature exceeds 37.3, it means
that they have reached the fever standard. An infrared thermometer is able to maintain a
certain distance for temperature measurement and avoid large-scale population retention
and cross-infection, thereby reducing the risk of contact and transmission. Therefore, it is
suitable for the preliminary screening of crowds, including public places such as campuses,
communities, supermarkets, office buildings and transportation hubs. Figure 1 illustrates
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some sample pictures of temperature measurement in some domestic and overseas public
places. However, the accuracy of temperature recordings cannot always be guaranteed in
some cases. On one hand, data are easily affected by the surrounding environment, such
as the ambient temperature and humidity, because the measured part is usually exposed.
The best measurement range of the thermometer is 16–35 ◦C, while the outdoor temper-
ature in winter obviously cannot reach this level. On the other hand, the experimental
part mentioned in the following section reveals that the human body temperature under
a motion state will be lower than that under a stationary state when the environmental
temperature remains constant. Consequently, extreme weather conditions and human
activity states influence the accuracy of temperature recordings and also affect the efficiency
of body temperature monitoring.

Figure 1. Temperature measurement in public places for COVID-19 regular prevention.

1.2. Main Contributions

On the basis of the current social situation and compared to existing related work, our
main contributions are as follows:

• In addition to the accelerometer and gyroscope, the independently designed wearable
device also adds the temperature sensor module, which enriches the sensing data
and is conducive to the further study of the relationship between human body surface
temperature and the accuracy of activity recognition.

• The 10 participants spanned the major age groups, various professions and different
ranges of height and weight. After collecting sensing data under similar experimental
conditions, the data are divided into a training set (75%) and testing set (25%) for
learning algorithms to ensure that the selected learning model is generalized enough
to adapt better to future new users.

• The performance of almost all algorithms has been improved to varying degrees
after incorporating body surface temperature data (slightly lower than the normal
human body temperature). In other words, the temperature sensing data achieve
more accurate human activity recognition.

• Among all the selected learning modules, random forest (RF) and extreme trees
(ET) comprehensively perform better. Without data stacking, the ET reaches an 89%
recognition rate and RF reaches an 88% recognition rate, while it has less computing
time consumption. After the resampling process, the performances of the algorithms
with the raw dataset are continuously improved, and ET and RF can reach 90% and
92% accuracy, respectively.

• The body surface temperature of participants under moving activities (walking, walk-
ing upstairs or downstairs) is lower than that of sitting, which is related to the body
temperature monitoring during COVID-19. Temperature errors of 1–2 ◦C may lead
to the omission of potential feverous people and affect the accuracy and efficiency of
epidemic prevention work.

The remainder of this paper is organized as follows: Section 2 presents the experi-
mental setup process, including hardware device components, participants’ demographics
and some visualized data examples. Section 3 introduces signal standardization and data
stacking and the activity recognition algorithms’ accuracy, as well as the model evaluation
results. The influence of human surface temperature data on the algorithms’ performance
is also attached great importance in this section. Section 4 links practical human-centered
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applications in the context of COVID-19. Finally, Section 5 provides the conclusions and
future work.

2. Experimental Setup
2.1. Apparatus

The wearable hardware device employed in this experiment is composed of a STM32
based microcomputer, an inertial sensor module (including a three-axis accelerometer and
a three-axis gyroscope), a temperature sensor, a power supply and a Bluetooth module
used to realize the wireless communication between the device and computer (Figure 2). A
detailed description of each component of the hardware support is summarized in Table 1.

Figure 2. Hardware structure of the wearable device.

Table 1. Hardware module.

Hardware Component Model Type

Single-Chip Microcomputer STM32F103C8T6
Inertial Sensing Module MPU6050

Temperature Sensor LMT70
Bluetooth Module HC-06

Power Supply Module 5V and 1500 mAh dry battery

The size of the microcontroller (STM32F103C8T6) is 64 mm × 36.4 mm, comprising
a STM32F 103C8 processor, a LM1117-3.3V voltage regulator chip, a miniUSB interface
used for system power and a reserved serial port. The inertial sensor (MPU6050) consists
of a triaxial accelerometer with a range of ±2 g and a triaxial gyroscope with a range of
±2000 dps, which can simultaneously collect the human activity data. The sampling rate
of the sensing system in the experiment was set at 50 Hz and converted into a digital
signal output to synthesize the three-dimensional activity space of acceleration and an-
gular velocity. LMT70 supports STM32 MCU, which was used for contact temperature
measurement. The bottom plate of Bluetooth HC-06 is equipped with a Bluetooth core
module, with six rows of needles directly connected to the serial port of SCM, and the
effective communication distance of HC-06 is within 10 m. The power supply module of
the whole device is a 5 V, 1500 mAh dry battery.

The above hardware structure was designed for this experiment for several reasons.
Firstly, the STM32F103C8T6 microcontroller has a relatively small volume and uses J-Link
for procedures, and its chip performance and peripheral configuration are suitable for the
working of the main control chip. The inertial module was used to measure x, y and z
under different states of three-axis acceleration, as well as three-axis angular velocity pitch,
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roll and yaw. The temperature sensor LMT70 must be close to the skin to obtain accurate
data because it is a contact chip. In addition, the wearable device communicates with
the computer through Bluetooth, and the sensor signal is sent to the serial port through
Bluetooth module. The computer uses Python to read the serial port data, and then
stores the data in Excel to prepare for the subsequent data analysis and processing step.
After establishing and matching the above modules, the wearable device lays a foundation
for supporting data collection and visualization analysis procedures.

2.2. Participants

This study covered 10 healthy participants (5 males and 5 females), and Table 2
presents their body parameter information (age, height and weight). Each subject was
assigned an ID number to protect their private information and was informed of the
experimental processes before the experiment started. After the measurement of body
parameters at the appointed time and place, the participants were required to wear wear-
able sensing devices on the same parts. During the data collection process, the wearable
sensor needed to be worn on the wrist of the experimental participant to ensure accurate
data transmission to reduce deviations, and the temperature sensor was attached to the
inside of the wrist with a bandage in order to close to the skin. Next, the power supply
and Bluetooth serial port of the sensor were opened to start the formal data collection
experiment, and the edited Python code was compiled after successfully connecting to the
computer. Participants completed four activities (sitting, walking, walking upstairs and
walking downstairs) successively in a natural way (Figure 3).

Table 2. Physical parameters of the 10 participants.

ID No. Occupation Age Height (cm) Weight (kg) Gender

1 Student 22 177 77.8 Male
2 Student 21 165 50.3 Female
3 Professor 32 180 80.2 Male
4 Cleaner 60 163 55.5 Female
5 Student 22 163 45.7 Female
6 Police 26 181 82.5 Male
7 Accountant 32 165 53.7 Female
8 Security 23 171 50.5 Male
9 Staff 38 172 84.0 Female

10 Student 22 175 100.1 Male

The seven-dimensional serial port data was read and stored in the cloud, including
three-axis acceleration, three-axis angular velocity and body surface temperature. Since
the major signal was the directional data collected by the inertial sensor, the whole sensor
needed to be stabilized with an elastic bandage during the experiment. The acquisition
frequency was constant at 50 Hz, and the direction and position of the device needed to
be ensured to avoid inaccurate data caused by the inertial sensor placement. The HAR
system was run according to pre-designed procedures, and the program collected data at a
speed of about 15 data points within 1 s, 50–60 s per cycle, and stored the data according to
different activities in a local Excel file. The data collection process was not completed until
four different activities of all participants were successfully collected. In the end, a total of
31,713 entries were obtained, including 8365 tags for sitting, 9416 tags for walking, 6581
tags for walking upstairs and 7351 tags for walking downstairs, which were input as the
raw data set before data preprocessing.
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Figure 3. The 10 participants wore wearable sensors to conduct different activity recognition experi-
ments. (A, H, W and G are the abbreviations of age, height, weight and gender).

2.3. Activity Data Visualization

In order to observe and analyze the differences of the data more intuitively for the
four activities, the signal diagrams from seven dimensions were visualized by using the
Matplotlib module in Python before further data exploration. The regulations of data
changes among different activities were compared. Each activity group incorporated three
types of visual data: the triaxial acceleration curve, the triaxial attitude angle curve and the
surface temperature curve (Figure 4).

When sitting still, all types of data did not show an obvious change, and there were
only slight fluctuations within a certain range of fixed values. This kind of activity signal
can be judged with the naked eye and is easy to distinguish. However, when walking,
walking upstairs and walking downstairs, all kinds of data showed periodic changes, which
were caused by the arm swinging following a certain rule. In addition, results demonstrated
that the body surface temperature in various moving activities was lower than that in the
static state, and the main reasons for the temperature drop could be inferred as follows: (1)
the data for the three moving activities (walking upstairs and downstairs) were collected
outdoors, and the outdoor temperature was lower than the indoor temperature during the
experiment, which had a certain influence on the measurement results; (2) in the moving
activities, the participants’ arm swinging led to an increase of the air flow rate, and the
acceleration of arm heat dissipation caused a decrease in the body surface temperature; (3)
different somatic functions of the 10 participants also causes the different body temperature
measurement results.
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(a)

(b)

(c)

(d)

Figure 4. Visualized sensing signal curves for four activity patterns (sitting, walking, walking upstairs and walking down-
stairs). (a) Sitting with acceleration, velocity and temperature sensing signal curves. (b) Walking with acceleration, velocity
and temperature sensing signal curves. (c) Walking upstairs with acceleration, velocity and temperature sensing signal curves.
(d) Walking downstairs with acceleration, velocity and temperature sensing signal curves.

In comparison, the moving activities are difficult to differentiate intuitively to sitting,
especially data for walking upstairs and downstairs. For the purpose of classifying activities
more accurately, data preprocessing and different learning algorithms were used for further
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analysis and discussion to achieve more efficient and accurate human activity recognition,
rather than simply judging the categories by setting the threshold value. Some ML and
DL algorithms were used to train and test the activity dataset and then establish a more
generalized learning model.

3. Activity Recognition Algorithm

Human activity recognition algorithm procedures include the standardization and
preprocessing of the raw activity data, utilizing various machine learning and deep learn-
ing algorithms to identify human activities. The accuracy of all selected classifiers was
compared and evaluated, and the main algorithm of this experiment is discussed in more
detail below. In addition, the positive impact of including temperature data on the accuracy
of human activity recognition was further verified by learning algorithms. The process of
the proposed activity recognition algorithm was as follows.

3.1. Activity Data Collection

Ten healthy adults were assisted in wearing the wearable sensor with the same setup
method. The HAR system gathered data at a rate of 1 s and read about 15 data points,
with 50 to 60 s for one cycle, to obtain the acceleration, angular velocity and tempera-
ture data to complete the data collection process for sitting, walking, walking upstairs
and walking downstairs activities. A total of 31,713 entries were obtained as the input of
the raw dataset.

3.2. Signal Standardization and Data Stacking

A common approach of data pre-processing is standardization, which means centering
data according to the mean (µ) and then scaling it on the basis of the standard deviation (δ).
Then, data are obtained that follow a normal distribution with a mean of 0 and variance of
1, which is also called Z-score normalization [18]. The formula is as follows:

x∗ =
x − µ

σ
(1)

Data stacking and resampling were performed for the standardized dataset according
to the overlapping methods with different values (0%, 10%, 20%, 30%, 50%, 70%, 90%),
and groups of 10 samples were taken as an instance. After feature engineering, the pro-
cessed dataset was imported into the chosen learning algorithms, and the training set
and the testing set were divided, accounting for 75% and 25% of the data, respectively.
A comparison of the algorithms’ accuracies under different proportions was conducted,
and the sliding window with a 50% overlap was attached great importance.

3.3. Learning Algorithm Accuracy

In order to screen the most suitable learning model for this activity recognition ex-
periment on the basis of the sample dataset, some classical machine learning and deep
learning algorithms were selected for data training and testing in this study, such as ran-
dom forest (RF), support vector machine (SVM), K nearest neighbor (KNN), stochastic
gradient descent (SGD), linear regression (LR), the Naive Bayes (NB), stacked denoising
autoencoder (SDAE), extreme trees (ET) and deep forest (DF). As demonstrated in Table 3,
the experiment compared the accuracy of various algorithms from different perspectives:
(1) comparing the accuracy of different classifier types; (2) comparing of the effects of each
algorithm in the six-dimensional dataset containing only inertial sensing data and the
seven-dimensional dataset with temperature sensing data; and (3) comparing the perfor-
mance of the seven-dimensional dataset containing temperature data with different data
stacking modes. Table 3 demonstrates the previously mentioned comparison results of
various classifiers used in this paper.

Initially, similar to many existing HAR experiments, only inertial data such as acceler-
ation and gyroscope data were considered as inputs to the learning algorithm. However,
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the classification results were not satisfying. It can be seen that the better-performing
classifiers random forest and extreme tree could merely achieve a 78% recognition rate,
followed by support vector machine (74%), k-nearest neighbor (73%) and SDAE (75%).
Several generalized linear classifiers, such as SGD and LR, did not perform well, and deep
forest and Naive Bayes were not suitable either.

Table 3. Accuracy of activity recognition algorithms.

Accuracy Data Stacking

Learning
Algorithms Classifiers (No Temper-

ature) 0% 10% 20% 30% 50% 70% 90%

SVM 74% 81% 40% 43% 43% 48% 47% -%
KNN 73% 81% 80% 80% 83% 83% 85% 93%

Conventional
Machine
Learning

SGD 50% 47% 52% 55% 53% 55% 50% 54%

LR 54% 56% 58% 56% 58% 56% 55% 58%
NB 59% 61% 63% 61% 62% 62% 62% 59%

Deep
Learning SDAE 75% 77% 69% 72% 74% 75% 75% 86%

RF 78% 88% 89% 89% 89% 89% 92% 91%
Ensemble
Learning ET 78% 89% 88% 89% 89% 90% 92% 96%

DF 65% 71% 77% 76% 74% 75% 75% 79%

Therefore, we tried to add temperature sensing data to enrich the data dimension.
The accuracy of all classifiers improved to different degrees (2–11%) as expected, except for
SGD, which indicated that temperature data played an important role in improving the
effectiveness of human activity recognition. In the case of no data stacking but considering
body temperature, extreme forest was the most qualified algorithm, the accuracy of which
was improved by 11% to 89%, followed by random forest with relatively better performance,
the accuracy of which was improved by 10% to 88%, SVM and KNN achieved an 81%
recognition rate, and the accuracy of the stacked denoising autoencoder could reach
78% after 5000 times of training. Data stacking and resampling were carried out on the
seven-dimensional data set in the next step. Although the accuracy of each classifier did
not change greatly before the overlapping reached 50%, it improved obviously when
the percentage of data stacking went exceeded the bound.Random forest was the best
performing learning model with an accuracy rate of 92%, followed by ET (90%) and KNN
(83%), but the accuracy of the other algorithms did not improve significantly. With the
increasing resampling rate, the accuracies of the main algorithms were further improved,
and extra trees even reached the recognition rate of 96%. The basic logical architecture of
learning algorithms is discussed in further detail below.

3.3.1. Conventional Machine Learning

Machine learning involves the theoretical knowledge of interdisciplinary disciplines
and is a science of artificial intelligence, using previous experience and data to optimize
computer programs or improve algorithm performance [1,2,19]. Conventional machine
learning models mentioned in this study are SVM, KNN, SGD, LR and NB.

• Support vector machine: SVM aims to find an optimal hyperplane, and the largest
interval hyperplane will classify samples by distinguishing between positive cases
and other cases. The sample points closest to the hyperplane are called the support
vector. The classification results of the SVM classifier are mainly affected by the kernel
function, including the linear kernel, polynomial kernel and radial basis function
kernel (RBF), which also called sigmoid kernels [20]. In this experiment, the SVM clas-
sification accuracy without temperature data reached 74%, and this number ascended
to 81% after considering temperature. However, after data stacking, the accuracy
dropped to 40%, which may have been caused by the increased model complexity.
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• K-nearest neighbor: Compared with other classification methods, KNN has no obvious
learning process, since it does not process data in the training stage but simply saves
the obtained training samples. In addition, different k values may influence the
classification results of KNN: a small k value may cause overfitting, while an overly
large value may cause underfitting. The working principle of KNN is to classify data
by measuring the distance between data, but when the data dimension is too high,
it is difficult to calculate the distance between two samples, which results in large
prediction deviation [21]. Different values of k were taken in the range of 1-100 to
obtain the optimal solution in this experiment, as presented in Table 4.
The results showed the highest accuracy when k was 7, reaching 81.26%.

• Stochastic gradient descent: SGD is commonly used to optimize learning algorithms;
for example, building the loss function for the original model and finding the optimal
parameter that minimizes the function value through the optimization algorithm.
Each iteration uses a set of randomly shuffled samples to effectively reduce the
parameter update cancellation phenomenon in small sample problems [22]. However,
for the dataset used in this experiment, the performance of the SGD algorithm is very
unsatisfactory, with an accuracy of less than 50% before data processing.

• Logistic regression: LR aims to organize samples of different categories distributed
on both sides of the straight line as far as possible. To the best of our knowledge
regarding the logistic regression function (sigmoid function), its output of a large range
of numbers can be compressed within the interval of [0,1]. The maximum likelihood
method is often used to estimate the parameters of LR, which is equivalent to the
minimum likelihood loss function [23]. Likewise, the LR algorithm also performed
poorly in this experiment, with only a 56% recognition rate.

• Naive Bayes classifier: The core concept of NB is to assume that the components of
all vectors are independent of each other, but this also makes it unsuitable for prob-
lems with a large number of attributes or a large correlation between attributes [24].
The classification process of NB is divided into two main stages. The first stage is
the learning, in which the classifier is constructed from sample data. The second
stage is the reasoning, including calculating the conditional probability of nodes and
classifying data. The accuracy of NB on the sample data set was only 61% and thus
hardly required further consideration.

Table 4. Classifier accuracy corresponding to different K values.

K Value Accuracy K Value Accuracy

1 80.05% 13 80.89%
2 78.74% 14 80.87%
3 81.22% 15 80.64%
4 80.82% 16 80.42%
5 80.93% 17 80.24%
6 80.97% 18 80.18%
7 81.26% 19 80.16%
8 80.90% 20 79.87%
9 80.75% 30 78.61%
10 80.93% 50 76.81%
11 80.74% 80 75.18%
12 80.94% 100 74.22%

In brief, with the exception of the KNN algorithm, several traditional machine learning
algorithms showed a low accuracy in human behavior recognition experiments. Therefore,
we considered some deep learning algorithms for further research.

3.3.2. Deep Learning

Deep learning is a research direction in the field of ML that accomplishes more complex
classification tasks through feature learning [25–27]. DL emphasizes the depth of the model
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structure and clarifies the importance of feature learning. The SDAE algorithm is one of
the deep learning algorithms.

• Stacked denoising autoencoder: SDAE is a deep learning model. The auto-encoder
(AE) is supposed to be introduced first, which is a self-monitoring algorithm. A simple
AE model consists of an encoder and a decoder, and the data are input into the encoder
and then into the decoder to obtain the final reconstructed data. Secondly, by adding
noise to the input data, overfitting can be avoided, and thus the denoising autoencoder
(DAE) is formed. DAE uses the data after adding noise for training, so the weight
of the model contains less noise, thus improving the robustness and stability of the
model. The SDAE model is used to stack multiple DAE models together to form a
depth model. Each layer is independent for unsupervised training. The output of the
first layer can be used as the input of the next layer, and the last layer is the softmax
layer [28–30]. The SDAE model designed in this paper has three layers and was
trained 100, 500, 1000, 1500 and 3000 times, respectively. The classification accuracy of
the model can be improved by increasing the number of training times. However, it is
found that when the training times reach a certain value, although the accuracy of the
training set increases continuously, the accuracy of the testing set remains at about
79%. General speaking, although the training times increase, the testing accuracy of
the model will not change when the training iterations reach a certain value. In order
to balance the cost and accuracy, 500, 1000, 1500, 3000 and 5000 training iterations
were performed. Consequently, when the number of training iterations reached 3000,
the training accuracy was not greatly improved. A total of 3000 iterations is also a
relatively moderate choice, which takes into account the training cost and classification
accuracy; specific results are shown in Table 5.
This chart shows that the classification accuracy was very poor when the number
of training iterations was 100, which was of no significance. Therefore, the training
iterations were increased to 500, and the result improved. When the repetitions were
scaled up to 1500, the accuracy reached 75%. In order to find the best matching
number, the training iterations were doubled to 3000, at which time the accuracy was
only improved by 2%. In contrast, when the training times were increased from 100 to
500, the accuracy was improved by 10%, which proved that the accuracy of the SDAE
model would not increase significantly with the increase of the training times when
the training times were increased to 3000. When the training times reached 5000 times,
even if the training set accuracy continued to increase, the accuracy of the testing set
did not improve significantly, and finally stabilized at 78%.

Table 5. Accuracy of SDAE classifier with different training times.

Frequency
of Training 100 500 1500 3000 5000

Training set
accuracy 65% 73% 80% 85% 88%

Testing set
accuracy 61% 71% 75% 77.5% 78%

The performance of SDAE, one of the deep learning algorithms, also failed to reach
expectations. We decided to further attempt several integrated learning models to achieve
better classification results.

3.3.3. Ensemble Learning

Ensemble learning aims to integrate the results of all models by building multiple
models on data, rather than a single machine learning algorithm. Ensemble algorithms
aim to achieve better performance than a single model by considering the comprehensive
modeling results, and pursuing accuracy, diversity and a better generalization ability.
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Ensemble learning models are generally classified into three categories: bagging, boosting
and stacking [31]. The following part introduces several ensemble algorithms involved in
this study: random forest, extra trees and deep forest.

• Random forest: Random forest belongs to the bagging category (bootstrap-aggregating),
which indicates the data are randomly extracted from the raw dataset and put back.
Multiple decision trees are built through these subsets, and all classification voting
results are integrated to ultimately obtain the average testing results of the classi-
fier [32]. RF is simple and can be effectively applied to large datasets with good
accuracy. In this study, the performance of random forest was outstanding, as ex-
pected, reaching the recognition rates of 88% and 89%, respectively, in the cases of 0%
and 50% data stacking.

• Extra trees: ET is also called extremely randomized tree, which is also an DT-based
ensemble learning algorithm, but it belongs to another random process rather than
bagging. Compared with the ensemble methods represented by the RF, the main
characteristics of ET are the way of constructing the trees in the forest and select-
ing the splitting points. There is no bagging process and it is unnecessary to use a
bootstrap as a copy. Therefore, these features of ET weaken the correlation between
the base estimators, simplify the process of node segmentation, reduce the complexity
of model splitting, decrease the amount of computation, improve the training speed
and form more diversified trees. When considering the bias–variance tradeoff in the
model selection procedure, ET also has advantages, because its stronger random process
can effectively reduce the variance. It also uses the whole training set to conclude each
tree in the model, which can minimize the bias to a certain extent [33–36]. In practical
application, the performance of extra trees is also related to the selection of parame-
ters. In this experiment, the super parameters we selected were n_estimators = 550,
random_state = 666, bootstrap = true, oob_score = true, and the accuracy was almost
the same as RF or even higher. In the cases of 0% and 50% data stacking, the accuracy
reached 89% and 90%, respectively. Parameters could be adjusted appropriately ac-
cording to specific problems or by using cross-validation when necessary, which had
a certain impact on the performance of the model.

• Deep forest: DF is a non-neural network deep tree model, which was originally
proposed by professor Zhou Zhihua from Nanjing University in the study of an al-
ternative to deep neural networks and is also known as the multi-grained cascade
forest (gcForest). DF is a type of deep structure based on the logic of deep learning.
Compared with the deep neural network, it is not only easier in terms of its theoretical
analysis, but also simpler in terms of its parameter setting and training process, and it
even shows more competitive performance on open datasets in some certain appli-
cation domains. In the model training procedure, the deep neural network requires
large-scale data, while DF can be trained on small-scale datasets, with relatively lower
computational complexity [37].
The general process of gcForest is composed of multi-grained scanning and the cascade
forest. The first step is to preprocess the raw input features by using multi-grained
scanning. In the second step, the feature vectors are input into the cascade forest
for training, and the output of training data of each layer is used as the input of the
next layer, and this is repeated continuously until the verification results converge.
However, DF performed the worst of all the selected ensemble learning models in this
experiment, with only a 71% recognition rate in the case of no data stacking.

3.3.4. Further Attempt

In the processing of the existing raw dataset, ensemble learning models performed
better, especially the random forest and extra trees. However, the results required some
further attempts in order to find the suitable sample data type for DF. Taking the dataset
that considered the temperature sensor data but no data stacking process as the standard,
on the basis of the raw dataset, entries were randomly selected to form a new small sample
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dataset, and 50% (15,857 entries) and 10% (3171 entries) of the total quantity were retained,
respectively. The variations of the algorithm accuracies for random forest, extra trees and
deep forest are compared in Table 6.

Table 6. Accuracy comparison of ensemble algorithms.

Processing Mode No. of Dataset Accuracy
RF ET DF

Raw dataset 31,713 88% 89% 71%
50% of the total 15,857 87% 86% 73%
10% of the total 3171 83% 82% 70%

Several conclusions can be drawn from different aspects: (1) when the total number of
data samples was halved, the performance of RF and ET decreased, but the accuracy of DF
increased; (2) when the data volume dropped from 100% to 10%, the accuracy of DF only
decreased by 1%, while the other two algorithms decreased by 5% and 7%, respectively;
(3) ET had the highest accuracy overall, but DF had a more robust characteristic for the
small data samples. Therefore, the three ensemble learning algorithms have different
advantages that need to be comprehensively considered in terms of the volume of the data
itself and the degree of data stacking.

In conclusion, according to the accuracy value of recognition algorithms, only the
conventional machine learning algorithm represented by KNN and several ensemble
learning models performed better in this HAR experiment.

3.4. Algorithm Evaluation and Discussion

In addition to empirical evidence support, cross-validation and statistical testing
methods are often selected to judge HAR classifier performance. For binary classification
problems, classification results can be organized into a visual confusion matrix, in which
the following values can be easily obtained and summarized [38].

• True Positive (TP): the true category of the sample is positive, and the predicted result
is also positive;

• True Negative (TN): the true category of the sample is negative, and the predicted
result is also negative.;

• False Positive (FP): the true category of the sample is negative, but the model predicts
it to be positive;

• False Negative (FN): the true category of the sample is positive, but the model predicts
it to be negative.

Based on the accuracy results, KNN and ensemble algorithms were chosen for further
comparison. In order to further evaluate the activity recognition results of several learning
algorithms (RF, KNN, ET, DF) under the situation of no data stacking and 50% resampling,
the evaluation metrics used in this paper were accuracy, precision, recall and F1 score.

Accuracy represents the proportion of correct prediction among all samples, defined
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision refers to the percentage of positive examples in which the prediction is cor-
rect:

Precision =
TP

TP + FP
(3)

Recall represents the proportion of positive cases that are correctly predicted among
all samples:

Recall =
TP

TP + FN
(4)
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The F1-score is the harmonic mean of accuracy and recall, which considers them to be
equally important, and the formula is defined as follows:

F1 score = 2 × Precision × Recall
Precision + Recall

(5)

The activity sets in the study consisted of sitting, walking, walking upstairs and walk-
ing downstairs. The accuracy, precision, recall and F1 score of the confusion matrix are
used in Table 7 to facilitate further comparative analysis of the classification performance
of the four learning algorithms under different activity patterns. The reader is reminded
that the discussion and evaluation are focused on the two perspectives of data without
stacking and with 50% stacking respectively after data preprocessing. In addition, the time
costs of different algorithms were taken into consideration simultaneously.

3.4.1. Experimental Result without Data Stacking

All the data illustrated in the chart contain seven-dimensional features that include
three-axis acceleration, three-axis angular velocity and body surface temperature. On the
left side of the table are the results for each classifier without performing data stacking.

Evaluation metrics under the static state are generally higher than those under a dy-
namic state. When sitting, the recognition rate of the majority of the algorithms reaches 98%
or 99%, which means that they can basically realize accurate activity recognition. Secondly,
the error of both recall and F1 score for walking is smaller than that for walking upstairs and
downstairs, except that the value of precision is not stable in different situations. For the
comprehensive comparison of the three indicators under the three dynamic activities, RF
and ET showed similar performance, followed by KNN, and DF was the worst. Likewise,
the accuracy of the RF and DT algorithms is the same, reaching 89%, while KNN reached
83% and DF only obtained a 70% recognition rate; in particular, the prediction of upstairs
and downstairs labels is relatively inaccurate. Regarding the time consumption of the
algorithm, KNN took the shortest time, at less than 0.1 s, but it is not accurate enough. DF
took the longest time, which is 41.6 s, which is related to the complex structure of depth,
while RF took a shorter time than DT, at 4.5 s. Considering the evaluation criteria and
running time comprehensively, RF can be seen to be most appropriate for this dataset. It can
be observed from the values of the confusion matrix that walking upstairs and downstairs
labels are prone to be confused. In other words, part of the walking labels were predicted
as walking upstairs and downstairs, or vice versa, which may be caused by the process of
manual labeling; the data of walking at the corner of stairs up and down were mixed into
the real labels, resulting in errors in the classifier. In order to reduce such human errors, we
considered using the method of data stacking in subsequent experiments. Ten entries were
combined into one instance by using the sliding window; then, the data were divided into
different proportions, and the learning model was retrained.

Table 7. Algorithms’ evaluation metrics for activity recognition.

Algorithm ACT 0% Data Stacking Accuracy Running 50% Data Stacking Accuracy Running
Precision Recall F1 Score Time Precision Recall F1 Score Time

Sitting 0.99 0.99 0.99 0.99 0.98 0.99
RF Walking 0.86 0.90 0.88 0.89 4.50 s 0.86 0.92 0.89 0.91 2.38 s

Upstairs 0.86 0.81 0.83 0.92 0.83 0.87
Downstairs 0.86 0.86 0.86 0.89 0.90 0.90

Sitting 0.98 0.99 0.99 0.96 0.98 0.97
KNN Walking 0.77 0.82 0.80 0.83 0.07 s 0.75 0.86 0.80 0.83 0.01 s

Upstairs 0.73 0.73 0.73 0.77 0.69 0.73
Downstairs 0.81 0.72 0.76 0.86 0.77 0.81

Sitting 0.99 0.99 0.99 0.99 0.99 0.99
ET Walking 0.84 0.91 0.87 0.89 10.66 s 0.83 0.93 0.88 0.91 4.05 s

Upstairs 0.88 0.78 0.83 0.92 0.79 0.85
Downstairs 0.86 0.85 0.85 0.91 0.89 0.90

Sitting 0.98 0.98 0.98 0.99 0.97 0.98
DF Walking 0.58 0.78 0.67 0.70 41.56 s 0.59 0.67 0.63 0.69 6.81 s

Upstairs 0.61 0.44 0.51 0.57 0.49 0.53
Downstairs 0.65 0.53 0.59 0.61 0.60 0.61
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3.4.2. Performance Enhancement with 50% Stacking

To solve the existing problem of the inaccurate classification of upstairs and downstairs
labels caused by man-made errors after feature processing, in this paper, a data stacking
approach with different proportions was used for further research, with stacking ratios
of 10%, 20%, 30%, 50%, 70% and 90%, respectively. When the stacking degree reached
50%, each classifier had a relatively obvious improvement in accuracy. Although the
algorithm accuracy under 70% and 90% is very high, the degree of stacking is also too high
to consider. Therefore, this part mainly focuses on the different evaluation indicators of
the four algorithms in the case of 50% stacking. According to the evaluation results of the
algorithms on the right side of the chart, the indicators of each algorithm have improved to
a certain extent, especially in the three dynamic states of walking, walking upstairs and
walking downstairs. The accuracy of RF and DT was improved by 0.02% as well, reaching
91%. However, considering the running time, the RF took 2.38 s, which was shorter than
the 4.05 s of DT.

4. Human-Centered Application in COVID-19

The COVID-19 is currently under control in some countries and regions, and many new
application demands based on wearable sensing technology are also constantly emerging.
However, the quality and efficiency of the follow-up long-term prevention and control
efforts will be of greater concern. Extreme weather conditions and human activity states
influence the accuracy of temperature and also affect the efficiency of body temperature
monitoring. Particularly during the epidemic period, when online consumption has
increased sharply, the demand for express delivery orders and takeout orders has been on
the rise, and the temperature monitoring of service personnel on various platforms is also an
issue of great concern. However, the constant switching activities of couriers and takeaway
staff and the change of ambient temperature can easily lead to inaccurate measurements
of body surface temperature. Therefore, the accurate and real-time monitoring of body
temperature can bring consumers a more secure experience. In brief, strict screening and
timely isolation can be used to respond effectively to epidemic prevention and control,
so body temperature monitoring is a key step of daily epidemic prevention, and infrared
thermometers play an important role as a common temperature measurement tool.

In the field of HAR, including the related work summarized before, current wearable
sensing technology still largely relies on inertial sensing data, mainly gathering data
from an accelerometer and gyroscope to recognize human activities, while rarely involve
temperature data or consider temperature sensors. Nevertheless, in the context of COVID-
19, body temperature has become a sensitive topic that cannot be ignored in daily activities,
so this experiment has tried to include the measured body surface temperature data into
the collected dataset. According to the experimental results, it can be found that the
accuracy of the learning model is indeed improved after incorporating the temperature
data simultaneously, and it also has a better generalization ability. Therefore, the body
surface temperature data in this experiment are beneficial to human activity recognition
algorithms, increase the data dimension and improve the accuracy of HAR technology.
Moreover, participants’ body surface temperatures measured under the three dynamic
activities were slightly lower than that in the static state. In order to discuss the temperature
deviation more intuitively and specifically, the body surface temperature of the participants
while sitting was taken as the reference dataset (Ts). The body surface temperature data
while walking (Tw), walking upstairs (Tu) and walking downstairs (Td) were subtracted
from the reference dataset, respectively, to obtain the quantitative temperature deviation
data of different activities. Then, a statistical analysis was conducted on sample data to
output the three normal distribution diagrams (Figure 5).
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(a)

(b)

(c)

Figure 5. Normal distribution curves of body surface temperature error under dynamic activities.
(a) The temperature while walking. (b) The temperature while walking upstairs. (c) The temperature
while walking downstairs.
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Visualized data show that the three temperature curves under the dynamic activities
present a normal distribution, and the expectations and variance are different. Table 8
displays the specific values. It can be seen that the body surface temperature while walking
is on average 1.15 ◦C lower than that while sitting, with a variance of 0.82. Similarly,
the temperature difference expectation of walking upstairs is −1.17 with a variance of 0.78,
while the expectation of walking downstairs is −0.95 with a variance of 0.88. Therefore,
the results were linked to the actual application scenarios to avoid the omission of feverous
patients and the potential infectious diseases caused by the change of body surface tem-
perature in dynamic activities during COVID-19 prevention and control. It can be more
convenient to calibrate the body temperature by analyzing and inferring the tested human
activity, then referring the specific expectations and mean values of different activities, such
as those shown in Figure 6. In this way, the quality of epidemic prevention work can be
improved to a certain extent and the problems that may be faced under the normalization
of COVID-19 will be handled better.

Figure 6. General workflow for temperature monitoring and adjusting.

Table 8. Values of expectation and variance in the normal distribution curve.

Temperature Difference ( ◦C) Expectation (µ) Variance (δ2)

Walking (Tw-Ts) −1.15 ◦C 0.82 ◦C
Upstairs (Tu-Ts) −1.17 ◦C 0.78 ◦C

Downstairs (Td-Ts) −0.95 ◦C 0.88 ◦C

5. Conclusions

This paper considers wearable sensors and learning algorithms to realize HAR, and a
temperature sensing module is added to further explore the relationship between human
body surface temperature and activity transformation in the context of COVID-19. Ten
volunteers were selected from different occupations, heights and weights, covering different
age groups to ensure that the selected learning model is generalizable enough to adapt
better to future new users. After preprocessing the raw database, ML and DL models were
able to identify the four activities—sitting, walking and walking upstairs and downstairs.
In addition, the performances of the selected algorithms were overall improved after
taking temperature sensing data into consideration. The ensemble models—ET and RF—
performed better in terms of the algorithm accuracy, the evaluation metrics report and the
algorithm running time. With the data stacking and resampling processes, they were able
to reach 90% and 92% recognition rates, respectively, which are slightly improved values
compared to many previous related works. The most significant result was that people’s
body temperatures during dynamic patterns were lower than during sitting, which is
related to temperature monitoring during COVID-19. Only a 1–2 ◦C temperature error may
lead to the omission of potential fever sufferers and affect the accuracy and efficiency of
epidemic prevention and control workflow. In this case, the temperature adjusting criterion
provided in this paper based on statistical data analysis can provide medical care personnel
with an intuitive reference for future COVID-19 normalization prevention.
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