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mTORC2/RICTOR exerts differential levels
of metabolic control in human embryonic,
mesenchymal and neural stem cells

Dear Editor,

Stem cells, including pluripotent stem cells and adult stem
cells, possess the remarkable capability of being able to self-
renew while at the same time having potential to differentiate
into different cell lineages and functionally distinct cell types.
Human embryonic stem cells (hESCs) can differentiate into
all adult stem cell types, including human mesenchymal
stem cells (hMSCs) and human neural stem cells (hNSCs),
but can also give rise to all terminally differentiated cell types
(Wang et al., 2021a). Through the continuous replenishment
of differentiated cells, stem cells support tissue homeostasis
and respond to tissue injuries. Given the promising appli-
cations of stem cells in cell therapy and regenerative medi-
cine, insights into molecular events underlying stem cell
maintenance, self-renewal ability and pluripotency, continue
to garner strong interest (Shan et al., 2021). Although
metabolic pathways have been implicated in the reciprocal
regulations of stem cell self-renewal and differentiation as
well as organ homeostatic maintenance (Garcia-Prat et al.,
2017), central aspects of how metabolic requirements differ
and are regulated across the various types of human stem
cells in our body remain enigmatic.

The mammalian target of rapamycin (mTOR) pathway is
one of the most important metabolic pathways in mammals,
and accordingly, it is pivotal for multiple cellular activities in
stem cells (Meng et al., 2018). The mTOR pathway com-
prises two distinct protein complexes, complex 1 (mTORC1)
with associated regulatory protein RAPTOR, and complex 2
(mTORC2) with the rapamycin-insensitive companion RIC-
TOR, as respective core unique components. Given that
numerous clinical trials have been funded to investigate the
safety and efficacy of mTOR inhibitors, it is of both scientific
and clinical importance to gain a deeper knowledge about
the role of mTOR pathway, and especially for the lesser
known mTORC2, in the homeostatic maintenance of differ-
ent types of human stem cells.

To investigate whether and how RICTOR may regulate
human stem cells, we used CRISPR/Cas9-mediated gene
editing in hESCs to introduce indels in exon 1 of the RICTOR
gene (Fig. 1A and 1B). This approach successfully knocked

out RICTOR as validated by western blot analysis showing
the ablation of RICTOR protein. Alongside, S473 phospho-
rylation of AKT, which is a major substrate of mTORC2
(Wang et al., 2021b), was also downregulated in RICTOR−/−

hESCs (Figs. 1C and S1A). RICTOR-deficient hESCs were
karyotypically normal (Fig. S1B) and maintained genomic
integrity, as exemplified by genome-wide copy number
variation (CNV) analysis (Fig. S1C). However, RICTOR
deficiency caused aberrant colony morphology (Fig. 1D),
shown as a marginal differentiation of the clone, a phenotype
frequently observed in hESCs with compromised pluripo-
tency. Concomitantly, the expression of stem cell pluripo-
tency markers OCT4, SOX2 and NANOG, along with others,
were downregulated (Figs. 1E, S1D and S1E). Disrupted
alkaline phosphatase staining and attenuated capability
for teratoma formation further confirmed the impaired
pluripotency of RICTOR−/− hESCs (Fig. 1F–1H). Additionally,
RICTOR deficiency attenuated clonal expansion ability and
disrupted hESC cell cycle kinetics (Figs. 1I and S1F). Alto-
gether, these observations suggest that RICTOR deficiency
attenuates hESC self-renewal and pluripotency.

Next, we differentiated RICTOR+/+ and RICTOR−/−

hESCs into hMSCs and hNSCs to assess how RICTOR
loss-of-function (LOF) impacts on human adult stem cells
(Fig. 1A). As expected, RICTOR protein was depleted in
RICTOR−/− hMSCs along with decreased AKT S473 phos-
phorylation (Fig. S1G and S1H). Yet, RICTOR−/− hMSCs
maintained genomic integrity as demonstrated by CNV
analysis (Fig. S1I) and normal cellular morphology along
with the expression of hMSC-specific markers including
CD73, CD90 and CD105 as previously described (Bi et al.,
2020) (Figs. 1J and S1J). By contrast, RICTOR deficiency
led to decreased self-renewal ability in hMSCs, as evidenced
by lower clonal expansion ability, fewer Ki67 positive cells
(Fig. 1K and 1L). RICTOR deficiency also impeded the dif-
ferentiation potentials of hMSCs into osteoblasts, chondro-
cytes and adipocytes (Figs. 1M and S1K). As for RICTOR−/−

hNSCs, RICTOR protein was completely absent together
with decreased AKT S473 phosphorylation (Fig. S1L and
S1M). Likewise, RICTOR−/− hNSCs expressed hNSC-
specific markers PAX6 and SOX2 (Figs. 1N and S1N) as
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previously described (Wang et al., 2020) and maintained
genomic integrity, as shown by CNV analysis (Fig. S1O). In
line with our findings in hMSCs, RICTOR deficiency led to
decreased proliferative ability (Fig. 1O and 1P) and impaired
neuronal differentiation in hNSCs, as reflected by lower
percentage of cells positive for neuron-specific markers
MAP2 (Figs. 1Q and S1P). Altogether, these results indicate
that RICTOR deficiency impairs self-renewal and differenti-
ation of hMSCs and hNSCs.

To elucidate molecular mechanisms underlying RICTOR
LOF and how these contribute to compromised hESC self-
renewal and differentiation capabilities, we carried out gen-
ome-wide RNA sequencing (RNA-seq) analysis. In total, we
identified 585 upregulated genes and 530 downregulated
genes in RICTOR−/− hESCs (Fig. S2A and S2B). Pathway
and gene ontology (GO) enrichment analysis revealed that
the upregulated genes were mainly associated with oxidative
phosphorylation (exemplified by genes such as ATP5MC3,
ATP5MF) and mitochondrial organization (FIS1, TOMM7),
and that the downregulated genes were related to extracel-
lular structure organization (COL1A2, COL5A2) and stem-
ness maintenance (KIT, ZIC3) (Fig. 2A). These findings likely
pinpoint mitochondrial modulation as the core mechanism
causing dysregulation of hESC homeostasis upon RICTOR
deficiency. Given that glycolysis regulates hESC self-re-
newal (Gu et al., 2016), we examined the changes in gly-
colysis in hESCs with RICTOR deficiency. Consistent with
the aforementioned impaired hESC self-renewal upon RIC-
TOR ablation, we observed decreased glycolysis in RIC-
TOR−/− hESCs (Fig. 2B). Subsequently, we evaluated the
changes in the mitochondria between RICTOR+/+ and RIC-
TOR−/− hESCs and detected increases in mitochondrial
number per cell and relative mitochondrial mass, suggesting
higher mitochondrial content associated with RICTOR defi-
ciency (Figs. 2C, 2D and S2C). By contrast, the ablation of
RICTOR in hESCs caused disarranged cristae structure
(Fig. 2C), increased mitochondrial ROS and decreased
mitochondrial membrane potential (Fig. S2D and S2E),
indicative of impaired mitochondrial fitness. Overall, although
baseline mitochondrial respiration was comparable between
RICTOR+/+ and RICTOR−/− hESCs, the maximal respiratory
ability was higher in RICTOR−/− hESCs likely due to
increased mitochondrial content (Fig. 2E). Altogether, these
data indicate that RICTOR deficiency causes changes in
glycolytic capacity and mitochondrial fitness in hESCs, likely
contributing to impaired self-renewal capability.

To determine the molecular mechanisms underlying
RICTOR deficiency in human embryonic and adult stem
cells, we performed RNA-seq analysis of hMSCs and
hNSCs derived from RICTOR+/+ and RICTOR−/− hESCs. In
total, we identified 814 upregulated genes and 1,113 down-
regulated genes in hMSCs, and 1,056 upregulated genes
and 530 downregulated genes in hNSCs (Fig. S2A and
S2B). However, when we compared the DEGs identified in
hMSCs and hNSCs to those of hESCs, we found that shared
genes were relatively few, with only 14 upregulated and 29

b Figure 1. RICTOR deficiency attenuates pluripotency and

differentiation abilities of hESCs, hMSCs and hNSCs.

(A) Schematic diagram of the generation of RICTOR-deficient

hESCs and hESC-derived hMSCs and hNSCs. (B) Schematic

of the deletion of RICTOR via CRISPR/Cas9-mediated non-

homologous end-joining (NHEJ). The diagram shows the first 2

out of 38 exons of RICTOR along with the edited sequence in

exon 1. (C) Western blot analysis of RICTOR, phosphorylated

AKT Ser473 and total AKT expression in RICTOR+/+ and

RICTOR−/− hESCs. GAPDH was used as the loading control.

(D) Representative phase-contrast images of RICTOR+/+ and

RICTOR−/− hESC colonies. Scale bar, 200 μm and 100 μm

(zoomed-in image). (E) Western blot analysis of the pluripo-

tency markers OCT4, SOX2 and NANOG expression in

RICTOR+/+ and RICTOR−/− hESCs. β-Tubulin was used as

the loading control. (F) Representative alkaline phosphatase

staining of hESCs. Scale bar, 200 μm. Data are representative

of three biological repeats. ***P < 0.001. (G) Average diameters

of teratomas formed by RICTOR+/+ and RICTOR−/− hESCs.

Scale bar, 10 mm. Data are presented as mean ± SEM of five

biological repeats. ***P < 0.001. (H) Immunofluorescence

staining of the differentiation markers for three germ layers

in teratoma, Scale bar, 50 µm. (I) Clonal expansion analysis of

RICTOR+/+ and RICTOR−/− hESCs. Data are presented as

mean ± SEM of three independent experiments. **P < 0.01.

(J) Flow cytometry analysis of hMSC-specific surface markers

CD73, CD90 and CD105 in RICTOR+/+ and RICTOR−/−

hMSCs (passage 3). (K) Clonal expansion analysis of

RICTOR+/+ and RICTOR−/− hMSCs (passage 4). Data are

presented as mean ± SEM of three independent experiments.

*P < 0.05. (L) Immunofluorescence analysis of Ki67 expression

in RICTOR+/+ and RICTOR−/− hMSCs (passage 4). Scale bar,

10 µm. Data are presented as mean ± SEM of three biological

repeats. **P < 0.01. (M) Characterization of the multilineage

differentiation potentials of hMSCs (passage 4). Left, osteoge-

nesis of RICTOR+/+ and RICTOR−/− hMSCs evaluated by von

Kossa staining. Scale bar, 250 μm. Middle, chondrogenesis of

RICTOR+/+ and RICTOR−/− hMSCs evaluated by Toluidine blue

staining. Scale bar, 50 μm. Right, adipogenesis of RICTOR+/+

and RICTOR−/− hMSCs evaluated by Oil Red O staining. Scale

bar, 50 μm. (N) Immunofluorescence staining for hNSC-specific

markers PAX6 and SOX2 in RICTOR+/+ and RICTOR−/− of

hNSCs (passage 3). Scale bar, 20 μm. (O) Clonal expansion

analysis of RICTOR+/+ and RICTOR−/− hNSCs (passage 5).

Data are presented as mean ± SEM of three independent

experiments. *P < 0.05. (P) Immunofluorescence analysis of

Ki67 expression in RICTOR+/+ and RICTOR−/− hNSCs (pas-

sage 5). Scale bar, 10 µm. Data are presented as mean ± SEM

of three biological repeats. *P < 0.05. (Q) Immunofluorescence

staining of hNeuron-specific markers MAP2 and TuJ1 in

RICTOR+/+ and RICTOR−/− hNeurons. Scale bar, 50 µm.
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downregulated genes in common (Fig. S2F). Of these
downregulated were BTF3 and TOX, previously reported to
be related to stem cell maintenance and differentiation (de
Jesus Domingues et al., 2016; Hu et al., 2019). By contrast,
none of the overlapping genes were related to mitochondrial
metabolism (Fig. S2F–S2H), suggesting that RICTOR defi-
ciency impacts on cell type-specific mitochondrial regulatory
mechanisms. Accordingly, we measured the changes in
mitochondria and metabolism in RICTOR-deficient hMSCs
and hNSCs. We found decreased glycolysis in RICTOR−/−

hMSCs (Fig. 2F), similarly as seen in RICTOR−/− hESCs.

Besides, RICTOR deficiency did not cause any
detectable changes in mitochondrial cristae structure nor
mitochondrial ROS levels between RICTOR+/+ and RIC-
TOR−/− hMSCs, but led to increased mitochondrial mass and
membrane potential, likely indicative of enhanced mito-
chondrial respiratory capacity in RICTOR−/− hMSCs
(Figs. 2G, 2H, S2I and S2J). Indeed, we found that RICTOR
deficiency increased both basal and maximal mitochondrial
respiration in hMSCs (Fig. 2I). By comparison, in RICTOR-
deficient hNSCs, we found RICTOR deficiency did not affect
the glycolytic capacity (Fig. 2J), mitochondrial cristae struc-
ture, mitochondrial mass nor mitochondrial ROS production
in hNSCs (Figs. 2K, 2L and S2K). In contrast to RICTOR−/−

hMSCs, we detected RICTOR deficiency led to decreased
mitochondrial membrane potential in hNSCs (Fig. S2L).
However, both basal and maximal mitochondrial respiration
were normal in RICTOR−/− hNSCs (Fig. 2M), suggesting that
the mitochondrial dysregulation caused by RICTOR defi-
ciency in hNSCs is tolerable. Altogether, our findings indicate
that RICTOR is critical to the maintenance of mitochondrial
fitness in hMSCs, but less important to mitochondrial func-
tion in hNSCs.

Here, for the first time, we systematically compared the
effects of RICTOR deficiency in human embryonic stem cells
and two adult stem cell types. By generating RICTOR-defi-
cient hESCs and executing directed differentiation of these
into hMSCs and hNSCs derivatives, we provided a valuable
experimental platform for further studying biological roles of
RICTOR in human embryonic and adult stem cell types. Our
comprehensive analysis demonstrated that RICTOR defi-
ciency adversely affected both self-renewal and differentia-
tion abilities in all three human stem cell types. In addition,
we offered novel insights into distinct mitochondrial and
metabolic phenotypes caused by RICTOR deficiency in dif-
ferent human stem cells. Specifically, our data show that
RICTOR was essential for glycolytic capacity and mito-
chondrial homeostatic maintenance in hESCs and hMSCs,
but its absence led to tolerable mitochondrial defects without
changing cell respiration in hNSCs. Our findings suggest that
RICTOR maintains the stemness of hESCs and hMSCs
likely associated with altered glycolysis and oxidative phos-
phorylation, and that mitochondrial respiration is largely
independent of RICTOR in hNSCs. Overall, our data provide
new knowledge about the differential roles of RICTOR in the
homeostatic maintenance and mitochondrial regulation of
different types of human stem cells.

Because the dysregulation of the mTOR pathway is a
hallmark feature of diseases, including metabolic disorders,
neurological disease and cardiovascular disease, mTOR is
viewed with interest as a potential therapeutic target. To
date, most studies on mTOR pathways has focused on
mTORC1 via genetic manipulations or targeted pharmaco-
logical inhibitors such as rapamycin (Schreiber et al., 2019).
By contrast, much less is known about the cellular conse-
quences by interfering with mTORC2. In mice, depletion of
Rictor, the unique core regulatory component of mTORC2,

b Figure 2. RICTOR deficiency exerts differential effects on

mitochondrial fitness in hESCs, hMSCs and hNSCs.

(A) GO and pathway enrichment analysis of differentially

expressed genes in RICTOR+/+ and RICTOR−/− hESCs.

(B) Representative quantifications of extracellular acidification

rates (ECAR) of RICTOR+/+ and RICTOR−/− hESCs. Data are

presented as mean ± SEM of three biological repeats. ***P <

0.001. (C) Representative transmission electron microscopy

images of RICTOR+/+ and RICTOR−/− hESCs. Scale bars, 2 μm

and 200 nm (zoomed-in image). (D) Flow cytometric analysis of

mitochondrial mass in hESCs. Data are presented as mean ±

SEM of three independent experiments. ***P < 0.001. (E) Cel-

lular oxygen consumption rates (OCR) of RICTOR+/+ and

RICTOR−/− hESCs in response to indicated mitochondrial

modulators. Data are presented as mean ± SEM of three

biological repeats. ns, not significant, **P < 0.01. (F) Represen-

tative quantifications of extracellular acidification rates (ECAR)

of RICTOR+/+ and RICTOR−/− hMSCs (passage 4). Data are

presented as mean ± SEM of three biological repeats. ***P <

0.001. (G) Representative transmission electron microscopy

images of RICTOR+/+ and RICTOR−/− hMSCs (passage 4).

Scale bars, 2 μm and 200 nm (zoomed-in image). (H) Flow

cytometric analysis of mitochondrial mass in hMSCs (passage

4). Data are presented as mean ± SEM of three independent

experiments. *P < 0.05. (I) Cellular oxygen consumption rates

(OCR) of RICTOR+/+ and RICTOR−/− hMSCs (passage 4) in

response to indicated mitochondrial modulators. Data are

presented as mean ± SEM of four biological repeats. *P <

0.05, ***P < 0.001. (J) Representative quantifications of

extracellular acidification rates (ECAR) of RICTOR+/+ and

RICTOR−/− hNSCs (passage 5). Data are presented as mean

± SEM of three biological repeats. ns, not significant. (K) Rep-

resentative transmission electron microscopy images of RIC-

TOR+/+ and RICTOR−/− hNSCs (passage 5). Scale bars, 1 μm

and 200 nm (zoomed-in image). (L) Flow cytometric analysis of

mitochondrial mass in hNSCs (passage 5). Data are presented

as mean ± SEM of three independent experiments. ns, not

significant. (M) Cellular oxygen consumption rates (OCR) of

RICTOR+/+ and RICTOR−/− hNSCs (passage 5) in response to

indicated mitochondrial modulators. Data are presented as

mean ± SEM of three biological repeats. ns, not significant.
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leads to embryonic growth arrest (Zhu et al., 2019) and
impedes cardiac differentiation of embryonic stem cells
(Zheng et al., 2017). In this study, we found that RICTOR
deficiency impaired hESC self-renewal. In addition, our data
revealed that RICTOR deficiency had varied impacts on
differentiated derivatives and thus brought clarity to its piv-
otal roles in human stem cell maintenance and highlighting
potential molecular and metabolic vulnerabilities in different
human progenitor populations, which help us better under-
stand the possible consequences of RICTOR inactivation in
clinical cases.

Mitochondrial metabolism impacts on both the self-re-
newal and differentiation potentials of embryonic stem cells.
Pluripotent stem cells have fewer mitochondria and produce
energy mainly through glycolysis whereas differentiated cells
rely primarily on oxidative phosphorylation and have
increased mitochondrial mass. Additionally, attenuated
mitochondrial activity negatively regulates cell proliferation
and transcriptional activation of genes involved in early dif-
ferentiation in both mouse and human ESCs (Mandal et al.,
2011). Here, we found that RICTOR deficiency led to
increased mitochondrial content and respiration in pluripo-
tent hESCs and multipotent hMSCs, likely contributing to
their compromised stem cell maintenance. Yet, in multipotent
hNSCs, RICTOR deficiency only induced minimal, func-
tionally tolerable changes in mitochondria, suggesting that
impaired proliferation and differentiation capabilities of
hNSCs lacking RICTOR are uncoupled from mitochondrial
respiratory function. Notably, RICTOR has been implicated
in multiple signaling pathways related to mitochondria. For
instance, mTORC2-AKT-GSK3β signaling pathway partici-
pates in the maintenance of mitochondrial fitness and cel-
lular metabolism (Bantug et al., 2018) and mTORC2-
mitochondrial Connexin 43 signaling pathway directly mod-
ulates mitochondrial function (Wang et al., 2021b). There-
fore, it awaits further investigations of the differential
molecular mechanisms by which RICTOR deficiency inter-
rupts mitochondrial homeostasis in hESCs and hMSCs, but
not in hNSCs. Overall, our comparative data reveal RIC-
TOR-dependent diverse mitochondria-regulatory and stem-
ness maintenance mechanisms in human stem cell
populations, possibly reflecting different metabolic needs in
specific cell types or different degrees of pluripotency.

Taken together, our findings provide a molecular and
functional basis for understanding how RICTOR regulates
cellular and mitochondrial homeostasis in different human
stem cells. As such, our data send a cautionary note for
considering potential adverse effects resulting from treat-
ment of various diseases using mTOR inhibitors, and offer
important hints for the prognosis and even prevention of
possible cellular and mitochondrial consequences in human
stem cells in therapeutic strategies targeting RICTOR or
other components of the mTOR pathway.
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