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Angiopoietin-like proteins (ANGPTLs) are a family of proteins structurally similar to the
angiopoietins. To date, eight ANGPTLs have been discovered, namely ANGPTL1 to
ANGPTL8. Emerging evidence implies a key role for ANGPTLs in the regulation of a plethora
of physiological and pathophysiological processes. Most of the ANGPTLs exhibit multibio-
logical properties, including established functional roles in lipid and glucose metabolism,
inflammation, hematopoiesis, and cancer.This report represents a systematic and updated
appraisal of this class of proteins, focusing on the main features of each ANGPTL.
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ANGIOPOIETIN-LIKE PROTEINS
A family of proteins that is structurally similar to the angiopoietins
has been identified as angiopoietin-like proteins (ANGPTLs). To
date, eight ANGPTLs have been discovered, namely ANGPTL1 to
ANGPTL8 (Table 1). All ANGPTLs contain an amino-terminal
coiled-coil domain, a linker region, and a carboxy-terminal
fibrinogen-like domain. ANGPTL8 is the exception of the family,
since there is no fibrinogen-like domain.

Angiopoietin-like proteins have been generally considered
orphan ligands as they do not bind to the receptors classically
targeted by angiopoietins (10, 11), namely the tyrosine kinase
with immunoglobulin-like and EGF-like domain 1 (Tie1) and the
endothelial-specific receptor tyrosine kinase (TEK or Tie2). This
aspect, which constitutes the main difference between angiopoi-
etins and ANGPTLs, indicates that the functional mechanism of
ANGPTL proteins may be different from that of angiopoietins
(12). However, numerous studies show that ANGPTL proteins,
similar to angiopoietins, are able to potently regulate angiogenesis
(12–14).

Interestingly, Zheng and colleagues have recently shown
that the immune-inhibitory receptor human leukocyte
immunoglobulin-like receptor B2 (LILRB2) and its mouse
ortholog paired immunoglobulin-like receptor (PIRB) are recep-
tors for angptl1, 2, 5, and 7 (15). Such a study indicates an
unexpected functional significance of classical immune-inhibitory
receptors in the maintenance of stemness of normal adult stem
cells and in support of cancer development (15).

Various functions of ANGPTL proteins have also been
described in developmental, physiological, and pathophysiological
processes. Crucially, some ANGPTL proteins exhibit multibio-
logical properties, including functional roles in lipid metabolism
(16), inflammation (17), hematopoietic stem cell activity (18), and
cancer cell invasion (19, 20).

ANGPTL1
ANGPTL1 is the first member of the ANGPTL family discovered
(10) and is considered to be a potent regulator of angiogene-
sis. In particular, it has been reported as a key anti-angiogenic
protein (it is also known as angioarrestin) by inhibiting the pro-
liferation, migration, tube formation, and adhesion of endothe-
lial cells (1). As well as being anti-angiogenic, ANGPTL1 has
also been shown to exhibit antiapoptotic activity in human
endothelial cells by stimulating phosphorylation of ERK 1/2 and
Akt-1 (21).

Growing evidence suggests that ANGPTL proteins not only tar-
get endothelial cells but also affect tumor cell behavior. Indeed,
ANGPTL1 transcript has been found to be down-regulated in
several tumor specimens, including lung, prostate, kidney, thy-
roid, and urinary bladder cancers (1). Consequently, inhibition
of tumor growth and metastasis has been proposed by inde-
pendent investigators as one of the major effects of ANGPTL1
(22, 23). Of note, mouse Angptl1 shares 75% nucleotide iden-
tity and 92% amino acid identity (456/491 residues in product)
with human Angptl1, suggesting evolutionary conservation and
functional homology (24). In a screen of 102 patients with lung
cancer, ANGPTL1 expression was found to be inversely correlated
with invasion, lymph-node metastasis, and poor clinical outcomes
(20). ANGPTL1 suppressed the migratory, invasive, and metastatic
capabilities of lung and breast cancer cell lines in vitro and reduced
metastasis in vivo (mice injected with cancer cell lines overexpress-
ing ANGPTL1). Ectopic expression of ANGPTL1 inhibited the
epithelial-to-mesenchymal transition by inducing expression of
microRNA-630 and subsequently reducing the expression of the
zinc-finger protein SLUG (20). Ergo, there is clinical evidence that
ANGPTL1 expression inversely correlates with advanced-stage
lymph-node metastasis and positively correlates with survival of
patients with cancer.
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Table 1 | Angiopoietin-like proteins.

ANGPTL Other common names Main tissue expression Chromosome

(human)

Chromosome

(mouse)

Reference

1 ARP1, angioarrestin, ANG3, AngY, ANGPT3,

UNQ162, dJ595C2.2, 2810039D03Rik

Liver, muscle 1 1 Dhanabal et al. (1)

2 ARP2, AI593246, AW260363, HARP Heart, vessels, adipose tissue 9 2 Doi et al. (2)

3 ANL3, ANG-5, FHBL2, ANGPT5 Liver 1 4 Glazer (3)

4 ARP4, PGAR, HFARP, FIAF Liver, Adipose tissue, brain, intestine,

thyroid, kidney, heart

19 7 Ortega-Senovilla

et al. (4)

5 ANGL5_HUMAN, A_14_P125422,

NP835228.1

Heart 11 – Zeng et al. (5)

6 AGF, ARP5, ARP3 Liver 19 9 Oike et al. (6)

7 AngX, dJ647M16.1, CDT6, RP4-647M16.2 Eye (trabecular meshwork) 1 4 Peek et al. (7)

8 Lipasin, betatrophin, TD26, c19orf80, RIFL

PRO1185, PVPA599, Gm6484

Liver, adipose tissue 19 9 Quagliarini et al.

(8), Fu et al. (9)

ARP, angiopoietin-related protein, PGAR, PPARγ-angiopoietin-related, HFARP, hepatic fibrinogen angiopoietin-related protein, FIAF, fasting-induced adipose factor;

RIFL, re-feeding induced in fat and liver.

ANGPTL2
ANGPTL2 is a circulating glycoprotein with abundant expression
in the heart, adipose tissue, lung, kidney, and skeletal muscle.
Its expression is stimulated by hypoxia and induces angiogen-
esis and endothelial cell migration. It may exert a function on
endothelial cells through autocrine or paracrine action (25–27).
Circulating levels of ANGPTL2 correlate with inflammation, adi-
posity, and insulin resistance in both mice and humans (17).
An increase in mRNA levels of ANGPTL2 has been reported in
endothelial cells isolated from arteries of active smokers with
severe coronary artery disease compared with non-smokers (28).
Moreover, ANGPTL2 has recently been associated with chronic
inflammation in dermatomyositis (29), synovial inflammation
in rheumatoid arthritis (30), abdominal aortic aneurysms (31),
and cancer (32–34). In addition, ANGPTL2 has recently been
shown to causally contribute to the development of chronic
endothelial/vascular inflammation leading to atherosclerosis (35).
Muramoto and coworkers evaluated serum ANGPTL2 levels in
overweight men after lifestyle intervention, providing evidence
that ANGPTL2 is a highly sensitive indicator of reduced visceral fat
and metabolic improvement (36). In a recent study conducted in a
general community-dwelling Japanese population, elevated serum
ANGPTL2 levels were positively associated with the development
of type 2 diabetes mellitus independent of other risk factors includ-
ing C-reactive protein (CRP) levels (2). Constitutive ANGPTL2
activation in vivo induces inflammation of the vasculature charac-
terized by adhesion of leukocytes to the vessel walls and increased
permeability. ANGPTL2 deletion has also been shown to amelio-
rate adipose tissue inflammation and systemic insulin resistance in
diet-induced obese mice (17). On the other hand, Hashimoto and
colleagues demonstrated in vitro that replenishment of Angptl2
is able to stimulate insulin sensitivity and improves the type 2
diabetic state in murine adipocytes (37). Given the significant cor-
relation between ANGPTL2 levels and insulin resistance (17, 36)
and the recent evidence of its pro-oxidant effect (34), ANGPTL2
could also be useful as a biomarker of endothelial dysfunction. In
summary, ANGPTL2 can be considered a key mediator that links

obesity to systemic insulin resistance and plays a pivotal role in the
atherosclerotic process and in the development of diabetes.

ANGPTL3
Angiopoietin-like 3 (ANGPTL3) is a main regulator of lipoprotein
metabolism. Its function is at least in part linked to the inhibi-
tion of lipoprotein lipase (LPL) activity (38, 39). ANGPTL3 is
activated by cleavage at a proprotein convertase consensus site
to release the N-terminal domain and its activity is regulated by
ANGPTL8 (8, 38). Of note, ANGPTL3-deficient subjects have
reduced cholesterol levels in all major plasma lipoprotein frac-
tions and a marked reduction of triglycerides, especially in very
low-density (VLDL) and high-density (HDL) lipoproteins (40,
41). Loss-of-function mutations in ANGPTL3 have been shown
to cause familial combined hypolipidemia (3, 42–45).

ANGPTL3-deficient mice exhibit low plasma HDL cholesterol
and HDL phospholipid (PL), which were increased by ANGPTL3
supplementation via adenovirus (46). In vitro, ANGPTL3 inhib-
ited the phospholipase activity of endothelial lipase (EL), which
hydrolyzes HDL-PL and consequently decreases plasma HDL lev-
els, through a putative heparin-binding site in the N-terminal
domain of ANGPTL3 (46).

In humans, the complete absence of ANGPTL3 results in an
increased LPL activity and mass and low circulating free fatty acid
levels (41). This latter effect is probably due to a decreased mobi-
lization of free fatty acid from fat stored in human adipose tissue
and may result in reduced hepatic VLDL synthesis and secretion
via attenuated hepatic free fatty acid supply. ANGPTL3 may also
affect insulin sensitivity, playing a major role in modulating both
lipid and glucose metabolism (41). In addition to that, ANGPTL3
has been shown in vivo to be negatively regulated by thyroid hor-
mone (47) and serum ANGPTL3 levels have been reported to be
significantly higher in patients with rheumatic disorders, includ-
ing dermatomyositis and systemic sclerosis (48). A potential role
for ANGPTL3 has also been proposed in the pathogenesis of ather-
osclerosis, since its levels have been shown to be closely associated
with arterial wall thickness (49).
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ANGPTL4
ANGPTL4 is involved in a variety of functions, including lipopro-
tein metabolism and angiogenesis (50, 51). Growing evidence
indicates that ANGPTL4 serves as a potent inhibitor of the
LPL enzyme, which hydrolyzes triglycerides from the apolipopro-
tein B – containing lipoproteins chylomicrons and VLDL (52).
Through means of such a mechanism, ANGPTL4 suppresses the
release of non-esterified fatty acids (NEFAs) and their subsequent
uptake by underlying tissues, including adipose tissue, skeletal and
cardiac muscle. Moreover, ANGPTL4 increases the intracellular
lipolysis of triglycerides within adipocytes, thereby raising plasma
NEFA concentrations (53, 54). The expression of ANGPTL4 has
been shown to be governed through a synergistic induction by the
lipid-sensing peroxisome proliferator-activated receptors (PPARs)
α, β, and γ (53). ANGPTL4 overexpression causes a 50% reduc-
tion in adipose tissue weight by stimulating lipolysis, fatty acids
oxidation, and uncoupling in fat (53–55).

Of interest, insulin has been shown to induce a decrease in
ANGPTL4 plasmatic levels (56). During a hyperinsulinemic eug-
lycemic clamp in healthy subjects, insulin induced a reduction
in plasma ANGPTL4 and NEFA concentrations and decreased
ANGPTL4 mRNA in adipose tissue (56). In a recent report, the
change in ANGPTL4 was shown to positively correlate with the
change in NEFA concentrations and negatively correlate with the
change in plasma triglycerides (52). The effect of insulin on plasma
ANGPTL4 could be thereby mediated by the observed decrease
in NEFA. However, other reports indicate that insulin can sup-
press ANGPTL4 production independent of NEFA (57, 58). Recent
studies by Clement and colleagues elegantly demonstrated, both in
humans and in animal models, that ANGPTL4 is a direct molecu-
lar link between proteinuria and hypertriglyceridemia in nephrotic
syndrome (59–61).

ANGPTL4 also seems to play a relevant role in type 2 dia-
betes mellitus and in the metabolic syndrome, both associated
with dyslipidemia (52). In mice, ANGPTL4 decreases blood glu-
cose and improves glucose tolerance but induces hyperlipidemia
and hepatic steatosis (62). Central administration of Angptl4
suppresses food intake and body weight gain via suppression
of hypothalamic AMPK activities (63). A recent report sug-
gested a role for ANGPTL4 also in the pathophysiology of ath-
erosclerosis. Indeed, a microarray analysis demonstrated that
in high-calcified carotid plaques ANGPTL4 expression was sig-
nificantly elevated, whereas FGFR2 expression was significantly
suppressed (64).

ANGPTL4 and ANGPTL3 share many common features. How-
ever, while ANGPTL4 exhibits a widespread distribution of tis-
sue expression, ANGPTL3 is almost exclusively expressed in the
liver (8, 65, 66). Besides, whereas ANGPTL3 inhibits LPL activ-
ity primarily in the fed state, ANGPTL4 plays important roles
in both fed and fasted states. ANGPTL4 regulates the tissue-
specific delivery of lipoprotein-derived fatty acids. Differently
from ANGPTL3, ANGPTL4 is thus considered an endocrine or
autocrine/paracrine inhibitor of LPL depending on its sites of
expression (67). Treatments with various ligands of nuclear recep-
tors revealed that ANGPTL3 is a target gene of liver X receptor,
while ANGPTL4 expression is activated by ligands of all PPARs.
Thus, the differential regulation of ANGPTL3 and ANGPTL4 by

sites of expression, nutritional status, and ligands of nuclear recep-
tors may confer unique roles of each in lipoprotein metabolism
(68).

ANGPTL5
During large-scale DNA sequencing of the human fetal brain
cDNA library, a novel human angiopoietin-like cDNA was cloned
(5) and termed human angiopoietin-like 5 (ANGPTL5). No
mouse ortholog has been described hitherto. Like other members
of the angiopoietin family, ANGPTL5 protein also has an N-
terminal cleavable signal peptide, a predicted coiled-coil domain,
and a fibrinogen-like domain. The search against the human
genome database indicates that ANGPTL5 maps to 11q22. Expres-
sion analysis of ANGPTL5 shows that it is mainly expressed in
adult human heart (5). Most recently, it has been proved to
play a functional role in the expansion of human cord blood
hematopoietic stem cells (69, 70). Of interest, other ANGPTLs
have been shown to participate in signaling pathways for the sur-
vival as well as expansion of human hematopoietic stem cells in
the bone-marrow niche (71).

ANGPTL6
Serum ANGPTL6 levels have been shown to be significantly higher
in patients with metabolic syndrome compared with healthy sub-
jects (72). Moreover, among the components of metabolic syn-
drome, subjects with high waist circumference or decreased HDL
cholesterol had significantly increased serum ANGPTL6 levels
(72). These findings seem somehow in contrast with the previous
demonstration of a functional role of ANGPTL6 in counteract-
ing obesity and related insulin resistance (73). Further investiga-
tions in this field are therefore warranted. In another study, four
single nucleotide polymorphisms (SNPs: rs6511435, rs8112063,
rs11671983, and rs15723) were found to cover more than 95% of
the known ANGPTL6 genetic variability. Subjects from the entire
“MONICA-Study” were genotyped for these SNPs (74). The G
allele of rs8112063 was associated with lower plasma glucose lev-
els. Furthermore, the G allele of rs6511435 tended to be associated
with a 20% higher risk of metabolic syndrome and obese patients
carrying such allele had significantly higher plasma insulin levels
than AA subjects (P = 0.0055). Instead, no significant association
was detected for rs11671983 and rs15723 (74).

A potential role of ANGPTL6 in endothelial dysfunction is
suggested by preliminary results from a recent Finnish study
demonstrating that Angptl6 serum levels are higher in women
with subsequent pregnancy-induced hypertension (75). Support-
ing these findings, higher values of resting metabolic rates have
been found in subjects with higher circulating ANGPTL6 con-
centration (76). Interestingly, there was a significant difference in
weight, body mass index, fat mass, visceral fat, fasting serum glu-
cose and insulin, and CRP among those with different levels of the
serum ANGPTL6 concentration (76).

ANGPTL7
ANGPTL7 gene is located within intron 28 of FRAP1 gene encod-
ing mTOR protein (77) at human chromosome 1p36.22 (78).
In silico expression analyses have been performed to compare
the expression profiles of human and mouse ANGPTL7 mRNAs.
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Human ANGPTL7 mRNA was expressed in neural tissues, kera-
toconus cornea, trabecular meshwork, melanotic melanoma, and
uterus endometrial cancer, while mouse mRNA was essentially
expressed in four-cell embryo, synovial fibroblasts, thymus, uterus,
and testis (78).

Albeit structurally related to the angiopoietins, ANGPTL7’s
biological function is poorly understood. As a potent target gene
of WNT/β-catenin signaling pathway, it is generally considered a
potential target in the fields of regenerative medicine and oncol-
ogy. Recently, a functional role for ANGPTL7 has been proposed
in the pathophysiology of glaucoma (79, 80). Indeed, the concen-
tration of ANGPTL7 protein was found to be elevated in aqueous
humor from patients with glaucoma (79, 81). Furthermore, over-
expression of ANGPTL7 in primary human trabecular meshwork
cells altered the expression of relevant trabecular meshwork pro-
teins of the extracellular matrix (ECM), including fibronectin,
collagens type I, IV, and V, myocilin, versican, and MMP1. A dys-
functional trabecular meshwork leads to an altered fluid resistance,
which results in increased intraocular pressure, the major risk fac-
tor of glaucoma, a leading cause of blindness in the developed
world (81, 82). Interestingly, silencing ANGPTL7 during the glu-
cocorticoid insult significantly affected the expression of other
steroid-responsive proteins (79, 80).

ANGPTL8
Also known as lipasin because of its capacity in LPL inhibition
(9), this protein, ANGPTL8, is considered a novel but atypical
ANGPTL family member, since it lacks the fibrinogen-like domain,
the glycosylation sites, and the aminoacids for forming disulfide
bonds. ANGPTL8 is a hepatocyte-derived circulating factor that
regulates plasma triglycerides levels (8) and is thereby considered a
key mediator of the post-prandial trafficking of fatty acids to adi-
pose tissue. Mice deficient for ANGPTL8 have low triglyceride lev-
els whereas these levels are increased after its adenovirus-mediated
overexpression. Murine ANGPTL8 transcript is highly enriched in
white and brown adipose tissue and liver (another way to refer to
ANGPTL8 is actually RIFL, re-feeding induced in fat and liver).
In adipocytes, ANGPTL8 is up-regulated by insulin and down-
regulated by agents that stimulate lipolysis, including forskolin.
Moreover, there is evidence of a roughly eightfold increase in
ANGPTL8 transcript level in the adipose tissue of ob/ob mice
compared with wild-type animals (83).

Lately, hepatic overexpression of ANGPTL8 has been shown
to promote proliferation of pancreatic beta cells and increase
insulin release in an insulin-deficient mouse model of insulin
resistance (84). Hence, ANGPTL8 might certainly contribute
to glucose homeostasis (85) opening a new door to possible
future targeted therapies for diabetes and metabolic syndrome
(86, 87).

CONCLUSION
Numerous biological functions of ANGPTL proteins have been
so far described both in physiological and pathophysiological
processes. Some ANGPTL proteins have been shown to exhibit
pleiotropic effects, including functional roles in metabolism,
angiogenesis, inflammation, and cancer. In particular, the recent
identification of mutations in distinct ANGPTLs is shedding

light on the potential role of these proteins at the crossroads of
lipoproteins, fatty acids, and glucose metabolism, thus making
them attractive molecules to target the cardio-metabolic risk.
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