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Peter Kamenicky3,5,6, Jerome Nevoux4,5, Dominique Prié8,11, Anya Rothenbuhler1,6,
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9Service Rhumatologie B Hôpital Cochin, APHP, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France
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13Association de patients RVRH-XLH, 20 rue Merlin de Thionville, 92150 Suresnes, France
http://www.endocrineconnections.org
DOI: 10.1530/EC-13-0103

� 2014 The authors
Published by Bioscientifica Ltd

This work is l
Attribution 3
Correspondence

should be addressed

to A Linglart

Email

agnes.linglart@bct.aphp.fr
Abstract
In children, hypophosphatemic rickets (HR) is revealed by delayed walking, waddling gait,

leg bowing, enlarged cartilages, bone pain, craniostenosis, spontaneous dental abscesses,

and growth failure. If undiagnosed during childhood, patients with hypophosphatemia

present with bone and/or joint pain, fractures, mineralization defects such as

osteomalacia, entesopathy, severe dental anomalies, hearing loss, and fatigue. Healing

rickets is the initial endpoint of treatment in children. Therapy aims at counteracting

consequences of FGF23 excess, i.e. oral phosphorus supplementation with multiple

daily intakes to compensate for renal phosphate wasting and active vitamin D analogs

(alfacalcidol or calcitriol) to counter the 1,25-diOH-vitamin D deficiency. Corrective

surgeries for residual leg bowing at the end of growth are occasionally performed.

In absence of consensus regarding indications of the treatment in adults, it is generally

accepted that medical treatment should be reinitiated (or maintained) in symptomatic

patients to reduce pain, which may be due to bone microfractures and/or osteomalacia.

In addition to the conventional treatment, optimal care of symptomatic patients requires

pharmacological and non-pharmacological management of pain and joint stiffness,

through appropriated rehabilitation. Much attention should be given to the dental and

periodontal manifestations of HR. Besides vitamin D analogs and phosphate supplements

that improve tooth mineralization, rigorous oral hygiene, active endodontic treatment

of root abscesses and preventive protection of teeth surfaces are recommended.
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Current outcomes of this therapy are still not optimal, and therapies targeting the

pathophysiology of the disease, i.e. FGF23 excess, are desirable. In this review, medical,

dental, surgical, and contributions of various expertises to the treatment of HR are

described, with an effort to highlight the importance of coordinated care.
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Introduction
Phosphate wasting ineluctably leads to hypophosphate-

mia and numerous consequences including mineral-

ization defects. In children, hypophosphatemia is

revealed by vitamin D-resistant rickets and results in

variable degrees of delayed walking, waddling gait, leg

bowing, enlarged cartilages, bone pain, craniostenosis,

spontaneous dental abscesses, and growth failure. If

undiagnosed during childhood, hypophosphatemia is

suspected when patients present with bone and/or joint

pain, fractures, mineralization defects such as osteo-

malacia, entesopathy, severe dental anomalies, hearing

loss, and fatigue. Symptoms might be present, although

to a lesser degree, in adults who underwent the conven-

tional treatment throughout their childhood and adoles-

cence. Causes of phosphate wasting are mostly due to

genetic defects in factors necessary for phosphate

handling; for a review read (1). They have been sum-

marized in Table 1. In this review, we will consider two

different types of phosphate wasting. Firstly, phosphate

wasting may be secondary to increased fibroblast growth

factor 23 (FGF23) signaling, which is a circulating factor

secreted by osteoblasts, odontoblasts, and osteocytes (2).

In the renal proximal tubule, FGF23 inhibits the sodium-

phosphate transport through ion channels, NPT2a and

NPT2c, and prevents 1,25-diOH-vitamin D production.

As a consequence, both renal and digestive absorption

of phosphate are diminished. Recently, extra renal effects

of FGF23 have been reported, such as immune function

in human monocytes (3), iron (4, 5), glucose (6) and

lipid metabolism (7, 8).

Causes of phosphate wasting secondary to elevated

FGF23 mainly encompass not only X-linked hypo-

phosphatemic rickets (XLHR) due to loss-of-function

mutations in PHEX, an endopeptidase encoded by a

gene localized on the X chromosome (9), but also auto-

somal dominant hypophosphatemic rickets (ADHR)

due to recurrent heterozygous mutations affecting the
176RXXR179 motif in FGF23 (10), autosomal recessive

HR (ARHR) due to loss-of-function mutations in Dentin
matrix protein 1 (DMP1) (11) or ENPP1 (12), and

uncontrolled secretion of FGF23 by mesenchymal tumors,

a condition known as tumor-induced osteomalacia (TIO)

(13). Except for the latter, mineralization defects involving

bone and teeth are caused by hypophosphatemia and

FGF23 excess and, in addition, by a direct effect of the

absence of functional PHEX (or DMP1) on bone or tooth

extracellular matrix (ECM) mineralization (14).

Secondly, phosphate wasting may be due to a primary

renal tubular defect, i.e. hereditary HR with hypercalciuria

(HHRH) due to molecular defects of the sodium-phos-

phate channel NPT2c, diseases affecting several renal

tubular functions such as Dent or Lowe syndromes, or

tubular toxicity of drugs (15, 16). All these conditions

share a diminished capacity to transport phosphate from

the glomerular filtrate to the blood circulation. In

response to hypophosphatemia, FGF23 secretion is ade-

quately suppressed, and 1,25-diOH-vitamin D production

and absorption of calcium through the gut and urinary

calcium excretion are consequently enhanced.

Besides acquired disorders like tumors or drug

toxicity, most conditions leading to phosphate wasting

are congenital and will continue throughout the patient’s

lifetime. To this day, therapy has mostly been evaluated

in children. Enormous progress has been made since

the availability of vitamin D analogs, such as calcitriol

and alfacalcidol, in the mid-1970s and the evolution of

surgical procedures. However, two major issues remain:

i) the growth retardation and recurrent dental infections

in children and ii) the necessity of adequate therapeutic

strategies in adults. Indeed, the disease remains physically

apparent and the global objective of therapies (medical,

dental, and surgical) should be to limit, and in best cases

avoid, sequel by correcting leg deformities, promoting

growth and preserving dentition. In this context, we will

describe in this review the current and future treatments

available to counteract phosphate wasting, restore

serum phosphate and allow adequate bone and tooth

mineralization.
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Table 1 Causes of hypophosphatemic rickets (HR).

Gene Transmission Reference Main features

HR sharing elevated FGF23 circulating levels and inappropriately low or normal 1,25-diOH-vitamin D
XLHR PHEX X-linked (9) HR with similar phenotype in males and

females
ADHR FGF23 Autosomal

dominant
(10) HR

ARHR
DMP1 Autosomal

recessive
(11) HR

ARHR2 ENPP1 Autosomal
recessive

(12) HR associated with arterial calcifications of
infancy (GACI syndrome)

ARHR3 FAM20c Autosomal
recessive

(95) Hypophosphatemia associated with osteo-
sclerosis of the bone rather than rickets,
dysmorphy, and cerebral calcifications;
severe dental phenotype

OGD FGFR1 (96) HR associated with frequent craniosynos-
tosis, dysmorphy, and dwarfism

HR associated with congenital sporadic disorders due to heterozygous post-zygotic mutations in genes activating signaling
pathways and elevated FGF23

MAS (97) Characterized by the triad precocious
puberty, cafe-au-lait spots and fibrous
dysplasia (FD); HR is rare, and secondary
to increased FGF23 production by the FD

Mosaic cutaneous disorders include nevus
sebaceous and Schimmelpenning syndrome

KRAS and
NRAS

(98) HR associated with bone lesions and
extended cutaneous congenital lesions

HR associated with mesenchymatous tumors
secreting FGF23

TIO (13) Acquired and often severe hypophos-
phatemia and phosphate wasting.
Hypocalcemia may be present as the
consequence of suppressed 1,25-diOH-
vitamin D production

HR sharing appropriately suppressed FGF23 and elevated 1,25-diOH-vitamin D; defects in renal phosphate transporters
HHRH SLC34A3 Autosomal

recessive
(16) HR with nephrocalcinosis and kidney stones

Diseases affecting the renal distal tubule
Lowe syndrome, Dent syndrome (CLCN5 gene),
Toni-Debré-Fanconi

XLHR, X-linked HR; ADHR, autosomal dominant HR; ARHR; autosomal recessive HR type 1; ARHR2, autosomal recessive HR type 2; ARHR3, autosomal
recessive HR type 3; OGD, osteoglophonic dysplasia; MAS, McCune–Albright syndrome; TIO, tumor-induced osteomalacia; HHRH, hereditary
hypophosphatemic rickets with hypercalciuria.
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Therapy in children

Medical treatment for phosphate wasting

Healing rickets by normalizing serum alkaline phosphatase

(ALP) levels and radiological signs is the initial endpoint

in children. Treating rickets will promote growth, pro-

gressively correct leg deformities (Fig. 1A), and facilitate

tooth mineralization. In infants diagnosed before they

even show signs of rickets, the treatment goal for them will

be not to develop rickets (Fig. 1A). Earlier treatment has

been shown to lead to better results (17). Objectives, which

could also be described as expected results, are described in

Table 2. The treatment intends to, in the following order:

i) reduce bone pain, ii) normalize (or near-normalize)
http://www.endocrineconnections.org
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ALP levels (Fig. 1B), iii) improve growth (Fig. 1C), and iv)

restore straight legs and improve teeth health.

Nowadays, the medical treatment is aimed at counter-

acting consequences of FGF23 excess, i.e. oral phosphorus

supplementation with multiple daily intakes to compen-

sate for renal phosphate wasting and active vitamin D

analogs (alfacalcidol or calcitriol) to counter the 1,25-

diOH-vitamin D deficiency (Table 3). The daily doses of

phosphorus supplements range between 40 (adolescents)

and 60 (toddlers) mg/kg per day (Table 4). Multiple

daily doses of phosphate supplements are mandatory

throughout childhood and adolescence, because, in the

context of diminished phosphate reabsorption, serum

phosphate level is back to low baseline few hours after
This work is licensed under a Creative Commons
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Figure 1

Evolution of clinical (leg bowing and growth) and biochemical parameters

(alkaline phosphatase levels) during treatment with vitamin D analogs and

phosphate supplements in children. (A) Patient 1 is a 2-year-old girl (left an

middle panels) recently diagnosed with XLHR and a de novo mutation of

PHEX. The same girl is shown at the age of 5 years with straight legs (right

panel). Patient 2 is a 14-year-old boy who was treated since the age of four

(XLHR and a de novo mutation of PHEX). Patient 3 is a 13-year-old girl who

presents with persistent leg bowing despite being treated since she was

3 years old (XLHR and a de novo mutation of PHEX). Patient 4 is a 2-year-old

girl who started therapy at the age of 4 months. Diagnosis of XLHR was

made in the context of familial disease (mother and two sisters affected).

(B) Evolution of alkaline phosphatase levels throughout the first year of

therapy in 30 patients affected with HR and elevated FGF23. (C) Growth

pattern (range between C2 and K2 SDS is shadowed) in 32 girls and 29

boys affected with HR and elevated FGF23 and receiving vitamin D analogs

and phosphate supplements throughout childhood and puberty. Mean,

C2, and K2 SDS of French reference growth charts are represented by

colored lines.
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Table 2 Objectives and timeline for the conventional

treatment of HR in children.

Interval after

start of treatment Objective

Few weeks Decrease in bone pain
6–12 months Normalization of alkaline phosphatase level
1 year Increase in growth velocity
3–4 years Straightening of legs: 1 cm decrease in

intercondylian (genu varum) or inter-
malleolar (genu valgum) distance every
6 months
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phosphate intake. At these doses, digestive complaints

are extremely rare. The daily dose of phosphate supple-

ments is adjusted to efficacy (i.e., ALP levels, leg bowing,

and growth velocity), patient’s weight, and PTH levels.

Note that serum phosphate is not used to adjust

phosphate therapy. On the contrary, as fasting phosphate

is not restored by treatment, increasing phosphate

supplement doses leads to intestinal discomfort and

secondary (sometimes tertiary) hyperparathyroidism.

Urinary phosphate measured on a 24-h collection should

parallel the daily intake of phosphate supplements, and

may be used to check for compliance. Prescribing

phosphate intake is a balance between excessive dosage

tending to hyperparathyroidism and insufficient dosage

slowing the healing of rickets. 1a-hydroxylated vitamin D

analogs constitute the second pillar of conventional

treatment. Their half-life is sufficient to allow for single

and twice daily oral doses of alfacalcidol and calcitriol

respectively. The starting dose of vitamin D analogs

(usually 1–2 mg/day alfacalcidol or 0.5–1 mg/day calcitriol)

depends on growth velocity. Higher doses (1–3 mg/day

alfacalcidol or 0.5–1.5 mg/day calcitriol) are associated

with periods of high growth velocity, such as early

childhood and adolescence. Vitamin D analog doses are

adjusted to give the maximum dose for efficacy based on

ALP levels, leg bowing, and growth velocity, without

reaching toxicity, mainly hypercalciuria. Hypercalciuria

does not usually occur until ALP levels are normalized.

As it is not invasive to collect urine, we recommend

measuring urinary calcium and creatinine every 3 months

on a spot urine collection in young children and on a 24-h

collection in older children (O5) toilet trained. Hypercal-

ciuria is defined by urinary calcium/urinary creatinine

above 1 mmol/mmol (0.35 mg/mg) in toddlers and 24-h

urinary calcium excretion above 5 mg/kg per day in older

children. We recommend screening for nephrocalcinosis

with yearly ultrasound (every second year in the absence

of episodes of hypercalciuria). It is common, after healing
http://www.endocrineconnections.org
DOI: 10.1530/EC-13-0103
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rickets, for initial dosage of vitamin D analogs to be

decreased to maintenance doses.

As for many chronic diseases, compliance to oral

treatment is a major issue, even in expert hands. For

optimal dosage, it is difficult to base our guidance on doses

reported in published studies, which are all over 20 years

old and report a very wide range of doses between 10 and

80 ng/kg per day of calcitriol and 30 and 180 mg/kg per day

of elemental phosphorus (18, 19, 20, 21, 22, 23, 24). Our

recommendations are based on over 30 years of experience

at our center in treating over 250 patients with HR and are

similar to the guidelines advised recently by Carpenter et al.

(25). In addition, we prescribe 25-OH-vitamin D supple-

ments and optimize dietary calcium intake in children,

although no published studies support this point.

Healing active rickets promotes growth and after

2 years of successful treatment, patients’ growth velocity

is restored to its maximal potential in a majority of patients.

However, 25–40% of patients with well-controlled XLHR

show linear growth failure despite optimal treatment and

have a final height underK2 SDS (19, 21, 26, 27, 28, 29, 30,

31, 32, 33) (and our experience, Fig. 1C). Until recently,

only limited pilot studies (small patient numbers, limited

period of observation, lack of controls and randomizations)

have been conducted, which suggest a beneficial effect of

recombinant growth hormone (rGH) treatment on growth

velocity in patients with XLHR (29, 34, 35, 36, 37, 38). The

only randomized study by Zivicnjak et al. (39) showed

significant improvement of linear growth (C1.1 height

SDS) in eight patients treated with rGH out of 16 short

(mean height SDS K3.3) prepubertal children with XLHR.

Addition of rGH induces a rise in mineral needs, which

should be accompanied with a 20–30% increment in

vitamin D analogs dosage. Only well-observant patients

with healed rickets can benefit from rGH.

In patients with HHRH, 1,25-diOH-vitamin D

synthesis is enhanced and PTH secretion often suppressed,

both conditions favoring hypercalciuria (40); therefore,

patients require treatment with phosphate supplements

solely. Doses and adjustment rules are similar to that used

for XLHR patients. In this condition, 25-OH-vitamin D

supplementation should be monitored very carefully by

trained physicians to avoid increase in 1,25-diOH-vitamin

D generation and hypercalciuria.
Orthopedic and surgical management in children

Hypophosphatemia induces progressive bowing of the

legs that becomes apparent with the onset of weight

bearing (Fig. 1A), and may hinder the walking capacity.
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Attribution 3.0 Unported License.
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These mal-alignments are characterized by diaphyseal–

metaphyseal regions of lower limbs long bones bowing

in frontal plan with varus or valgus combined with a degree

offlexion. Internal torsion of the tibia and fibula is frequent,

as well as anteverted femoral neck. As a consequence,

patients report lower limb pain; they also may develop

patellar dysplasia including chondromalacia, lateral

femoro-patellar subluxation, and gait troubles. Usually,

the response of pain and skeletal deformities to medical

treatment with adequate doses of calcitriol and phosphorus

G class I analgesics (acetaminophen, paracetamol, some

NSAIDs) is good, but bowing may not be entirely resolved

and moderate bone pain may persist. Physiotherapy can be

useful at this stage to prevent complete patellar dislocation

and improve muscle fitness; sitting on the feet should be

prohibited in children to decrease femoral neck anteversion.

A disproportionate muscular insufficiency was described,

but the relative responsibility of hypophosphatemia

versus lower limb bowing – which modifies the muscular

work – was not evaluated (41). Most of our patients show

joint hyperlaxity and increased skin elasticity. Physiother-

apy to improve joint stability with muscle reinforcement

can be offered to patients.

When leg bowing persists despite ‘optimal’ treat-

ment, bone distortions should be assessed through the

low-irradiating EOS system, which provides a 3D recon-

struction of lower limbs bones in standing position. It may

be combined with CT scanning to measure the degree

of torsion. Surgery during childhood should be avoided.

Because of open epiphyses, patients present a significant

risk of recurrence of the bowing at the level of osteotomy

or secondary to the adjacent epiphysiodesis (Fig. 2).

When necessary, due to major bone deformities, surgery

should be combined with adjusted doses of phosphate

supplements and vitamin D analogs in order to prevent

recurrence as previously evoked.

The actual place of the surgery is the correction of

residual deformities at the end of growth (Fig. 2). The

achievement of horizontal knee joints often requires

bifocal femoral and tibiae metaphyseal–diaphyseal osteo-

tomies. Osteosynthesis is done by locking plates or

intramedullary nails (42). Progressive correction using

external fixation is an alternative that provides precise 3D

angular deformities management (43). Distal tibiae varus

with significant ankle joints obliquity should be operated

upon with supramalleolar dome osteotomy (44). Fusion is

usually acquired, without tendency of delayed fusion or

pseudarthrosis. In case of significant lateral subluxation

after alignment correction, surgery of the femoro-patellar

joint is also required. However, ever since the
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Table 4 Ranges of doses of phosphate supplements and vitamin D analogs throughout life, and their respective markers of efficacy

and safety as applied in our center.

Period Phosphate supplements

Vitamin D analogs

(alfacalcidol onlya) Surveillance for efficacy and safety Frequency

Infancy (dose)
divided into

55–70 mg/kg per day 1.5–2.0 mg/day
once/day

Clinical: height, weight, cranial circumference Every 3 months

four times/day Blood: alkaline phosphatases, total calcium,
PTH, creatinine

Urines (spot): calcium/creatinine
Childhood (dose)

divided into
45–60 mg/kg per day 1.0–2.0 mg/day Clinical: height, weight, leg bowing, teeth Every 6 months

three times/day once/day Blood: alkaline phosphatases, total calcium,
PTH, creatinine

Every 6 months

Urines (24-h): calciuria, phosphaturia Every 3 months
Renal ultrasound Every year

Puberty (dose)
divided into

35–50 mg/kg per day 1.5–3.0 mg/day Clinical: height, weight, leg bowing, teeth Every 6 months

three times/day once/day Blood: alkaline phosphatases, total calcium,
PTH, creatinine

Every 6 months

Urines (24-h): calciuria, phosphaturia Every 3 months
Renal ultrasound Every year

Adulthood (dose)
divided into

0–2000 mg/day 0–1.5 mg/day Clinical: weight, mobility, pain, teeth Every year

two times/day once/day Blood: bone alkaline phosphatases, total
calcium, PTH, creatinine

Every year

Urines (24-h): calciuria Every 6 months
Renal ultrasound Every other year

Pregnancy (dose)
divided into

2000 mg/day 1–1.5 mg/day Clinical: weight, mobility, pain Every 3 months

two times/day once/day Blood: total calcium, PTH, creatinine, 25-OH
vitamin D

Every 3 months

Urines (24-h): calciuria Every 3 months
Menopause (dose)

divided into
0–2000 mg/day 0–1.5 mg/day Clinical: weight, mobility, pain, teeth Every year

two times/day once/day Blood: bone alkaline phosphatases, total
calcium, PTH, creatinine

Every year

Urines (24-h): calciuria Every 6 months
Renal ultrasound Every other year

aEquivalent dose in calcitriol was obtained divided by a factor 2.
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implementation of the usage of vitamin D analogs,

surgical indications have been considerably diminished.

In our experience, recourse to surgery dropped from 89 to

11% when we started to use the modern medical

treatment in patients born after 1975.

Most hypophosphatemic patients present with

increased head length and frontal bossing. Craniosynos-

tosis and sometimes Chiari malformations giving rise to

headaches and vertigo may also affect patients and require

neurosurgery when symptomatic.
Therapy in adults

Metabolism

After the years of burdensome therapy over the ‘pediatric’

period, which is essential to ensure adequate bone matrix
http://www.endocrineconnections.org
DOI: 10.1530/EC-13-0103
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mineralization and skeletal growth, young adult patients

with hereditary hypophosphatemia (HH) often stop

treatment. Lessened parental surveillance, poor taste of

phosphate preparations, and lack of convincing demon-

stration of therapeutic benefits in asymptomatic individ-

uals contribute to the low compliance in (young) adults.

Nevertheless, the metabolic and endocrine consequences

of chronic phosphate wasting persist life long. Adult

endocrinologist following patients with HH thus necess-

arily faces two key questions: i) whom to treat and ii) what

kind of treatment to give?

There is no consensus regarding indications of the

treatment in adult patients. It is generally accepted that

treatment should be reinitiated (or maintained) in all

symptomatic patients in order to reduce pain, which may

be due to bone microfractures and/or osteomalacia

(25, 45) (Fig. 3). Patients with significant reduction in
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Pre-operative

A B C

Post-operative Pre-operative Post-operative

Figure 2

Surgeries in children and adolescents with XLHR. (A) Bilateral lower limbs

mal-alignment including distal right femur valgus and proximal left tibia

varus – pre- and post-operative aspects (distal right femur varization and

proximal left tibia valgization osteotomies). (B) Pre- and post-operative

radiological aspect of the patient displayed in (A). (C) Eight-year-old girl

with XLHR and severe pre-operative deformations impeding joints

mobility. Recurrence of leg bowing after surgery likely due to compliance

issues to phosphate and vitamin D analogs. Bilateral medial proximal tibiae

epiphysiodesis inducing varus deformations.
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pain symptoms remain the most compliant. Patients with

planed surgical interventions (i.e., corrective osteotomy,

dental implants) should also be temporarily treated to

promote bone mineralization (25). The conventional

treatment in these adult patients is based on oral

phosphate salts, usually given twice daily, and active

vitamin D metabolites. The aim of the treatment is to

improve the symptoms, not to normalize serum phos-

phate levels. Careful monitoring of plasma calcium, PTH,

creatinine, and 24-h urinary calcium excretion is required

(25, 46) in order to prevent tertiary hyperparathyroidism,

induced by phosphate overdose (47), and hypercalciuria

with nephrocalcinosis and renal insufficiency, resulting

from calcitriol overtreatment (48). In our experience,

tertiary hyperparathyroidism in patients with XLHR is

rare (A Linglart, P Kamenicky, D Prie, A Rothenbuhler,

unpublished observations) and should be preferentially

treated surgically, even though beneficial effects of

adjunctive therapy by 24,25-dihydroxyvitamin D has

also been reported in one study (49).

Considering the lack of evidence for clinical benefit

and the possible side effects, indication of the conven-

tional phosphate- and vitamin D analog-based therapy

in asymptomatic patients is questionable. Long-term

consequences of chronic hypophosphatemia in adult

individuals are not known. Chronically decreased 1,25-

diOH-vitamin D synthesis may have a significant impact
http://www.endocrineconnections.org
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on health, given the numerous beneficial effects of

vitamin D on metabolism, cardiovascular system, cancer

prevention, and immune functions (50). Treatment

should be initiated at least in situations of increased

demands on phosphate and calcium, such as pregnancy,

to ensure adequate mineralization of the fetal skeleton,

or lactation, to enable sufficient galactopoiesis, and in

both cases to prevent worsening of the phosphate deficit

in the maternal organism (51).

Conventional medical therapies of FGF23-related

hypophosphatemic disorders consist in substituting the

consequences of the FGF23 excess (46). Nevertheless,

increased FGF23 levels may have deleterious effects on

health per se, especially on metabolism and cardiac

functions (8, 52, 53). New therapeutic approaches target-

ing FGF23 actions in general, including its impact on

glucose and lipid metabolism, are very interesting in adult

patients with HH, since they frequently present with

reduced mobility and are thus prone to develop obesity

and metabolic syndrome.
Rheumatology

Although disease severity is variable, adults with HR may

suffer from osteoarticular symptoms, such as pain and

joint stiffness, leading to disability of physical function

and poor quality of life (25). The conventional treatment
This work is licensed under a Creative Commons
Attribution 3.0 Unported License.
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A

B

D

E

C

Figure 3

Various burdens of the disease in adults leading to resume therapy with

phosphate supplements and vitamin D analogs. (A) Osteoarthritis of the

knee in a 28-year-old woman with persistent bone deformities after

adolescence. (B) Spinal enthesopathies of a 35-year-old patient with XLHR.

(C) Lower limb deformities in a young adult requiring corrective surgery.

(D) Dramatic consequences of rickets and osteomalacia in a 30-year-old

patient who did not receive vitamin D analogs. Arrows show insufficiency

fractures. Bone demineralization and hip osteoarthritis are visible.

(E) Delayed healing of fibulae fractures in the same patient following

corrective surgeries on both tibias.
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with vitamin D analogs and phosphate supplements aims

to decrease osteoarticular symptoms and improve physi-

cal function. However, only limited data supports the

efficiency of the therapy in adults presenting these

complications. Moreover, bone/joint pain may have

different origin such as osteomalacia, insufficiency frac-

tures, osteoarthritis, and enthesopathy (Fig. 3). Identify-

ing the cause of the pain should be considered as the first

step for the optimal management of osteoarticular

symptoms. Osteomalacia and spontaneous insufficiency

fractures, which occur in the lower extremities of the

weight bearing bones, should trigger treatment in adults.

In an open-label study conducted in 16 symptomatic

adult patients with XLHR, Sullivan et al. (45) showed that

the combination of calcitriol and phosphate supple-

ments decreases bone pain, increases serum phosphate,

and reduces the extent of osteomalacia quantified by pre-

and post-treatment bone biopsies. Moreover, insufficiency

fractures usually heal faster with this conventional

treatment. Despite the mineralization defect, so-called

osteomalacia, adults with XLHR present with paradoxical

heterotopic ossifications of tendon and ligament insertion
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sites. This leads to the formation of enthesophytes in

fibrocartilaginous tissues, often painful and causing joint

dysfunction. Risk factors associated with the occurrence

of enthesopathy are unknown; vitamin D analogs and

phosphate supplements do not prevent this complica-

tion (54). Apart from symptomatic patients at increased

risk of insufficiency fractures and osteomalacia, treatment

has been proposed to patients with planed surgical

interventions (osteotomy, joint replacement) (see

above). Treatment should be also discussed in asympto-

matic women at the time of menopause, in the absence

of estrogen substitution, to prevent osteomalacia. In

addition to the conventional treatment, optimal care

of symptomatic patients requires pharmacological and

non-pharmacological management of pain and joint

stiffness, through appropriated rehabilitation. Individua-

lized exercises and adapted physical activity should be

proposed to improve physical function and reduce the

metabolic consequences of XLHR.

Novel therapies targeting FGF23 actions (see below)

are awaited to fulfill the current unmet needs, such as

diminished motor function or prevention of enthesis
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ossification. For the latter, enthesis fibrocartilage cells of

Hyp mice (murine homolog of XLHR) specifically express

FGFR3 and Klotho, thereby suggesting that FGF23

inhibition might prevent fibrocartilage ossification (54).
Ears

Patients with HR present inconstant and variable hearing

loss depending on age and cause of phosphate wasting.

Hearing impairment has been described in mouse models

and human disorders due to increased FGF23 signaling,

yet not with primary renal tubular defect. Hearing

difficulties appear during adulthood in treated patients

with XLHR (55). Patients may have mild-to-severe

sensorineural hearing loss, affecting mainly low and high

frequencies (56). Some patients also present with tinnitus

and vertigo associated with low frequencies hearing loss

similar to that of Menière’s disease (57). X-rays show

generalized osteosclerosis and thickening of the petrous

bone, with narrowed internal auditory meatus (58). In

rodents models mimicking XLHR, mice display variable

expressions of deafness, circling behavior, lack of postural

reflexes, and cranial dysmorphology (59, 60, 61). Differ-

ently, hearing loss has been reported in HR children with

mutations in ENPP1 – as early as 9 days of life – or DMP1

(62, 63). Overall, hearing loss resembling stapes otosclero-

sis occurs early in life in ARHR patients, while hearing

loss resembling Menière’s disease develops after the

second decade in XLHR patients. We presently do not

know whether phosphate supplements and vitamin D

analogs modify the hearing evolution.
Dental and periodontal defects

The presence of severe dental manifestations in patients

with HR resulting either from PHEX mutations or from

other causes summarized above, including mutations

in DMP1 or FGF23, is now well recognized (Fig. 4).

The dominant feature is the occurrence of spontaneous

infection of the dental pulp tissue, resulting in tooth

abscesses. In contrast with common endodontic infec-

tion, these abscesses develop in teeth without any signs

of trauma or decay, affecting both the deciduous and

permanent dentition (64, 65). Clinically, teeth of

patients with HR look normal, complicating the identifi-

cation of the causal tooth and the diagnosis of the

endodontic origin of the infection. Radiographically,

the enamel layer appears thinner while the dentin layer

is more radiolucent. Pulp chambers are enlarged,

resembling taurodontism and prominent pulp horns
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extend up to the dentino–enamel junction (64). Exten-

sive enamel cracking and fissuring can be observed on

histologic sections, as well as dentin mineralization

defects. Unmerged dentin calcospherites are observed

and are separated by large non-mineralized interglobular

spaces (66, 67) (Fig. 4F). The endodontic infections

are believed to result from rapid dental pulp necrosis,

a consequence of the abnormal dentin mineralization

and enamel cracks that allow invasion of the pulp by

oral bacteria (68).

The dentin ECM is secreted by odontoblasts which,

like osteoblasts, express high levels of proteins involved in

mineral ion homeostasis and in the binding and proteo-

lytic processing of other proteins and peptides regulating

mineralization (69, 70). Hence, the abnormal hypo-

phosphatemic dentin contains degraded fragments of

noncollagenous phosphorylated matrix proteins includ-

ing matrix extracellular phosphoglycoprotein (MEPE),

DMP1, and osteopontin (OPN), and particularly peptides

with the acidic serine- and aspartate-rich motif (ASARM)

(71, 72). Interestingly, PHEX is the only known enzyme

capable of cleaving ASARM peptides, whose accumulation

leads to inhibition of mineralization.

Because the pain and swelling that result from tooth

abscesses are usually detected by patients or their families

and will bring them to consult, much attention has been

drawn to the dental manifestation of HR. However, it is

becoming clear that their periodontal health is also

affected, especially in adults. Comparing the periodontal

status of ten adults with familial HR with age-matched

controls (73), it was observed that the prevalence of

periodontitis was high in hypophosphatemic patients

(60% vs 3.6% to 7.3% in controls). Our unpublished data

on the periodontal status of more than 20 consecutive

adult patients with HR revealed an increased prevalence

and severity of periodontitis when compared with age-

matched controls, despite a similar gingival inflammation

(Fig. 3A, D and E). Although, no published studies have

explored non-surgical and surgical periodontal treatments

in adults with low phosphate, we observed a favorable

response to these treatments. The importance of the

supportive periodontal therapy in these patients cannot

be overlooked. One case of implant placement along with

guided bone regeneration in a XLH adult patient was

reported with satisfactory outcomes after 42 months (74).

Consistent with constitutional defects of periodontal

tissues, mice lacking Dmp1 or Phex have a defective

alveolar bone and cementum (75, 76).

Conventional therapy with vitamin D analogs and

phosphate supplements has a substantial beneficial
This work is licensed under a Creative Commons
Attribution 3.0 Unported License.

http://www.endocrineconnections.org
http://dx.doi.org/10.1530/EC-13-0103
http://creativecommons.org/licenses/by/3.0/deed.en_GB
http://creativecommons.org/licenses/by/3.0/deed.en_GB


A

C D

E

F

Pulp

RR

R

D

a

L L

Predentin

IS

IS

IS
IS

*

*

*

*

*

*

100 µm

Dentin

B

Figure 4

Dental defects in patients with X-linked hypophosphatemia (XLH).

(A) Orthopantomogram of a 35-year-old XLH patient. Note multiple absent

teeth and endodontic lesions. (B) Orthopantomogram of a 30-year-old XLH

patient that benefited from vitamin D analogs and phosphate supplements

during growth with good compliance. No dental or periodontal defects are

evident. (C) Intraoral view and corresponding X-ray of an endodontic

infection (arrows) affecting the intact central right lower incisor in a

35 year-old XLH patient. (D) Enlarged pulp chambers, prominent pulp

horns, radiolucent hypomineralized dentin and endodontic infection in

a 6-year-old XLH patient. (E) Alveolar bone loss in a 45-year-old XLH

patient. (F) Toluidine blue-stained section of a third molar germ of a

14-year-old female with XLH showing abnormal dentin mineralization.

Numerous nonmineralized interglobular spaces (IS) are observed between

unmerged calcospherites in the dentin body (document laboratory EA2496,

Dental school University Paris Descartes, France). Asterisks indicate calco-

spherites, single arrow indicates dentin secreting cells, odontoblasts, and

double head arrow indicates extent of predentin.
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impact on oral health that will depend on the onset,

compliance, and duration of the treatment. Missing and

filled teeth index of patients treated since early childhood

is similar to the index of healthy, age-matched controls

(64) and dentin mineralization of permanent teeth, which

mineralize after birth, can be rescued by the treatment (77)

(Figs 4B and 5). The tooth phenotype correlates well

with the overall bone phenotype and can be used to

evaluate the benefits on mineralization of this treatment

(68, 78, 79). Future studies will determine the benefit

of treatment on the periodontal status.
Clinical approaches

Spontaneous dental abscesses can be treated by the

conventional endodontic approach, e.g. root canal clean-

ing to remove the infected pulp tissues and endodontic
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sealing. However, these abscesses, especially those occur-

ring on primary teeth, spread rapidly in the jawbone and

tooth extraction is often necessary. Prevention of

abscesses includes sealing the tooth surface (primary and

permanent teeth) with a dental resin to form a barrier to

bacterial penetration (77). For primary teeth, this non-

invasive and painless approach consists in applying an

adhesive system (preferably no rinsing step called ‘self-

etching’) and then a light-cured flowable resin. This

procedure must be repeated regularly (every year) due to

gradual wear of the resin until the natural exfoliation of

the tooth. In parallel, we recommend rigorous oral

hygiene and preventive procedures. Daily use of fluoride

toothpaste adapted to age and regular fluoride varnish

applications at the dental chair, considering that

they present a higher risk of dental infection, is of

utmost importance (80). The orthodontic treatment is
This work is licensed under a Creative Commons
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Figure 5

Scanning electron microscopy views (documents laboratory EA2496, Dental

school University Paris Descartes, France) of (A) A deciduous molar of a

6-year-old male patient with XLHR, born from a XLH mother, showing that

the major bulk of dentin (arrow) is abnormally mineralized. (B) At higher

magnification (white rectangle), the dentin appears extremely porous with

multiples unmineralized spaces. (C) Permanent molar of an adult XLH

patient hich was not treated during growth. All the dentin bulk (arrow)

is abnormally mineralized. (D and E). Permanent third molar of a 15-year

old male patient with XLH who was treated during growth with a good

compliance to therapy but a late onset. Remaining calcospherites are

observed in the outer part of dentin (full arrow) corresponding to

infancy, whereas good mineralization (dotted arrow) is seen in the inner

part of dentin corresponding to the treatment period. (F) Control

permanent molar.

E
n
d
o
cr
in
e
C
o
n
n
e
ct
io
n
s

Review A Linglart et al. Therapy of hypophosphatemia 13–18 3 :R25
possible (81), especially in teenagers with HR controlled

by the conventional treatment since infancy. In our

Reference Center, this treatment is offered to compliant

teenagers under conventional treatment when the wave of

abscesses occurring in deciduous teeth has ended.
Novel therapies

In the recent years, novel strategies that efficiently

manipulate molecular effectors of the mineral metabolism

have been described. Several of them aim at inhibiting

downstream FGF23 signaling. Monoclonal FGF23

antibodies with neutralizing effect on FGF23 action have

been generated (82). When administered intravenously to

Hyp mice (murine homolog of XLHR), FGF23 antibodies

normalized phosphatemia, increased levels of 1,25-diOH-

vitamin D, increased the expression of the Npt2a cotran-

sporter, and tempered the 24-hydroxylase overexpression.

Repeated injections to juvenile mice promoted growth and

ameliorated mineralization and cartilage development

(83). Multiple injections into adult mice were shown to

improve spontaneous motor activity as well as muscle

strength (84). These promising data prompted the elabor-

ation of a humanized antibody, which showed, in XLH
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patients, complete absorption and sustained effect on

serum phosphate and TmP/GFR beyond 4 weeks upon a

single s.c. injection (85). A Phase 2 clinical trial is ongoing

in the USA and Canada (86). Two issues may arise with the

long-term use of FGF23 antibody. Firstly, it is likely that the

anti-FGF23 antibodies will probably not rescue the direct

impact of PHEX deficiency on calcified tissue mineral-

ization that depends on MEPE- or OPN-derived ASARM

peptides presence in the ECM. Secondly, FGF23 exerts

numerous actions including prevention of ectopic calcifi-

cation through the control of the calcium-phosphate

product. Precise modulation of FGF23 signaling will be

necessary to avoid off-target actions of FGF23 antibodies.

Another approach was taken by Goetz et al. (87); they

showed that a C-terminal fragment of FGF23 competes

with the full-length protein for receptor binding, yet

without activating downstream signaling. Infusion of this

FGF23 C-tail in normal rats triggered hyperphosphatemia

and renal phosphate retention. In Hyp mice, serum

phosphate was increased and the fractional excretion of

phosphate was decreased compared with control. Despite

these promising data, there is no information indicating

a possible clinical transition for this elegant approach

as of today.
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The pharmacological inhibition of downstream FGF23

signaling was also probed using selective pan-specific FGFR

antagonists in Hyp and Dmp1-null mice. Oral adminis-

tration of the small molecule NVP-BGJ398 led to an

improved ion metabolism, restored the structure of the

mineralization plate and partly corrected the bone growth

impairment (88). Even if the molecule is already in Phase 1

trial in human for cancer therapy, the application to HR

will warrant more investigation regarding the selectivity of

the molecule, notably towards other FGFR-mediated

physiological processes beyond phosphate metabolism.

Noteworthy, parathyroid cells also express the FGF23

receptor. FGF23 represses PTH secretion, but endocrine

feedback loops, while still controversial, have been

suggested (89). Normalization of phosphatemia in a TIO

patient after parathyroidectomy has been reported

recently (90), and manipulation of PTH secretion may

therefore help to counteract downstream effects of

excessive FGF23 on phosphate and vitamin D metabolism.

In contrast to the above-mentioned strategies that

target either FGF23 or its FGFR/KLOTHO co-receptor in the

kidney, other efforts are directed toward osteocytic targets.

The osteocyte is the primary site of production of FGF23

and hosts PHEX and DMP1 (malfunctioning in XLHR and

ARHR respectively). Osteocytes express the calcitonin

receptor and it was recently reported that a single s.c.

administration of calcitonin in one patient affected with

XLHR results in a decrease in the concentration of FGF23

and increases in phosphatemia and circulating level of

calcitriol (85). A Phase 1 study is currently evaluating

repeated daily intranasal calcitonin in XLHR (91).

The identification of a decreased proprotein conver-

tase 2 (PC2) activity in bone cells of Hyp mice (92) provides

another potential curative option. PC2, and its associated

chaperone 7B2, were shown to participate in the proteo-

lytic regulation of the FGF23 protein expression. When

hexa-D-arginine (D6R), a PC2 agonist, was administered

i.p. into Hyp mice, normalization of 7B2 expression and

concomitant decrease in Fgf23 mRNA was observed.

Although only partial reduction in the levels of serum

Fgf23 was noted in D6R-treated animals, bone modeling

was restored, phosphatemia was sub-normalized, as were

the related markers Npt2a and Cyp27b2 encoding the

24-hydroxylase.

Therapies that would be capable of restoring the

bone and tooth mineralization process are also desirable.

The SIBLINGs phosphoproteins MEPE, DMP1, and OPN all

contain ASARM motifs (reviewed in (2)). Upon proteolytic

cleavage orchestrated by PHEX, released phosphorylated

ASARM peptides interact with hydroxyapatite crystals and
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inhibit mineralization (93, 94). In XLHR and ARHR,

ASARM peptides abundance is increased in the ECM of

bone and teeth, and probably contributes to the mineral-

ization defects that hallmark the disease (64, 72). Counter-

acting ASARM peptides may therefore help in improving

bone, dental and periodontal features in XLHR and

related diseases.
Conclusion

Symptoms associated with phosphate wasting result from

FGF23 excessive signaling and accumulation of ASARM

peptides in bone and dental tissues. Current therapy with

phosphate supplements and vitamin D analogs partly

correct rickets and osteomalacia. It is obvious that

outcomes of therapy are still not optimal and that

therapies targeting the pathophysiology of the disease

are required. Along this line, FGF23 antibodies are very

promising but their benefit remains to be investigated

during growth in children with PHEX, FGF23, or DMP1

mutation.

Today, and in the future, coordination between

caregivers is required for the optimal treatment of this

rare disorder and involves various specialists in pediatric

and adult fields. While attention is focused in children on

legs straightening and growth, adults should be none-

theless regularly monitored for the prevention and

limitation of bone pain, joint stiffness, and periodontal

inflammation. Extra-osseous issues should be considered

early in life, as well as audition, sport practice, and glucose

and lipid metabolism, with the help of physiotherapists

and nutritionists. In addition, the contribution of

psychologist and social workers is necessary, especially in

patients born before 1970 who did not receive vitamin D

analogs and present multiple and sometime devastating

complications. Finally, in the era of globalized communi-

cation, active networking involving not only reference

centers for rare diseases or scientific societies but also

patients organization and biopharmaceutical companies

should facilitate the translation of recent discoveries into

novel therapies.
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